Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (4): 52-62    DOI: 10.11868/j.issn.1001-4381.2020.000235
  综述 本期目录 | 过刊浏览 | 高级检索 |
金属激光3D打印过程数值模拟应用及研究现状
杨鑫1,*(), 王犇1, 谷文萍2, 张兆洋1, 刘世锋3, 武涛1
1 西安理工大学 材料科学与工程学院, 西安 710048
2 长安大学 材料科学与工程学院, 西安 710061
3 西安建筑科技大学 冶金学院, 西安 710055
Application and research status of numerical simulation of metal laser 3D printing process
Xin YANG1,*(), Ben WANG1, Wen-ping GU2, Zhao-yang ZHANG1, Shi-feng LIU3, Tao WU1
1 Department of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
2 Department of Materials Science and Engineering, Chang'an University, Xi'an 710061, China
3 School of Metallurgical and Engineering, Xi'an University of Architecture&Technology, Xi'an 710055, China
全文: PDF(1319 KB)   HTML ( 1 )  
输出: BibTeX | EndNote (RIS)      
摘要 

数值模拟可以高效、有针对性地对金属激光选区熔化成型过程中的温度场、熔池形状、残余应力和变形、凝固过程微观组织演变等过程建立相应的模型并对成形件的相关性能做出准确预测,为工艺优化提供科学的依据,显著降低工艺开发成本和缩短工艺开发周期,有力推动金属增材制造向工业级应用的转变。本文综述了金属激光增材制造过程中温度场、熔池动力学、成形件内部残余应力和变形、显微组织变化4个方面数值模拟的最新研究进展,概述了金属SLM过程数值模拟所取得的最新进展,分析了金属SLM数值模拟领域的研究热点和所存在的计算时间长、成本高等问题,最后提出金属SLM过程数值模拟应将3D打印过程中快速凝固、微熔池等特征与大数据、人工智能、深度学习等技术相结合,进一步提高数值模拟精度,拓宽金属激光增材制造加工窗口,为个性化产品开发提供指导。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨鑫
王犇
谷文萍
张兆洋
刘世锋
武涛
关键词 金属激光选区熔化数值模拟温度场熔池动力学残余应力及变形    
Abstract

Numerical simulation can establish corresponding models for temperature field, molten pool shape, residential stress, microstructure evolution in the metal SLM process effectively. Meanwhile this model can accurately predict the performance of forming parts, and provide scientific basis for process parameters optimization, consequently boost the metal SLM to industry application. In this paper, the latest research progress of numerical simulation in the process of metal laser additive manufacturing was summarized, including temperature field, molten pool dynamics, residual stress and deformation in the forming part, and microstructure change.The latest progress of numerical simulation in metal SLM process was summarized, and the metal SLM process was analyzed. Finally, the future development trend was put forward that metal SLM process numerical simulation should be combined with big data, artificial intelligence, deep learning and other technologies and numerical simulation accuracy will be further improved, the processing window of metal laser additive manufacturing will be broadened, and guidance will be provided for the development of individual products.

Key wordsmetal selective laser melting    numerical simulation    temperature fields    melting pool dynamics    residual stress and deformation
收稿日期: 2020-03-19      出版日期: 2021-04-21
中图分类号:  V261.8  
基金资助:国家自然科学基金项目(51671152);国家自然科学基金项目(51874225);国家自然科学基金项目(51504191);国家自然科学基金项目(CXYZKD001);陕西省自然科学基础研究计划项目(2014JM6229);陕西省教育厅产业化项目(18JC091);陕西省教育厅自然科学专项(14JK1512);陕西省自然科学基础研究计划一般青年项目(2020JQ-341)
通讯作者: 杨鑫     E-mail: yangx@xaut.edu.cn
作者简介: 杨鑫(1981-), 男, 副教授, 博士, 主要研究方向为钛合金的3D打印, 联系地址: 陕西省西安市碑林区金花南路5号西安理工大学材料科学与工程学院(710048), E-mail: yangx@xaut.edu.cn
引用本文:   
杨鑫, 王犇, 谷文萍, 张兆洋, 刘世锋, 武涛. 金属激光3D打印过程数值模拟应用及研究现状[J]. 材料工程, 2021, 49(4): 52-62.
