Optical gap energy of eletrodeposited ZnO nanorods and its non-radiative recombination
Yang TANG1,2,*()
1 Center for Green Energy and Architecture, China Energy Investment Corporation, Beijing 102211, China 2 National Institute of Clean- and-Low-Carbon Energy, Beijing 102211, China
In order to achieve the applications of the ZnO nanorod arrays in the novel nanostructured solar cells, it is necessary to tailor and control the nanorods' morphological, optical and electrical properties. The ZnO nanorods arrays were fabricated by electrodeposition. The physical properties such as the diameter, density, distance, optical band gap energy, near band emission and Stokes shift can be adjusted by the use of In(NO3)3 and NH4NO3.The characterizations such as scanning electron microscopy, X-ray diffraction spectrometer and photoluminescence were used to measure the samples' morphology, crystal property, transmission and reflection and photoluminescence properties. According to the measurement results, the ZnO nanorod arrays' density is reduced to 5.9×109 cm-2 and the distance between nanorods is enlarged to 108 nm by using NH4NO3. The nanorods' diameter is decreased to 22 nm. The use of In(NO3)3 leads to the blue shift of the ZnO nanorods' optical band gap energy by 100 meV. The optical band gap energy is further tailored between 3.41 eV and 3.55 eV by using NH4NO3. The ZnO nanorods' Stokes shift can be decreased to 19 meV by using NH4NO3, resulting in the effective suppression of the non-radiative recombination.
汤洋. 电沉积ZnO纳米柱的光学带隙与非辐射复合[J]. 材料工程, 2022, 50(3): 90-97.
Yang TANG. Optical gap energy of eletrodeposited ZnO nanorods and its non-radiative recombination. Journal of Materials Engineering, 2022, 50(3): 90-97.
KIM D , YUN I , KIM H . Fabrication of rough Al doped ZnO films deposited by low pressure chemical vapor deposition for high efficiency thin film solar cells[J]. Current Applied Physics, 2010, 10 (3): 459- 462.
doi: 10.1016/j.cap.2010.02.030
2
LUKA G , WITKOWSKI B S , WACHNICKI L , et al. Electrical and mechanical stability of aluminum-doped ZnO films grown on flexible substrates by atomic layer deposition[J]. Materials Science and Engineering: B, 2014, 186, 15- 20.
doi: 10.1016/j.mseb.2014.03.002
3
COMAN T , URSU E L , NICA V , et al. Improving the uncommon (110) growing orientation of Al-doped ZnO thin films through sequential pulsed laser deposition[J]. Thin Solid Films, 2014, 571, 198- 205.
doi: 10.1016/j.tsf.2014.10.037
4
EYCIMEN DUYGULU N , KODOLBAS A O , EKERIM A , et al. Effects of argon pressure and r. power on magnetron sputtered aluminum doped ZnO thin films[J]. Journal of Crystal Growth, 2014, 394, 116- 125.
doi: 10.1016/j.jcrysgro.2014.02.028
5
CHEN J , YE H , AE L , et al. Tapered aluminum-doped vertical zinc oxide nanorod arrays as light coupling layer for solar energy applications[J]. Solar Energy Materials and Solar Cells, 2011, 95 (6): 1437- 1440.
doi: 10.1016/j.solmat.2010.10.006
ZHENG G F , HE G Q , LIU H Y , et al. Electrospun zinc oxide nanofibrous gas sensors for alcohol and acetone[J]. Optics and Precision Engineering, 2014, 22 (6): 1555- 1561.
HU Y , HU G X , ZHANG J J , et al. Fabrication of ZnO nanorod/CdS quantum dots and its detection performance in UV-Visible waveband[J]. Chinese Optics, 2019, 12 (6): 1271- 1278.
KANG D R , YE Y , WANG J S , et al. Fabrication and field emission properties of patterned ZnO arrays[J]. Chinese Journal of Liquid Crystal and Displays, 2017, 32 (5): 367- 371.
SUN Y , LI Q . Research of zinc oxide quantum dot light-emitting diodes based on preparation of chemical solutions[J]. Chinese Journal of Liquid Crystal and Displays, 2016, 31 (7): 635- 642.
CHEN G W , ZHU R . Silicon micromachined resonant accelerometer based on ZnO nanowire[J]. Optics and Precision Engineering, 2009, 17 (6): 1279- 1285.
doi: 10.3321/j.issn:1004-924X.2009.06.014
ZHAO H X , FANG X , WANG Y B , et al. Formation of interface defects of ZnO/ZnS core-shell nanowires and its optical properties investigations[J]. Chinese Optics, 2019, 12 (4): 872- 879.
