Application and research status of numerical simulation of metal laser 3D printing process
Xin YANG1,*(), Ben WANG1, Wen-ping GU2, Zhao-yang ZHANG1, Shi-feng LIU3, Tao WU1
1 Department of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China 2 Department of Materials Science and Engineering, Chang'an University, Xi'an 710061, China 3 School of Metallurgical and Engineering, Xi'an University of Architecture&Technology, Xi'an 710055, China
Numerical simulation can establish corresponding models for temperature field, molten pool shape, residential stress, microstructure evolution in the metal SLM process effectively. Meanwhile this model can accurately predict the performance of forming parts, and provide scientific basis for process parameters optimization, consequently boost the metal SLM to industry application. In this paper, the latest research progress of numerical simulation in the process of metal laser additive manufacturing was summarized, including temperature field, molten pool dynamics, residual stress and deformation in the forming part, and microstructure change.The latest progress of numerical simulation in metal SLM process was summarized, and the metal SLM process was analyzed. Finally, the future development trend was put forward that metal SLM process numerical simulation should be combined with big data, artificial intelligence, deep learning and other technologies and numerical simulation accuracy will be further improved, the processing window of metal laser additive manufacturing will be broadened, and guidance will be provided for the development of individual products.
杨鑫, 王犇, 谷文萍, 张兆洋, 刘世锋, 武涛. 金属激光3D打印过程数值模拟应用及研究现状[J]. 材料工程, 2021, 49(4): 52-62.
Xin YANG, Ben WANG, Wen-ping GU, Zhao-yang ZHANG, Shi-feng LIU, Tao WU. Application and research status of numerical simulation of metal laser 3D printing process. Journal of Materials Engineering, 2021, 49(4): 52-62.
The thinner the substrate, the more uniform the residual stress distribution
[49]
Substrate preheated
Preheating can reduce the temperature gradient near the molten pool, thus reducing the residual stress and reducing the deformation degree of components
[50]
Structural support
Add structual support can reduce the deformation degree of components
[50]
Temperature distribution
High temperature gradients and large cooling rates lead to high residual stresses
[50]
Powder layer thickness
Thin powder layer will cause greater residual stress and deformation
[50]
Forming height
The higher the height, the greater the residual stress
[51]
Scan path
The spiral scanning path reduces residual stress
[52]
Scan power
High energy density causes large stress and strain
[51]
Scanning sequence
The residual stress can be reduced by proper scanning sequence
WANG H M , ZHANG S Q , WANG T , et al. Progress on solidification grain morphology and microstructure control of laser additively manufacture[J]. Journal of Xihua University(Natural Science Edition), 2018, 37 (4): 9- 14.
doi: 10.3969/j.issn.1673-159X.2018.04.002
3
卢秉恒. 增材制造技术——现状与未来[N]. 中国信息化周报, 2020-04-20(007).
3
LU B H. Additive manufacturing: current situation and future[N]. China Information Weekly, 2020-04-20(007).
4
NGO T D , KASHANI A , IMBALZANO G , et al. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges[J]. Composites Part B, 2018, 143, 172- 196.
doi: 10.1016/j.compositesb.2018.02.012
5
SMITH J , XIONG W , CAO J , et al. Thermodynamically consistent microstructure prediction of additively manufactured materials[J]. Computational Mechanics, 2016, 57 (3): 359- 370.
doi: 10.1007/s00466-015-1243-1
6
LEWANDOWSKI J , SEIFI M . Metal additive manufacturing: a review of mechanical properties[J]. Annual Review of Materials Research, 2016, 46 (1): 151- 186.
doi: 10.1146/annurev-matsci-070115-032024
GUO C , ZHANG P P , LIN F . Research advances of electron beam selective melting additive manufacturing technology[J]. Industrial Technology Innovation, 2017, 4 (4): 6- 14.
WANG H M . Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35 (10): 2690- 2698.
9
TODARO C J , EASTON M A , QIU D , et al. Grain structure control during metal 3D printing by high-intensity ultrasound[J]. Nature Communications, 2020, 11 (1): 1- 9.
doi: 10.1038/s41467-019-13993-7
GAO X Y , GAO X X , JIANG T , et al. Defects analysis of large additive manufacturing beam of titanium alloy[J]. Failure Analysis and Prevention, 2018, 13 (1): 43- 48.
doi: 10.3969/j.issn.1673-6214.2018.01.008
LI Y L. Numerical simulation study on temperature field and stress field of selected laser fusion AlSi10Mg[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015.