Xin YANG, Ben WANG, Wen-ping GU, Zhao-yang ZHANG, Shi-feng LIU, Tao WU. Application and research status of numerical simulation of metal laser 3D printing process. Journal of Materials Engineering, 2021, 49(4): 52-62.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000235      或      http://jme.biam.ac.cn/CN/Y2021/V49/I4/52
Fig.1  金属增材制造缺陷类型与形貌[10]
(a)晶粒内孔缺陷;(b)弧形孔缺陷;(c)熔池夹杂缺陷;(d)层间孔隙缺陷;(e)熔池孔隙缺陷;(f)弧形孔缺陷;(g)不规则孔;(h)孔隙裂纹源缺陷;(i)夹杂裂纹源缺陷
Fig.2  高斯热源模型及实际应用[9]
Fig.3  粉末随机算法分布模型[18] (不同颜色表示粉末粒径不同)
(a)粉床分层模型;(b)粉床堆积模型;(c)成型仓粉末填充模型
Fig.4  实验所得熔池温度分布(a)与数值模拟熔池温度场(b)[22]
Fig.5  激光熔融过程中熔池主要物理过程[27]
Fig.6  打印参数对熔池大小和形状的影响[34]
Influence factor Influence of residual stress on forming parts Ref
Substrate shape The thinner the substrate, the more uniform the residual stress distribution [49]
Substrate preheated Preheating can reduce the temperature gradient near the molten pool, thus reducing the residual stress and reducing the deformation degree of components [50]
Structural support Add structual support can reduce the deformation degree of components [50]
Temperature distribution High temperature gradients and large cooling rates lead to high residual stresses [50]
Powder layer thickness Thin powder layer will cause greater residual stress and deformation [50]
Forming height The higher the height, the greater the residual stress [51]
Scan path The spiral scanning path reduces residual stress [52]
Scan power High energy density causes large stress and strain [51]
Scanning sequence The residual stress can be reduced by proper scanning sequence [53]
Table 1  成形参数对残余应力的影响[49-53]
Fig.7  不同能量密度下真实凝固时扫描电镜图像(a), (b)和凝固时相场模拟情况(c), (d)[58]
1 黄卫东. 材料3D打印技术的研究进展[J]. 新型工业化, 2016, 6 (3): 53- 70.
1 HUANG W D . Research progress of material 3D printing technology[J]. The Journal of New Industrialization, 2016, 6 (3): 53- 70.
2 王华明, 张述泉, 王韬, 等. 激光增材制造高性能大型钛合金构件凝固晶粒形态及显微组织控制研究进展[J]. 西华大学学报(自然科学版), 2018, 37 (4): 9- 14.
doi: 10.3969/j.issn.1673-159X.2018.04.002
2 WANG H M , ZHANG S Q , WANG T , et al. Progress on solidification grain morphology and microstructure control of laser additively manufacture[J]. Journal of Xihua University(Natural Science Edition), 2018, 37 (4): 9- 14.
doi: 10.3969/j.issn.1673-159X.2018.04.002
3 卢秉恒. 增材制造技术——现状与未来[N]. 中国信息化周报, 2020-04-20(007).
3 LU B H. Additive manufacturing: current situation and future[N]. China Information Weekly, 2020-04-20(007).
4 NGO T D , KASHANI A , IMBALZANO G , et al. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges[J]. Composites Part B, 2018, 143, 172- 196.
doi: 10.1016/j.compositesb.2018.02.012
5 SMITH J , XIONG W , CAO J , et al. Thermodynamically consistent microstructure prediction of additively manufactured materials[J]. Computational Mechanics, 2016, 57 (3): 359- 370.
doi: 10.1007/s00466-015-1243-1
6 LEWANDOWSKI J , SEIFI M . Metal additive manufacturing: a review of mechanical properties[J]. Annual Review of Materials Research, 2016, 46 (1): 151- 186.
doi: 10.1146/annurev-matsci-070115-032024
7 郭超, 张平平, 林峰. 电子束选区熔化增材制造技术研究进展[J]. 工业技术创新, 2017, 4 (4): 6- 14.
7 GUO C , ZHANG P P , LIN F . Research advances of electron beam selective melting additive manufacturing technology[J]. Industrial Technology Innovation, 2017, 4 (4): 6- 14.
8 王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题[J]. 航空学报, 2014, 35 (10): 2690- 2698.