12
SU S , YANG X , HU C , et al. Fabrication of ZnO nanowell-network ultraviolet photodetector on Si substrates[J]. Journal of Semiconductors, 2011, 32 (7): 074008.
doi: 10.1088/1674-4926/32/7/074008
13
SUN X , AZAD F , WANG S , et al. Low-cost flexible ZnO microwires array ultraviolet photodetector embedded in PAVL substrate[J]. Nano Research Letters, 2018, 13, 277.
doi: 10.1186/s11671-018-2701-4
14
CAO S , ZHANG J , LI W , et al. Near room temperature and large-area synthesis of ZnO/Cu2O heterojunction for photocatalytic properties[J]. Chemical Physics Letters, 2018, 692, 14- 18.
doi: 10.1016/j.cplett.2017.11.062
15
AMANY A , WANG D , WANG J , et al. Enhanced the UV response of AlN coated ZnO nanorods photodetector[J]. Journal of Alloys and Compounds, 2019, 776, 111- 115.
doi: 10.1016/j.jallcom.2018.10.247
16
RIEDEL W , TANG Y , OHM W , et al. Effect of initial galvanic nucleation on morphological and optical properties of ZnO nanorod arrays[J]. Thin Solid Films, 2015, 574, 177- 183.
doi: 10.1016/j.tsf.2014.12.006
17
GUO L , TANG Y , CHIANG F K , et al. Density-controlled growth and passivation of ZnO nanorod arrays by electrodeposition[J]. Thin Solid Films, 2017, 638, 426- 432.
doi: 10.1016/j.tsf.2017.08.015
TANG Y , GUO L D , ZHANG Z G , et al. Aluminium doping and optical property control of electrodeposited zinc oxide nanorods induced by ammonium nitrate[J]. Optics and Precision Engineering, 2015, 23 (5): 1288- 1296.
19
TANG Y , CHEN J , GREINER D , et al. Fast growth of high work function and high-quality ZnO nanorods from an aqueous solution[J]. Journal of Physical Chemistry: C, 2011, 115 (13): 5239- 5243.
doi: 10.1021/jp109022k
20
MAHMOOD K , KHALID A , WAQAS S , et al. Indium-doped ZnO mesoporous nanofibers as efficient electron transporting materials for perovskite solar cells[J]. Surface and Coatings Technology, 2018, 352, 231- 237.
doi: 10.1016/j.surfcoat.2018.08.039
21
ZHANG C , XIONG D , XU S , et al. Highly effect field emission from indium-doped ZnO nanostructures on nanographene/ macroporous electric conductive network[J]. Material Letters, 2018, 222, 25- 28.
doi: 10.1016/j.matlet.2018.03.181
22
YU C , LI R , LI T , et al. Effect of Indium doping on the photoelectric properties of n-ZnO nanorods/p-GaN heterojunction light-emitting diodes[J]. Superlattices and Microstructures, 2018, 120, 298- 304.
doi: 10.1016/j.spmi.2018.05.060
23
KUMAR A , HUANG N , STAEDLER T , et al. Mechanical characterization of aluminum doped zinc oxide (Al∶ZnO) nanorods prepared by sol-gel method[J]. Applied Surface Science, 2013, 265, 758- 763.
doi: 10.1016/j.apsusc.2012.11.101
24
CHEN Z , ZHAN G , WU Y . Sol-gel-hydrothermal synthesis and conductive properties of Al-doped ZnO nanopowders with controllable morphology[J]. Journal of Alloys and Compounds, 2014, 587, 692- 697.
doi: 10.1016/j.jallcom.2013.10.241
TANG Y , ZHAO Y , ZHANG Z G , et al. Hydrothermal synthesis and properties of ZnO nanorod arrays[J]. Chinese Journal of Materials Research, 2015, 29 (7): 529- 534.
TANG Y , CHEN J . Optical band gap blue shift and Stokes shift in Al-doped ZnO nanorods by electrodeposition[J]. Chinese Journal of Luminescence, 2014, 35 (10): 1165- 1171.
27
BAI A , TANG Y , CHEN J . Efficient photon capturing in Cu(In, Ga)Se2 thin film solar cells with ZnO nanorod arrays as an antireflective coating[J]. Chemical Physics Letters, 2015, 636, 134- 140.
doi: 10.1016/j.cplett.2015.07.044
28
PAL E , HORNOK V , OSZKO A , et al. Hydrothermal synthesis of prism-like and flower-like ZnO and indium-doped ZnO structures[J]. Colloids and Surfaces: A, 2009, 340 (1): 1- 9.
29
KIM C E , MOON P , KIM S , et al. Effect of carrier concentration on optical bandgap shift in ZnO∶Ga thin films[J]. Thin Solid Films, 2010, 518 (22): 6304- 6307.
doi: 10.1016/j.tsf.2010.03.042
30
OI MAHAMUNI S , BORGOHAIN K , BENDRE B S , et al. Spectroscopic and structural characterization of electrochemically grown ZnO quantum dots[J]. Journal of Applied Physics, 1999, 85 (5): 2861- 2865.
doi: 10.1063/1.369049
31
CHEN J , AE L , LUX-STEINER M C . High internal quantum efficiency ZnO nanorod prepared at low temperature[J]. Applied Physics Letters, 2008, 92 (16): 161906.
doi: 10.1063/1.2910769