12
BRENNER S C , CARSTENSEN C , MONK P . Nonstandard finite element methods[J]. Oberwolfach Reports, 2008, 5 (3): 2027- 2093.
13
HAERI S , WANG Y , GHITA O , et al. Discrete element simulation and experimental study of powder spreading process in additive manufacturing[J]. Powder Technology, 2017, 306, 45- 54.
doi: 10.1016/j.powtec.2016.11.002
14
LOZANOVSKI B , DOWNING D , TRAN P , et al. A monte carlo simulation-based approach to realistic modelling of additively manufactured lattice structures[J]. Additive Manufacturing, 2020, 32, 101092.
doi: 10.1016/j.addma.2020.101092
15
KAJIMA Y , TAKAICHI A , NAKAMOTO T , et al. Effect of adding support structures for overhanging part on fatigue strength in selective laser melting[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 78, 1- 9.
doi: 10.1016/j.jmbbm.2017.11.009
16
HAIDER ALI H G K M . Effect of scanning strategies on residual stress and mechanical properties of selective laser melted Ti6Al4V[J]. Materials Science and Engineering: A, 2018, 712, 175- 187.
doi: 10.1016/j.msea.2017.11.103
17
HAERI S . Optimisation of blade type spreaders for powder bed preparation in additive manufacturing using DEM simulations[J]. Powder Technology, 2017, 321, 94- 104.
doi: 10.1016/j.powtec.2017.08.011
18
MARKL M , KÖRNER C . Powder layer deposition algorithm for additive manufacturing simulations[J]. Powder Technology, 2018, 330, 125- 136.
doi: 10.1016/j.powtec.2018.02.026
19
LIN D , CORREIA J P M , BARTH N , et al. Finite element simulations of temperature distribution and of densification of a titanium powder during metal laser sintering[J]. Additive Manufacturing, 2017, 13, 37- 48.
doi: 10.1016/j.addma.2016.11.002
20
LEE W H , ZHANG Y , ZHANG J . Discrete element modeling of powder flow and laser heating in direct metal laser sintering process[J]. Powder Technology, 2017, 315, 300- 308.
doi: 10.1016/j.powtec.2017.04.002
21
ZHANG Z D , HUANG Y , ADHITAN R K , et al. 3-dimensional heat transfer modeling for laser powder-bed fusion additive manufacturing with volumetric heat sources based on varied thermal conductivity and absorptivity[J]. Optics & Laser Technology, 2019, 109, 297- 312.
22
HUANG Y , YANG L J , DU X Z , et al. Finite element analysis of thermal behavior of metal powder during selective laser melting[J]. International Journal of Thermal Sciences, 2016, 104, 146- 157.
doi: 10.1016/j.ijthermalsci.2016.01.007
23
KOLOSSOV S , BOILLAT E , GLARDON R , et al. 3D FE simulation for temperature evolution in the selective laser sintering process[J]. International Journal of Machine Tools & Manufacture, 2004, 44 (2/3): 117- 123.
24
LI J , WEI Z , YANG L , et al. Finite element analysis of thermal behavior and experimental investigation of Ti6Al4V in selective laser melting[J]. Optik, 2019, 207, 163760.
25
LI Y L , ZHOU K , TAN F , et al. Modeling temperature and residual stress fields in selective laser melting[J]. International Journal of Mechanical Sciences, 2018, 136, 24- 35.
doi: 10.1016/j.ijmecsci.2017.12.001
26
SCHOINOCHORITIS B , CHANTZIS D , SALONITIS K . Simulation of metallic powder bed additive manufacturing processes with the finite element method: a critical review[J]. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture, 2017, 231 (1): 96- 117.
doi: 10.1177/0954405414567522
27
COOK P S , MURPHY A B . Simulation of melt pool behaviour during additive manufacturing: underlying physics and progress[J]. Additive Manufacturing, 2019, 31, 100909.
28
SCHOINOCHORITIS B , CHANTZIS D , SALONITIS K . Simulation of metallic powder bed additive manufacturing processes with the finite element method: a critical review[J]. Proceedings of the Institution of Mechanical Engineers, 2017, 231 (1): 96- 117.
doi: 10.1177/0954405414567522
29
HUSSEIN A , HAO L , YAN C , et al. Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting[J]. Materials & Design, 2013, 52 (24): 638- 647.
30
YIN J , ZHU H , KE L , et al. Simulation of temperature distribution in single metallic powder layer for laser micro-sintering[J]. Computational Materials Science, 2012, 53 (1): 333- 339.
doi: 10.1016/j.commatsci.2011.09.012
31
KHAIRALLAH S A , ANDERSON A T , RUBENCHIK A , et al. Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones[J]. Acta Materialia, 2016, 108, 36- 45.
doi: 10.1016/j.actamat.2016.02.014
TAO P , LI H X , XU Q Y , et al. Research status of numerical simulation of selective laser melting process at home and abroad[J]. Foundry, 2017, 66 (7): 695- 701.
doi: 10.3969/j.issn.1001-4977.2017.07.008
33
MARKL M , AMMER R , RVDE U , et al. Numerical investigations on hatching process strategies for powder-bed-based additive manufacturing using an electron beam[J]. International Journal of Advanced Manufacturing Technology, 2015, 78 (1/4): 239- 247.
doi: 10.1007/s00170-014-6594-9
34
LU L X , SRIDHAR N , ZHANG Y W . Phase field simulation of powder bed-based additive manufacturing[J]. Acta Materialia, 2018, 144, 801- 809.
doi: 10.1016/j.actamat.2017.11.033
35
SAHOO S , CHOU K . Phase-field simulation of microstructure evolution of Ti-6Al-4V in electron beam additive manufacturing process[J]. Additive Manufacturing, 2016, 9, 14- 24.
doi: 10.1016/j.addma.2015.12.005
WEI L , LIN X , WANG M , et al. Cellular automata simulation of solidified microstructure of molten pool in laser stereo forming[J]. Acta Physica Sinica, 2015, 64 (1): 356- 363.
37
EDWARDS P , RAMULU M . Fatigue performance evaluation of selective laser melted Ti-6Al-4V[J]. Materials Science and Engineering: A, 2014, 598, 327- 337.
doi: 10.1016/j.msea.2014.01.041
38
SALMI A , ATZENI E . History of residual stresses during the production phases of AlSi10Mg parts processed by powder bed additive manufacturing technology[J]. Virtual and Physical Prototyping, 2017, 12 (2): 153- 160.
doi: 10.1080/17452759.2017.1310439
39
SAMES W J , LIST F A , PANNALA S , et al. The metallurgy and processing science of metal additive manufacturing[J]. International Materials Reviews, 2016, 61 (5): 315- 360.
doi: 10.1080/09506608.2015.1116649
XIE R S , CHEN G Q , SHI Q Y . Review on the thermal distortion in metal additive manufacturing[J]. Journal of Net Shape Forming Engineering, 2019, 11 (4): 15- 20.
41
ROBERTS I A , WANG C J , STANFORD M , et al. Experimental and numerical analysis of residual stresses in additive layer manufacturing by laser melting of metal powders[J]. Key Engineering Materials, 2010, 450, 461- 465.
doi: 10.4028/www.scientific.net/KEM.450.461
42
MUKHERJEE T , ZHANG W , DEBROYT . An improved prediction of residual stresses and distortion in additive manufacturing[J]. Computational Materials Science, 2017, 126, 360- 372.
doi: 10.1016/j.commatsci.2016.10.003
43
ZHAO X , IYER A , PROMOPPATUM P , et al. Numerical modeling of the thermal behavior and residual stress in the direct metal laser sintering process of titanium alloy products[J]. Additive Manufacturing, 2017, 14, 126- 136.
doi: 10.1016/j.addma.2016.10.005
44
XIE R S , CHEN G Q , ZHAO Y , et al. In-situ observation and numerical simulation on the transient strain and distortion prediction during additive manufacturing[J]. Journal of Manufacturing Processes, 2019, 38, 494- 501.
doi: 10.1016/j.jmapro.2019.01.049
45
CAO J , GHARGHOURI M A , NASH P . Finite-element analysis and experimental validation of thermal residual stress and distortion in electron beam additive manufactured Ti-6Al-4V build plates[J]. Journal of Materials Processing Technology, 2016, 237, 409- 419.
doi: 10.1016/j.jmatprotec.2016.06.032
46
MUKHERJEE T , MANVATKAR V , DEBROY T . Mitigation of thermal distortion during additive manufacturing[J]. Scripta Materialia, 2017, 127, 79- 83.
doi: 10.1016/j.scriptamat.2016.09.001
47
ALI H , GHADBEIGI H , MUMTAZ K . Effect of scanning strategies on residual stress and mechanical properties of selective laser melted Ti6Al4V[J]. Materials Science and Engineering: A, 2018, 712, 175- 187.
doi: 10.1016/j.msea.2017.11.103
48
PARRY L , ASHCROFT I A , WILDMAN R D . Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation[J]. Additive Manufacturing, 2016, 12, 1- 15.
doi: 10.1016/j.addma.2016.05.014
49
LUO Z , ZHAO Y . A survey of finite element analysis of temperature and thermal stress fields in powder bed fusion additive manufacturing[J]. Additive Manufacturing, 2018, 21, 318- 332.
doi: 10.1016/j.addma.2018.03.022
50
BARTLETT J L , LI X . An overview of residual stresses in metal powder bed fusion[J]. Additive Manufacturing, 2019, 27, 131- 149.
doi: 10.1016/j.addma.2019.02.020
51
BANDYOPADHYAY A , TRAXEL K D , et al. Invited review article: metal-additive manufacturing-modeling strategies for application-optimized designs[J]. Additive Manufacturing, 2018, 22, 758- 774.
doi: 10.1016/j.addma.2018.06.024
52
TENG C , PAL D , GONG H , et al. A review of defect modeling in laser material processing[J]. Additive Manufacturing, 2017, 14, 137- 147.
doi: 10.1016/j.addma.2016.10.009
53
OLAKANMI E O , COCHRANE R F , DALGARNO K W . A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties[J]. Progress in Materials Science, 2015, 74, 401- 477.
doi: 10.1016/j.pmatsci.2015.03.002
SHAN B W , WEI L , LIN X , et al. Research progress in simulating solidification microstructure by cellular automata method[J]. Foundry, 2006, (5): 439- 443.
WEI L , LIN X , WANG M , et al. Numerical simulation on laser additive manufacturing process for metal components[J]. Aeronautical Manufacturing Technology, 2017, 60 (13): 16- 25.
56
RAI A , MARKL M , KRNER C . A coupled cellular automaton-lattice boltzmann model for grain structure simulation during additive manufacturing[J]. Computational Materials Science, 2016, 124, 37- 48.
doi: 10.1016/j.commatsci.2016.07.005
57
谭树杰. 激光3D打印Ni基合金微结构研究及数值模拟[D]. 南昌: 南昌航空大学, 2016.
57
TAN S J. Laser 3D printing of Ni base alloy microstructure and numerical simulation[D]. Nanchang: Nanchang Hangkong University, 2016.
58
ARISOY Y M , CRIALES L E , ÖZEL T . Modeling and simulation of thermal field and solidification in laser powder bed fusion of nickel alloy IN625[J]. Optics & Laser Technology, 2019, 109, 278- 292.
59
GAN Z T , LIU H , LI S X , et al. Modeling of thermal behavior and mass transport in multi-layer laser additive manufacturing of Ni-based alloy on cast iron[J]. International Journal of Heat and Mass Transfer, 2017, 111, 709- 722.
doi: 10.1016/j.ijheatmasstransfer.2017.04.055
60
DU L , GU D D , DAI D H , et al. Relation of thermal behavior and microstructure evolution during multi-track laser melting deposition of Ni-based material[J]. Optics & Laser Technology, 2018, 108, 207- 217.
61
ACHARYA R , SHARON J A , STAROSELSKY A . Prediction of microstructure in laser powder bed fusion process[J]. Acta Materialia, 2017, 124, 360- 371.
doi: 10.1016/j.actamat.2016.11.018