8 WANG H M . Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35 (10): 2690- 2698.
9 TODARO C J , EASTON M A , QIU D , et al. Grain structure control during metal 3D printing by high-intensity ultrasound[J]. Nature Communications, 2020, 11 (1): 1- 9.
doi: 10.1038/s41467-019-13993-7
10 高翔宇, 高祥熙, 姜涛, 等. 增材制造大型钛合金横梁缺陷分析[J]. 失效分析与预防, 2018, 13 (1): 43- 48.
doi: 10.3969/j.issn.1673-6214.2018.01.008
10 GAO X Y , GAO X X , JIANG T , et al. Defects analysis of large additive manufacturing beam of titanium alloy[J]. Failure Analysis and Prevention, 2018, 13 (1): 43- 48.
doi: 10.3969/j.issn.1673-6214.2018.01.008
11 李雅莉. 选区激光熔化AlSi10Mg温度场及应力场数值模拟研究[D]. 南京: 南京航空航天大学, 2015.
11 LI Y L. Numerical simulation study on temperature field and stress field of selected laser fusion AlSi10Mg[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015.
12 BRENNER S C , CARSTENSEN C , MONK P . Nonstandard finite element methods[J]. Oberwolfach Reports, 2008, 5 (3): 2027- 2093.
13 HAERI S , WANG Y , GHITA O , et al. Discrete element simulation and experimental study of powder spreading process in additive manufacturing[J]. Powder Technology, 2017, 306, 45- 54.
doi: 10.1016/j.powtec.2016.11.002
14 LOZANOVSKI B , DOWNING D , TRAN P , et al. A monte carlo simulation-based approach to realistic modelling of additively manufactured lattice structures[J]. Additive Manufacturing, 2020, 32, 101092.
doi: 10.1016/j.addma.2020.101092
15 KAJIMA Y , TAKAICHI A , NAKAMOTO T , et al. Effect of adding support structures for overhanging part on fatigue strength in selective laser melting[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 78, 1- 9.
doi: 10.1016/j.jmbbm.2017.11.009
16 HAIDER ALI H G K M . Effect of scanning strategies on residual stress and mechanical properties of selective laser melted Ti6Al4V[J]. Materials Science and Engineering: A, 2018, 712, 175- 187.
doi: 10.1016/j.msea.2017.11.103
17 HAERI S . Optimisation of blade type spreaders for powder bed preparation in additive manufacturing using DEM simulations[J]. Powder Technology, 2017, 321, 94- 104.
doi: 10.1016/j.powtec.2017.08.011
18 MARKL M , KÖRNER C . Powder layer deposition algorithm for additive manufacturing simulations[J]. Powder Technology, 2018, 330, 125- 136.
doi: 10.1016/j.powtec.2018.02.026
19 LIN D , CORREIA J P M , BARTH N , et al. Finite element simulations of temperature distribution and of densification of a titanium powder during metal laser sintering[J]. Additive Manufacturing, 2017, 13, 37- 48.
doi: 10.1016/j.addma.2016.11.002
20 LEE W H , ZHANG Y , ZHANG J . Discrete element modeling of powder flow and laser heating in direct metal laser sintering process[J]. Powder Technology, 2017, 315, 300- 308.
doi: 10.1016/j.powtec.2017.04.002
21 ZHANG Z D , HUANG Y , ADHITAN R K , et al. 3-dimensional heat transfer modeling for laser powder-bed fusion additive manufacturing with volumetric heat sources based on varied thermal conductivity and absorptivity[J]. Optics & Laser Technology, 2019, 109, 297- 312.
22 HUANG Y , YANG L J , DU X Z , et al. Finite element analysis of thermal behavior of metal powder during selective laser melting[J]. International Journal of Thermal Sciences, 2016, 104, 146- 157.
doi: 10.1016/j.ijthermalsci.2016.01.007
23 KOLOSSOV S , BOILLAT E , GLARDON R , et al. 3D FE simulation for temperature evolution in the selective laser sintering process[J]. International Journal of Machine Tools & Manufacture, 2004, 44 (2/3): 117- 123.
24 LI J , WEI Z , YANG L , et al. Finite element analysis of thermal behavior and experimental investigation of Ti6Al4V in selective laser melting[J]. Optik, 2019, 207, 163760.
25 LI Y L , ZHOU K , TAN F , et al. Modeling temperature and residual stress fields in selective laser melting[J]. International Journal of Mechanical Sciences, 2018, 136, 24- 35.
doi: 10.1016/j.ijmecsci.2017.12.001
26 SCHOINOCHORITIS B , CHANTZIS D , SALONITIS K . Simulation of metallic powder bed additive manufacturing processes with the finite element method: a critical review[J]. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture, 2017, 231 (1): 96- 117.
doi: 10.1177/0954405414567522
27 COOK P S , MURPHY A B . Simulation of melt pool behaviour during additive manufacturing: underlying physics and progress[J]. Additive Manufacturing, 2019, 31, 100909.
28 SCHOINOCHORITIS B , CHANTZIS D , SALONITIS K . Simulation of metallic powder bed additive manufacturing processes with the finite element method: a critical review[J]. Proceedings of the Institution of Mechanical Engineers, 2017, 231 (1): 96- 117.
doi: 10.1177/0954405414567522
29 HUSSEIN A , HAO L , YAN C , et al. Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting[J]. Materials & Design, 2013, 52 (24): 638- 647.
30 YIN J , ZHU H , KE L , et al. Simulation of temperature distribution in single metallic powder layer for laser micro-sintering[J]. Computational Materials Science, 2012, 53 (1): 333- 339.
doi: 10.1016/j.commatsci.2011.09.012
31 KHAIRALLAH S A , ANDERSON A T , RUBENCHIK A , et al. Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones[J]. Acta Materialia, 2016, 108, 36- 45.
doi: 10.1016/j.actamat.2016.02.014
32 陶攀, 李怀学, 许庆彦, 等. 激光选区熔化工艺过程数值模拟的国内外研究现状[J]. 铸造, 2017, 66 (7): 695- 701.
doi: 10.3969/j.issn.1001-4977.2017.07.008
32 TAO P , LI H X , XU Q Y , et al. Research status of numerical simulation of selective laser melting process at home and abroad[J]. Foundry, 2017, 66 (7): 695- 701.
doi: 10.3969/j.issn.1001-4977.2017.07.008
33 MARKL M , AMMER R , RVDE U , et al. Numerical investigations on hatching process strategies for powder-bed-based additive manufacturing using an electron beam[J]. International Journal of Advanced Manufacturing Technology, 2015, 78 (1/4): 239- 247.
doi: 10.1007/s00170-014-6594-9
34 LU L X , SRIDHAR N , ZHANG Y W . Phase field simulation of powder bed-based additive manufacturing[J]. Acta Materialia, 2018, 144, 801- 809.
doi: 10.1016/j.actamat.2017.11.033
35 SAHOO S , CHOU K . Phase-field simulation of microstructure evolution of Ti-6Al-4V in electron beam additive manufacturing process[J]. Additive Manufacturing, 2016, 9, 14- 24.
doi: 10.1016/j.addma.2015.12.005
36 魏雷, 林鑫, 王猛, 等. 激光立体成形中熔池凝固微观组织的元胞自动机模拟[J]. 物理学报, 2015, 64 (1): 356- 363.
36 WEI L , LIN X , WANG M , et al. Cellular automata simulation of solidified microstructure of molten pool in laser stereo forming[J]. Acta Physica Sinica, 2015, 64 (1): 356- 363.
37 EDWARDS P , RAMULU M . Fatigue performance evaluation of selective laser melted Ti-6Al-4V[J]. Materials Science and Engineering: A, 2014, 598, 327- 337.
doi: 10.1016/j.msea.2014.01.041
38 SALMI A , ATZENI E . History of residual stresses during the production phases of AlSi10Mg parts processed by powder bed additive manufacturing technology[J]. Virtual and Physical Prototyping, 2017, 12 (2): 153- 160.
doi: 10.1080/17452759.2017.1310439
39 SAMES W J , LIST F A , PANNALA S , et al. The metallurgy and processing science of metal additive manufacturing[J]. International Materials Reviews, 2016, 61 (5): 315- 360.
doi: 10.1080/09506608.2015.1116649
40 谢瑞山, 陈高强, 史清宇. 金属增材制造零件变形研究现状[J]. 精密成形工程, 2019, 11 (4): 15- 20.
40 XIE R S , CHEN G Q , SHI Q Y . Review on the thermal distortion in metal additive manufacturing[J]. Journal of Net Shape Forming Engineering, 2019, 11 (4): 15- 20.
41 ROBERTS I A , WANG C J , STANFORD M , et al. Experimental and numerical analysis of residual stresses in additive layer manufacturing by laser melting of metal powders[J]. Key Engineering Materials, 2010, 450, 461- 465.
doi: 10.4028/www.scientific.net/KEM.450.461
42 MUKHERJEE T , ZHANG W , DEBROYT . An improved prediction of residual stresses and distortion in additive manufacturing[J]. Computational Materials Science, 2017, 126, 360- 372.
doi: 10.1016/j.commatsci.2016.10.003
43 ZHAO X , IYER A , PROMOPPATUM P , et al. Numerical modeling of the thermal behavior and residual stress in the direct metal laser sintering process of titanium alloy products[J]. Additive Manufacturing, 2017, 14, 126- 136.
doi: 10.1016/j.addma.2016.10.005
44 XIE R S , CHEN G Q , ZHAO Y , et al. In-situ observation and numerical simulation on the transient strain and distortion prediction during additive manufacturing[J]. Journal of Manufacturing Processes, 2019, 38, 494- 501.
doi: 10.1016/j.jmapro.2019.01.049
45 CAO J , GHARGHOURI M A , NASH P . Finite-element analysis and experimental validation of thermal residual stress and distortion in electron beam additive manufactured Ti-6Al-4V build plates[J]. Journal of Materials Processing Technology, 2016, 237, 409- 419.
doi: 10.1016/j.jmatprotec.2016.06.032
46 MUKHERJEE T , MANVATKAR V , DEBROY T . Mitigation of thermal distortion during additive manufacturing[J]. Scripta Materialia, 2017, 127, 79- 83.
doi: 10.1016/j.scriptamat.2016.09.001
47 ALI H , GHADBEIGI H , MUMTAZ K . Effect of scanning strategies on residual stress and mechanical properties of selective laser melted Ti6Al4V[J]. Materials Science and Engineering: A, 2018, 712, 175- 187.
doi: 10.1016/j.msea.2017.11.103
48 PARRY L , ASHCROFT I A , WILDMAN R D . Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation[J]. Additive Manufacturing, 2016, 12, 1- 15.
doi: 10.1016/j.addma.2016.05.014
49 LUO Z , ZHAO Y . A survey of finite element analysis of temperature and thermal stress fields in powder bed fusion additive manufacturing[J]. Additive Manufacturing, 2018, 21, 318- 332.
doi: 10.1016/j.addma.2018.03.022
50 BARTLETT J L , LI X . An overview of residual stresses in metal powder bed fusion[J]. Additive Manufacturing, 2019, 27, 131- 149.
doi: 10.1016/j.addma.2019.02.020
51 BANDYOPADHYAY A , TRAXEL K D , et al. Invited review article: metal-additive manufacturing-modeling strategies for application-optimized designs[J]. Additive Manufacturing, 2018, 22, 758- 774.
doi: 10.1016/j.addma.2018.06.024
52 TENG C , PAL D , GONG H , et al. A review of defect modeling in laser material processing[J]. Additive Manufacturing, 2017, 14, 137- 147.
doi: 10.1016/j.addma.2016.10.009
53 OLAKANMI E O , COCHRANE R F , DALGARNO K W . A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties[J]. Progress in Materials Science, 2015, 74, 401- 477.
doi: 10.1016/j.pmatsci.2015.03.002
54 单博炜, 魏雷, 林鑫, 等. 采用元胞自动机法模拟凝固微观组织的研究进展[J]. 铸造, 2006, (5): 439- 443.
54 SHAN B W , WEI L , LIN X , et al. Research progress in simulating solidification microstructure by cellular automata method[J]. Foundry, 2006, (5): 439- 443.
55 魏雷, 林鑫, 王猛, 等. 金属激光增材制造过程数值模拟[J]. 航空制造技术, 2017, 60 (13): 16- 25.
55 WEI L , LIN X , WANG M , et al. Numerical simulation on laser additive manufacturing process for metal components[J]. Aeronautical Manufacturing Technology, 2017, 60 (13): 16- 25.
56 RAI A , MARKL M , KRNER C . A coupled cellular automaton-lattice boltzmann model for grain structure simulation during additive manufacturing[J]. Computational Materials Science, 2016, 124, 37- 48.
doi: 10.1016/j.commatsci.2016.07.005
57 谭树杰. 激光3D打印Ni基合金微结构研究及数值模拟[D]. 南昌: 南昌航空大学, 2016.
57 TAN S J. Laser 3D printing of Ni base alloy microstructure and numerical simulation[D]. Nanchang: Nanchang Hangkong University, 2016.
58 ARISOY Y M , CRIALES L E , ÖZEL T . Modeling and simulation of thermal field and solidification in laser powder bed fusion of nickel alloy IN625[J]. Optics & Laser Technology, 2019, 109, 278- 292.
59 GAN Z T , LIU H , LI S X , et al. Modeling of thermal behavior and mass transport in multi-layer laser additive manufacturing of Ni-based alloy on cast iron[J]. International Journal of Heat and Mass Transfer, 2017, 111, 709- 722.
doi: 10.1016/j.ijheatmasstransfer.2017.04.055
60 DU L , GU D D , DAI D H , et al. Relation of thermal behavior and microstructure evolution during multi-track laser melting deposition of Ni-based material[J]. Optics & Laser Technology, 2018, 108, 207- 217.
61 ACHARYA R , SHARON J A , STAROSELSKY A . Prediction of microstructure in laser powder bed fusion process[J]. Acta Materialia, 2017, 124, 360- 371.
doi: 10.1016/j.actamat.2016.11.018
[1] 陈海燕, 曾越, 李艺, 吴建新, 许世锬, 邹燕成. 基于非线性超声空化效应的铝合金热浸镀工艺[J]. 材料工程, 2021, 49(7): 133-140.
[2] 陈利, 焦伟, 王心淼, 刘俊岭. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8): 62-72.
[3] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[4] 廖向娜, 贺雍律, 张鉴炜, 鞠苏, 江大志, 刘佳音, 刘钧. CNTs-纤维增强树脂基复合材料纳米-介观尺度数值模拟研究进展[J]. 材料工程, 2020, 48(12): 1-11.
[5] 赵魏, 王雅娜, 王翔. 分层界面角度对CFRP层板Ⅱ型分层的影响[J]. 材料工程, 2019, 47(9): 152-159.
[6] 郜庆伟, 赵健, 舒凤远, 吕成成, 齐宝亮, 于治水. 铝合金增材制造技术研究进展[J]. 材料工程, 2019, 47(11): 32-42.
[7] 张亮, 吴文恒, 卢林, 倪晓晴, 何贝贝, 杨启云, 祝国梁, 顾芸仰. 激光选区熔化热输入参数对Inconel 718合金温度场的影响[J]. 材料工程, 2018, 46(7): 29-35.
[8] 朱怀沈, 聂义宏, 赵帅, 王宝忠. 镍基617合金动态再结晶微观组织演变与预测[J]. 材料工程, 2018, 46(6): 80-87.
[9] 刘多, 刘景和, 周英豪, 宋晓国, 牛红伟, 冯吉才. 紫铜/Al2O3陶瓷/不锈钢复合结构钎焊接头残余应力研究[J]. 材料工程, 2018, 46(3): 61-66.
[10] 尹建成, 杨环, 刘英莉, 陈业高, 张八淇, 钟毅. 约束喷射沉积过程中雾化气流场的模拟研究[J]. 材料工程, 2018, 46(11): 102-109.
[11] 梁贤烨, 弭光宝, 李培杰, 曹京霞, 黄旭. 钛合金叶片燃烧后冷却过程的三维热流耦合数值模拟[J]. 材料工程, 2018, 46(10): 37-46.
[12] 卢玉章, 熊英, 彭建强, 申健, 郑伟, 张功, 谢光. 重型燃机定向结晶空心叶片凝固过程的实验与模拟[J]. 材料工程, 2018, 46(1): 8-15.
[13] 宋清华, 肖军, 文立伟, 王显峰, 范珏雯, 石甲琪. 热塑性复合材料自动铺放过程中温度场研究[J]. 材料工程, 2018, 46(1): 83-91.
[14] 孙颖迪, 陈秋荣. AZ31镁合金管材挤压成型数值模拟与实验研究[J]. 材料工程, 2017, 45(6): 1-7.
[15] 任维彬, 董世运, 徐滨士, 任君华, 郑显柱, 童继凤. 连续/脉冲激光再制造FeCrNiCu合金成形层温度场研究[J]. 材料工程, 2017, 45(5): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn