Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (3): 90-97    DOI: 10.11868/j.issn.1001-4381.2020.000215
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
电沉积ZnO纳米柱的光学带隙与非辐射复合
汤洋1,2,*()
1 国家能源集团 绿色能源与建筑研究中心, 北京 102211
2 北京低碳清洁能源研究院, 北京 102211
Optical gap energy of eletrodeposited ZnO nanorods and its non-radiative recombination
Yang TANG1,2,*()
1 Center for Green Energy and Architecture, China Energy Investment Corporation, Beijing 102211, China
2 National Institute of Clean- and-Low-Carbon Energy, Beijing 102211, China
全文: PDF(10033 KB)   HTML ( 1 )  
输出: BibTeX | EndNote (RIS)      
摘要 

为实现ZnO纳米柱阵列材料在新型纳米结构化太阳能电池中的应用, 需要对纳米柱的几何形貌与光电特性进行调控。ZnO纳米柱阵列材料的制备方法为电化学沉积方法。通过在生长溶液中使用In(NO3)3和NH4NO3, 实现了对纳米柱的直径、阵列密度、柱间距、光学带隙、近带边发射、斯托克斯位移等物理性质的调控。采用扫描电子显微镜、X射线衍射仪、分光光度计、光致发光测试仪对样品的形貌、晶体性质、透射反射性质、光致发光性质进行测试与表征。结果表明, 使用NH4NO3将紧密排列的ZnO纳米柱阵列密度降低了51%, 导致柱间距增大至超过100 nm, 同时可将纳米柱的直径降低至22 nm。使用In(NO3)3使ZnO纳米柱的光学带隙展宽100 meV。通过NH4NO3的使用可在3.41 eV至3.55 eV范围内调控带隙。由于NH4NO3的引入, ZnO纳米柱的斯托克斯位移可降低至19 meV, 表明NH4NO3的引入能够有效地抑制纳米柱阵列中的非辐射复合。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汤洋
关键词 氧化锌硝酸铵硝酸铟电沉积光学带隙非辐射复合    
Abstract

In order to achieve the applications of the ZnO nanorod arrays in the novel nanostructured solar cells, it is necessary to tailor and control the nanorods' morphological, optical and electrical properties. The ZnO nanorods arrays were fabricated by electrodeposition. The physical properties such as the diameter, density, distance, optical band gap energy, near band emission and Stokes shift can be adjusted by the use of In(NO3)3 and NH4NO3.The characterizations such as scanning electron microscopy, X-ray diffraction spectrometer and photoluminescence were used to measure the samples' morphology, crystal property, transmission and reflection and photoluminescence properties. According to the measurement results, the ZnO nanorod arrays' density is reduced to 5.9×109 cm-2 and the distance between nanorods is enlarged to 108 nm by using NH4NO3. The nanorods' diameter is decreased to 22 nm. The use of In(NO3)3 leads to the blue shift of the ZnO nanorods' optical band gap energy by 100 meV. The optical band gap energy is further tailored between 3.41 eV and 3.55 eV by using NH4NO3. The ZnO nanorods' Stokes shift can be decreased to 19 meV by using NH4NO3, resulting in the effective suppression of the non-radiative recombination.

Key wordsZnO    ammonium nitrate    indium nitrate    electrodeposition    optical band gap    non-radiative recombination
收稿日期: 2020-03-17      出版日期: 2022-03-19
中图分类号:  TM23  
基金资助:国家自然科学基金项目(61404007);北京市优秀人才培养拔尖自然科学资助项目(2015000021223ZK38)
通讯作者: 汤洋     E-mail: yang.tang.a@chnenergy.com.cn
作者简介: 汤洋(1983—),男,高级工程师,博士,研究方向为太阳能电池与光伏建筑一体化,联系地址:北京市昌平区未来科学城国家能源集团科技创新园区202楼305室(102211),E-mail: yang.tang.a@chnenergy.com.cn
引用本文:   
汤洋. 电沉积ZnO纳米柱的光学带隙与非辐射复合[J]. 材料工程, 2022, 50(3): 90-97.
Yang TANG. Optical gap energy of eletrodeposited ZnO nanorods and its non-radiative recombination. Journal of Materials Engineering, 2022, 50(3): 90-97.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000215      或      http://jme.biam.ac.cn/CN/Y2022/V50/I3/90
Fig.1  ZnO纳米柱的扫描电镜图片
(a)样品1;(b)样品2;(c)样品3;(d)样品4;(e)样品5;(1)俯视;(2)侧视
Sample Diameter/
nm
Height/
nm
Density/
109cm-2
Distance/
nm
1 70±24 89±25 12.0
2 39±13 95±27 16.0 40
3 66±17 102±30 8.6 42
4 73±17 178±32 6.3 53
5 22±9 156±34 5.9 108
Table 1  ZnO纳米柱的几何形貌数据
Fig.2  AZO薄膜及样品1~5的X射线衍射图谱
Fig.3  样品1~5的透射光谱及光学带隙拟合图谱
Fig.4  样品1~5的反射光谱
Fig.5  ZnO纳米柱样品的室温光致发光图谱
Fig.6  ZnO纳米柱样品的室温光致发光图谱在300~470 nm范围的高斯拟合结果
(a)样品1;(b)样品2;(c)样品3;(d)样品4;(e)样品5
Sample NBE 1/
eV
NBE 2/
eV
NBE 3/
eV
Stokes shift/
meV
1 3.361 3.252 99
2 3.349 3.231 3.169 211
3 3.421 3.174 129
4 3.418 3.167 72
5 3.391 3.175 19
Table 2  ZnO纳米柱样品的近带边发射峰位和斯托克斯位移
1 KIM D , YUN I , KIM H . Fabrication of rough Al doped ZnO films deposited by low pressure chemical vapor deposition for high efficiency thin film solar cells[J]. Current Applied Physics, 2010, 10 (3): 459- 462.
doi: 10.1016/j.cap.2010.02.030
2 LUKA G , WITKOWSKI B S , WACHNICKI L , et al. Electrical and mechanical stability of aluminum-doped ZnO films grown on flexible substrates by atomic layer deposition[J]. Materials Science and Engineering: B, 2014, 186, 15- 20.
doi: 10.1016/j.mseb.2014.03.002
3 COMAN T , URSU E L , NICA V , et al. Improving the uncommon (110) growing orientation of Al-doped ZnO thin films through sequential pulsed laser deposition[J]. Thin Solid Films, 2014, 571, 198- 205.
doi: 10.1016/j.tsf.2014.10.037
4 EYCIMEN DUYGULU N , KODOLBAS A O , EKERIM A , et al. Effects of argon pressure and r. power on magnetron sputtered aluminum doped ZnO thin films[J]. Journal of Crystal Growth, 2014, 394, 116- 125.
doi: 10.1016/j.jcrysgro.2014.02.028
5 CHEN J , YE H , AE L , et al. Tapered aluminum-doped vertical zinc oxide nanorod arrays as light coupling layer for solar energy applications[J]. Solar Energy Materials and Solar Cells, 2011, 95 (6): 1437- 1440.
doi: 10.1016/j.solmat.2010.10.006
6 郑高峰, 何广奇, 刘海燕, 等. 电纺氧化锌纳米纤维乙醇、丙酮气敏传感器[J]. 光学精密工程, 2014, 22 (6): 1555- 1561.
6 ZHENG G F , HE G Q , LIU H Y , et al. Electrospun zinc oxide nanofibrous gas sensors for alcohol and acetone[J]. Optics and Precision Engineering, 2014, 22 (6): 1555- 1561.
7 胡轶, 胡更新, 张洁静, 等. ZnO纳米棒/CdS量子点的制备及紫外-可见探测性能研究[J]. 中国光学, 2019, 12 (6): 1271- 1278.
7 HU Y , HU G X , ZHANG J J , et al. Fabrication of ZnO nanorod/CdS quantum dots and its detection performance in UV-Visible waveband[J]. Chinese Optics, 2019, 12 (6): 1271- 1278.
8 康冬茹, 叶芸, 汪江胜, 等. 图形化氧化锌阵列的制备及其场发射性能研究[J]. 液晶与显示, 2017, 32 (5): 367- 371.
8 KANG D R , YE Y , WANG J S , et al. Fabrication and field emission properties of patterned ZnO arrays[J]. Chinese Journal of Liquid Crystal and Displays, 2017, 32 (5): 367- 371.
9 孙义, 李青. 基于化学溶液法制备的氧化锌量子点发光二极管研究[J]. 液晶与显示, 2016, 31 (7): 635- 642.
9 SUN Y , LI Q . Research of zinc oxide quantum dot light-emitting diodes based on preparation of chemical solutions[J]. Chinese Journal of Liquid Crystal and Displays, 2016, 31 (7): 635- 642.
10 陈国炜, 朱荣. 基于氧化锌纳米线的硅谐振式加速度计[J]. 光学精密工程, 2009, 17 (6): 1279- 1285.
doi: 10.3321/j.issn:1004-924X.2009.06.014
10 CHEN G W , ZHU R . Silicon micromachined resonant accelerometer based on ZnO nanowire[J]. Optics and Precision Engineering, 2009, 17 (6): 1279- 1285.
doi: 10.3321/j.issn:1004-924X.2009.06.014
11 赵海霞, 方铉, 王颜彬, 等. ZnO/ZnS核壳纳米线界面缺陷的形成及发光特性研究[J]. 中国光学, 2019, 12 (4): 872- 879.
11 ZHAO H X , FANG X , WANG Y B , et al. Formation of interface defects of ZnO/ZnS core-shell nanowires and its optical properties investigations[J]. Chinese Optics, 2019, 12 (4): 872- 879.
12 SU S , YANG X , HU C , et al. Fabrication of ZnO nanowell-network ultraviolet photodetector on Si substrates[J]. Journal of Semiconductors, 2011, 32 (7): 074008.
doi: 10.1088/1674-4926/32/7/074008
13 SUN X , AZAD F , WANG S , et al. Low-cost flexible ZnO microwires array ultraviolet photodetector embedded in PAVL substrate[J]. Nano Research Letters, 2018, 13, 277.
doi: 10.1186/s11671-018-2701-4
14 CAO S , ZHANG J , LI W , et al. Near room temperature and large-area synthesis of ZnO/Cu2O heterojunction for photocatalytic properties[J]. Chemical Physics Letters, 2018, 692, 14- 18.
doi: 10.1016/j.cplett.2017.11.062
15 AMANY A , WANG D , WANG J , et al. Enhanced the UV response of AlN coated ZnO nanorods photodetector[J]. Journal of Alloys and Compounds, 2019, 776, 111- 115.
doi: 10.1016/j.jallcom.2018.10.247
16 RIEDEL W , TANG Y , OHM W , et al. Effect of initial galvanic nucleation on morphological and optical properties of ZnO nanorod arrays[J]. Thin Solid Films, 2015, 574, 177- 183.
doi: 10.1016/j.tsf.2014.12.006
17 GUO L , TANG Y , CHIANG F K , et al. Density-controlled growth and passivation of ZnO nanorod arrays by electrodeposition[J]. Thin Solid Films, 2017, 638, 426- 432.
doi: 10.1016/j.tsf.2017.08.015
18 汤洋, 郭逦达, 张增光, 等. 硝酸铵诱导电沉积氧化锌纳米柱的铝掺杂及光学性质操控[J]. 光学精密工程, 2015, 23 (5): 1288- 1296.
18 TANG Y , GUO L D , ZHANG Z G , et al. Aluminium doping and optical property control of electrodeposited zinc oxide nanorods induced by ammonium nitrate[J]. Optics and Precision Engineering, 2015, 23 (5): 1288- 1296.
19 TANG Y , CHEN J , GREINER D , et al. Fast growth of high work function and high-quality ZnO nanorods from an aqueous solution[J]. Journal of Physical Chemistry: C, 2011, 115 (13): 5239- 5243.
doi: 10.1021/jp109022k
20 MAHMOOD K , KHALID A , WAQAS S , et al. Indium-doped ZnO mesoporous nanofibers as efficient electron transporting materials for perovskite solar cells[J]. Surface and Coatings Technology, 2018, 352, 231- 237.
doi: 10.1016/j.surfcoat.2018.08.039
21 ZHANG C , XIONG D , XU S , et al. Highly effect field emission from indium-doped ZnO nanostructures on nanographene/ macroporous electric conductive network[J]. Material Letters, 2018, 222, 25- 28.
doi: 10.1016/j.matlet.2018.03.181
22 YU C , LI R , LI T , et al. Effect of Indium doping on the photoelectric properties of n-ZnO nanorods/p-GaN heterojunction light-emitting diodes[J]. Superlattices and Microstructures, 2018, 120, 298- 304.
doi: 10.1016/j.spmi.2018.05.060
23 KUMAR A , HUANG N , STAEDLER T , et al. Mechanical characterization of aluminum doped zinc oxide (Al∶ZnO) nanorods prepared by sol-gel method[J]. Applied Surface Science, 2013, 265, 758- 763.
doi: 10.1016/j.apsusc.2012.11.101
24 CHEN Z , ZHAN G , WU Y . Sol-gel-hydrothermal synthesis and conductive properties of Al-doped ZnO nanopowders with controllable morphology[J]. Journal of Alloys and Compounds, 2014, 587, 692- 697.
doi: 10.1016/j.jallcom.2013.10.241
25 汤洋, 赵颖, 张增光, 等. 氧化锌纳米柱阵列的水热合成及其性能[J]. 材料研究学报, 2015, 29 (7): 529- 534.
25 TANG Y , ZHAO Y , ZHANG Z G , et al. Hydrothermal synthesis and properties of ZnO nanorod arrays[J]. Chinese Journal of Materials Research, 2015, 29 (7): 529- 534.
26 汤洋, 陈颉. 电沉积掺铝氧化锌纳米柱的光学带隙蓝移与斯托克斯位移[J]. 发光学报, 2014, 35 (10): 1165- 1171.
26 TANG Y , CHEN J . Optical band gap blue shift and Stokes shift in Al-doped ZnO nanorods by electrodeposition[J]. Chinese Journal of Luminescence, 2014, 35 (10): 1165- 1171.
27 BAI A , TANG Y , CHEN J . Efficient photon capturing in Cu(In, Ga)Se2 thin film solar cells with ZnO nanorod arrays as an antireflective coating[J]. Chemical Physics Letters, 2015, 636, 134- 140.
doi: 10.1016/j.cplett.2015.07.044
28 PAL E , HORNOK V , OSZKO A , et al. Hydrothermal synthesis of prism-like and flower-like ZnO and indium-doped ZnO structures[J]. Colloids and Surfaces: A, 2009, 340 (1): 1- 9.
29 KIM C E , MOON P , KIM S , et al. Effect of carrier concentration on optical bandgap shift in ZnO∶Ga thin films[J]. Thin Solid Films, 2010, 518 (22): 6304- 6307.
doi: 10.1016/j.tsf.2010.03.042
30 OI MAHAMUNI S , BORGOHAIN K , BENDRE B S , et al. Spectroscopic and structural characterization of electrochemically grown ZnO quantum dots[J]. Journal of Applied Physics, 1999, 85 (5): 2861- 2865.
doi: 10.1063/1.369049
31 CHEN J , AE L , LUX-STEINER M C . High internal quantum efficiency ZnO nanorod prepared at low temperature[J]. Applied Physics Letters, 2008, 92 (16): 161906.
doi: 10.1063/1.2910769
[1] 韩锡正, 费敬银, 赵利娜, 燕宝强, 王俊. 完全非晶态Ni-B合金镀层的电沉积制备[J]. 材料工程, 2021, 49(5): 171-177.
[2] 郭琪琪, 费敬银, 张嫚, 韩锡正, 赵利娜. Fei氏方波对Ni-P合金镀层组成及其非晶化程度的调控作用[J]. 材料工程, 2020, 48(6): 163-169.
[3] 侯桂香, 谢建强, 姚少巍, 张云杰, 蓝文. 生物基没食子酸环氧树脂/纳米氧化锌抗菌涂层的制备与性能[J]. 材料工程, 2020, 48(3): 34-39.
[4] 左银泽, 陈亮, 朱斌, 高延敏. 纳米氧化锌负载氧化石墨烯/环氧树脂复合材料性能研究[J]. 材料工程, 2018, 46(5): 22-28.
[5] 彭秋艳, 费敬银, 陈居田, 赵非凡, 冯旭. 双向脉冲快速电沉积非晶态Ni-P/Al2O3复合镀层[J]. 材料工程, 2018, 46(3): 81-90.
[6] 夏永辉, 高强, 王阳毅, 李梦娟. AZO中空纳米纤维的制备及光催化性能[J]. 材料工程, 2018, 46(2): 16-21.
[7] 杨丰, 王飞, 贾若飞, 杨丽丽, 杨慧, 李岚. 零维、一维和二维ZnO纳米材料的应用研究进展[J]. 材料工程, 2018, 46(10): 20-29.
[8] 马慧, 高强, 夏永辉, 刘婉婉, 葛明桥. AZO@C柔性纳米纤维的制备与性能[J]. 材料工程, 2018, 46(1): 119-124.
[9] 史艳华, 赵杉林, 王玲, 梁平, 关学雷. 稀土Ce掺杂纳米晶Mn-Mo-Ce氧化物阳极及其选择电催化性能[J]. 材料工程, 2017, 45(9): 72-80.
[10] 赵燕茹, 马建中, 刘俊莉. 可见光响应型ZnO基纳米复合光催化材料的研究进展[J]. 材料工程, 2017, 45(6): 129-137.
[11] 魏红阳, 常萌蕾, 陈东初, 王梅丰, 叶秀芳. 太阳能吸收AAO复合氧化膜的制备与性能[J]. 材料工程, 2017, 45(11): 42-48.
[12] 金世伟, 康敏, 邵越, 杜晓霞, 张欣颖. 热处理非晶态Ni-P合金镀层的晶化过程[J]. 材料工程, 2016, 44(9): 115-120.
[13] 史艳华, 赵杉林, 梁平, 王玲, 关学雷. pH值对阳极电沉积Mn-Mo氧化物结构与性能的影响[J]. 材料工程, 2016, 44(12): 7-12.
[14] 张闫, 费敬银, 李倍, 赵非凡, 彭秋艳. 快速电沉积法制备镍基金刚石复合镀层[J]. 材料工程, 2016, 44(10): 24-32.
[15] 张凌云, 贾若琨, 孙旭辉, 张瑛洁, 刘春光. NH3气氛下N掺杂ZnO的制备及光电性能[J]. 材料工程, 2015, 43(4): 25-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn