Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (6): 124-130    DOI: 10.11868/j.issn.1001-4381.2020.000244
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Ni-BTC/RGO复合材料的制备及其电化学性能
马锐, 张宇雨, 王菲菲, 刘琪瑶, 李嘉琪, 魏金枝()
哈尔滨理工大学 材料科学与化学工程学院, 哈尔滨 150080
Synthesis and electrochemical properties of Ni-BTC/RGO composites
Rui MA, Yuyu ZHANG, Feifei WANG, Qiyao LIU, Jiaqi LI, Jinzhi WEI()
School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, China
全文: PDF(6143 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

为了制备价格低廉且比电容高、循环稳定性好的电容器材料,采用电化学法合成石墨烯基含镍金属有机骨架材料Ni-BTC/RGO,研究含镍金属有机骨架材料Ni-BTC的合成条件以及Ni-BTC/RGO的电化学性能。对不同条件下的系列Ni-BTC材料进行XRD分析,并对Ni-BTC,RGO和Ni-BTC/RGO进行SEM测试、循环伏安测试和恒电流充放电测试。结果表明:工作电压为6 V、反应时间为3 h、反应体系温度为35 ℃是Ni-BTC的最佳合成条件; Ni-BTC和RGO成功复合且RGO对Ni-BTC的结构并未产生影响; 复合材料主要表现赝电容电化学行为。在0.5 A·g-1电流密度下,Ni-BTC/RGO的比电容为468.72 F·g-1,功率密度为0.249 W·g-1; 在1.0 A·g-1电流密度下循环500周次以后,比电容保留率为50.08%。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马锐
张宇雨
王菲菲
刘琪瑶
李嘉琪
魏金枝
关键词 电化学法镍基金属有机骨架Ni-BTC/RGO电化学性能    
Abstract

In order to prepare capacitor materials with low cost, higher specific capacitance and better cycle stability, the graphene-based nickel-containing metal organic framework material (Ni-BTC/RGO) was prepared by electrochemical method to study the synthesis conditions of Ni-BTC and the electrochemical properties of Ni-BTC/RGO. A series of Ni-BTC materials under different conditions were analyzed by XRD. SEM, cyclic voltammetry and constant current charge-discharge tests were carried out for Ni-BTC, RGO and Ni-BTC/RGO. The results show that working voltage of 6 V, reaction time of 3 h, and reaction system temperature of 35 ℃ are optimum synthesis conditions of Ni-BTC; Ni-BTC and RGO are successfully combined and RGO has no effect on the structure of Ni-BTC; the composites mainly exhibit pseudocapacitive electrochemical behavior. At the current density of 0.5 A·g-1, the specific capacitance of Ni-BTC/RGO is 468.72 F·g-1, and the power density is 0.249 W·g-1; after 500 cycles at the current density of 1.0 A·g-1, the specific capacitance retention rate is 50.08%.

Key wordselectrochemical method    nickel based organometallic framework    Ni-BTC/RGO    electro-chemical properties
收稿日期: 2020-03-21      出版日期: 2022-06-20
中图分类号:  TB333  
基金资助:黑龙江省大学生创新实验项目(201810214080);黑龙江省自然科学基金联合引导项目(LH2019B026)
通讯作者: 魏金枝     E-mail: weijz0451@163.com
作者简介: 魏金枝(1966—),女,教授,博士,研究方向为催化电极的制备、金属有机骨架材料的合成及应用; 以及电催化、光催化降解有机污染物,联系地址:黑龙江省哈尔滨市哈尔滨理工大学材料科学与化学工程学院(150080), E-mail: weijz0451@163.com
引用本文:   
马锐, 张宇雨, 王菲菲, 刘琪瑶, 李嘉琪, 魏金枝. Ni-BTC/RGO复合材料的制备及其电化学性能[J]. 材料工程, 2022, 50(6): 124-130.
Rui MA, Yuyu ZHANG, Feifei WANG, Qiyao LIU, Jiaqi LI, Jinzhi WEI. Synthesis and electrochemical properties of Ni-BTC/RGO composites. Journal of Materials Engineering, 2022, 50(6): 124-130.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000244      或      http://jme.biam.ac.cn/CN/Y2022/V50/I6/124
Fig.1  不同条件下制备的Ni-BTC XRD图谱和Ni-BTC/RGO,Ni-BTC,RGO的XRD图谱
(a)不同工作电压; (b)不同反应时间; (c)不同反应温度; (d)Ni-BTC/RGO,Ni-BTC和RGO
Fig.2  Ni-BTC(a),RGO(b)和Ni-BTC/RGO(c)样品的SEM图
Fig.3  Ni-BTC, RGO和Ni-BTC/RGO的CV曲线
Fig.4  不同RGO加入量制备的Ni-BTC/RGO材料的CV曲线
Fig.5  Ni-BTC,RGO和Ni-BTC/ RGO的CP曲线
Fig.6  Ni-BTC,RGO和Ni-BTC/RGO的交流阻抗曲线
Fig.7  Ni-BTC/RGO和Ni-BTC循环稳定性测试曲线
1 刘春娜. 超级电容器应用展望[J]. 电源技术, 2010, 34 (9): 979- 980.
doi: 10.3969/j.issn.1002-087X.2010.09.033
1 LIU C N . Application prospect of super capacitor[J]. Chinese Journal of Power Sources, 2010, 34 (9): 979- 980.
doi: 10.3969/j.issn.1002-087X.2010.09.033
2 范壮军. 超级电容器概述[J]. 物理化学学报, 2020, 36 (2): 1- 3.
2 FAN Z J . Overview of supercapacitors[J]. Acta Physico-Chimica Sinica, 2020, 36 (2): 1- 3.
3 邢宝林, 黄光许, 谌伦建, 等. 超级电容器电极材料的研究现状与展望[J]. 材料导报, 2012, 26 (19): 21- 25.
doi: 10.3969/j.issn.1005-023X.2012.19.006
3 XING B L , HUANG G X , SHEN L J , et al. Current situation and prospect of research on electrode materials for supercapacitor[J]. Materials Reports, 2012, 26 (19): 21- 25.
doi: 10.3969/j.issn.1005-023X.2012.19.006
4 RAJPUROHIT A S , PUNDE N S , SRIVASTAVA A K . A dual metal organic framework based on copper-iron clusters integrated sulphur doped graphene as a porous material for supercapacitor with remarkable performance characteristics[J]. Journal of Colloid and Interface Science, 2019, 553 (10): 328- 340.
5 ZHAO S F , ZENG L Z , CHENG G , et al. Ni/Co-based metal-organic frameworks as electrode material for high performance supercapacitors[J]. Chinese Chemical Letters, 2019, 30 (3): 605- 609.
doi: 10.1016/j.cclet.2018.10.018
6 QIU D , ZHAO B , LIN Z , et al. In situ growth of CuO nanoparticles on graphene matrix as anode material for lithium-ion batteries[J]. Materials Letters, 2013, 105 (7): 242- 245.
7 XIAO Y , WEI W , ZHANG M , et al. Facile surface properties engineering of high-quality graphene: toward advanced Ni-MOF heterostructures for high-performance supercapacitor electrode[J]. ACS Applied Energy Materials, 2019, 2 (3): 2169- 2177.
doi: 10.1021/acsaem.8b02201
8 高国梁, 王德宇, 曾群, 等. Cu-MOF/rGO锂离子电池负极材料的制备及电化学性能[J]. 华南师范大学学报(自然科学版), 2018, 50 (2): 34- 37.
8 GAO G L , WANG D Y , ZENG Q , et al. Synthesis and performance of Cu-MOF/rGO as anode materials for lithium ion batteries[J]. Journal of South China Normal University (Natural Science Edition), 2018, 50 (2): 34- 37.
9 WANG Z F , GAO C W , LIU Y H , et al. Electrochemical performance and transformation of Co-MOF/reduced graphene oxide composite[J]. Materials Letters, 2017, 193 (15): 216- 219.
10 XIE J , ZHANG Q . Recent progress in multivalent metal (Mg, Zn, Ca and Al) and metal-ion rechargeable batteries with organic materials as promising electrodes[J]. Small, 2019, 15 (15): 1805061.
doi: 10.1002/smll.201805061
11 江念. 镍基复合材料制备及其在超级电容器中的应用[D]. 大连: 大连理工大学, 2018.
11 JIANG N. Preparation of nickel-based composite materials and their application for supercapacitors[D]. Dalian: Dalian University of Technology, 2018.
12 YAGHI O M , DAVIS C E , LI G , et al. Selective guest binding by tailored channels in a 3D porous zinc(Ⅱ) benzenetricarboxylate network[J]. Journal of the American Chemical Society, 1997, 119 (12): 2861- 2868.
doi: 10.1021/ja9639473
13 ZHAO Y J , LIU J Z , MICHAEL H , et al. Recent advancements in metal organic framework based electrodes for supercapacitors[J]. Science China Materials, 2018, 61 (2): 159- 184.
doi: 10.1007/s40843-017-9153-x
14 李芹, 盛利成, 董丽敏, 等. ZnCo2O4及ZnCo2O4/rGO复合材料的制备与电化学性能[J]. 材料工程, 2019, 47 (4): 71- 76.
14 LI Q , SHENG L C , DONG L M , et al. Preparation and electrochemical properties of ZnCo2O4 and ZnCo2O4/rGO composites[J]. Journal of Materials Engineering, 2019, 47 (4): 71- 76.
15 LIU B , HIOYAMA H , JIANG H , et al. Metal-organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor[J]. Carbon, 2010, 48 (2): 456- 463.
doi: 10.1016/j.carbon.2009.09.061
16 赵昱颉, 刘金章, 胡明俊, 等. 金属有机框架材料在超级电容器中的应用研究进展[J]. 中国科学: 材料科学(英文版), 2018, 61 (2): 159- 184.
16 ZHAO Y J , LIU J Z , HU M J , et al. Application progress of metal-organic frameworks in supercapacitors[J]. Science China Materials(English Version), 2018, 61 (2): 159- 184.
17 陈翔, 燕绍九, 南文争, 等. 石墨烯负载花球状二氧化锰复合材料制备及其电容性能研究[J]. 材料工程, 2019, 47 (1): 18- 24.
17 CHEN X , YAN S J , NAN W Z , et al. Synthesis and capacitive performance of globular MnO2 flowers anchored graphene composites[J]. Journal of Materials Engineering, 2019, 47 (1): 18- 24.
18 JIN L N , LIU Q , SUN W Y . Room temperature solution-phase synthesis of flower-like nanos-tructures of[Ni3(BTC)2·12H2O] and their conversion to porous NiO[J]. Chinese Chemical Letters, 2013, 24 (8): 663- 667.
doi: 10.1016/j.cclet.2013.05.001
19 SHU Y , YAN Y , CHEN J , et al. Ni and NiO nanoparticles decorated metal-organic framework nanosheets: facile synthesis and high-performance nonenzymatic glucose detection in human serum[J]. ACS Applied Materials & Interfaces, 2017, 9 (27): 22342- 22349.
20 ISRAR F , CHUN D , KIM Y , et al. High yield synthesis of Ni-BTC metal-organic framework with ultrasonic irradiation: role of polar aprotic DMF solvent[J]. Ultrasonics Sonochemistry, 2016, 31, 93- 101.
doi: 10.1016/j.ultsonch.2015.12.007
21 WEI J Z , WANG X L , SUN X J , et al. Rapid and large-scale synthesis of IRMOF-3 by electrochemistry method with enhanced fluorescence detection performance for TNP[J]. Inorganic Chemistry, 2018, 57 (7): 3818- 3824.
doi: 10.1021/acs.inorgchem.7b03174
22 魏金枝, 王雪亮, 孙晓君, 等. 绿色电化学法合成金属有机骨架材料的研究现状[J]. 材料导报, 2018, 32 (9): 1435- 1441.
22 WEI J Z , WANG X L , SUN X J , et al. A methodological review on green electrochemical synthesis of metal-organic framework materials[J]. Materials Review, 2018, 32 (9): 1435- 1441.
23 刘潇, 张筱薇, 唐文东, 等. 超声时间对Hummer法制备氧化石墨片的影响[J]. 山东化工, 2016, 45 (22): 24- 26.
23 LIU X , ZHANG X W , TANG W D , et al. The effect of ultrasonic time on the properties of graphite oxide prepared by Hummer's method[J]. Shandong Chemical Industry, 2016, 45 (22): 24- 26.
24 曹文杰. 石墨烯/MOFs超级电容器电极材料的设计制备及性能研究[D]. 武汉: 江汉大学, 2018.
24 CAO W J. Design and performance research of graphene/MOFs super capacitor electrode material[D]. Wuhan: Jianghan University, 2018.
25 STANKOVICH S , DIKIN D A , PINER R D , et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007, 45 (7): 1558- 1565.
doi: 10.1016/j.carbon.2007.02.034
26 KIM J , PARK S J , CHUNG S , et al. Preparation and capacitance of Ni metal organic framework/reduced graphene oxide composites for supercapacitors as nanoarchitectonics[J]. Journal of Nanoscience and Nanotechnology, 2020, 20 (5): 2750- 2754.
27 AZADFALAH M , SEDGHI A , HOSSEINI H . Synthesis of nano-flower metal-organic framework/graphene composites as a high-performance electrode material for supercapacitors[J]. Journal of Electronic Materials, 2019, 48 (11): 7011- 7024.
28 季东. 三维石墨烯/MOF基金属氧化物复合材料的制备及其储能性质研究[D]. 镇江: 江苏科技大学, 2017.
28 JI D. Synthesis and energy storage properties of three-dimensional graphene/metal-organic framework derived metal oxides[D]. Zhenjiang: Jiangsu University of Science and Technology, 2017.
29 赫文秀, 于慧颖, 张永强, 等. Ni(OH)2-碳纳米管-还原氧化石墨烯复合材料的制备及电化学性能[J]. 复合材料学报, 2018, 35 (7): 1921- 1929.
29 HE W X , YU H Y , ZHANG Y Q , et al. Preparation and electrochemical properties of Ni(OH)2-carbon nanotubes-reduced graphene oxide composites[J]. Acta Materiae Compositae Sinica, 2018, 35 (7): 1921- 1929.
[1] 史晓岩, 马磊磊, 常增花, 王建涛. 化成制度对富锂锰基/硅碳体系电池产气及电化学性能影响[J]. 材料工程, 2022, 50(5): 112-121.
[2] 朱陈杰, 陈海权, 于有海. 静电喷雾法/原位洗脱法结合制备电致变色薄膜[J]. 材料工程, 2022, 50(1): 109-116.
[3] 杨夕馨, 常增花, 邵泽超, 吴帅锦, 王仁念, 王建涛, 卢世刚. 富锂锰基正极材料在不同温度下的极化行为[J]. 材料工程, 2021, 49(9): 69-78.
[4] 曾静, 武东政, 庄奕超, 赵金保. 镁电池正极材料性能提升策略的研究进展[J]. 材料工程, 2021, 49(2): 10-20.
[5] 胡秀英, 毛冲冲, 贺畅, 曹志翔, 丁一鸣, 鲍克燕. 聚席夫碱/碳纳米管复合材料的制备及储锂性能[J]. 材料工程, 2021, 49(12): 139-146.
[6] 张淑娴, 邓凌峰, 连晓辉, 谭洁慧, 李金磊. 微量CNTs包覆对LiNi0.8Co0.1Mn0.1O2正极材料电化学性能的影响[J]. 材料工程, 2020, 48(5): 68-74.
[7] 许剑轶, 张国芳, 胡峰, 王瑞芬, 寇勇, 张胤. La-Mg-Ni系A5B19超晶格负极材料相结构及电化学性能[J]. 材料工程, 2020, 48(2): 46-52.
[8] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[9] 陈德鑫, 李智敏, 李高锋, 张茂林, 张东岩, 闫养希. Mg2+掺杂对Li1.2Mn0.6Ni0.2O2正极材料性能的影响[J]. 材料工程, 2020, 48(10): 157-162.
[10] 黄贤凯, 邵泽超, 常增花, 王建涛. 导电炭黑对富锂锰基层状氧化物电极性能的影响[J]. 材料工程, 2019, 47(8): 13-21.
[11] 赵斌, 张芮境, 申倩倩, 王羿, 薛晋波, 张爱琴, 贾虎生. TiO2纳米管阵列基底退火温度对CdSe/TiO2异质结薄膜光电化学性能的影响[J]. 材料工程, 2019, 47(8): 90-96.
[12] 寻之玉, 侯璞, 刘旸, 倪守朋, 霍鹏飞. 聚合物电解质在超级电容器中的研究进展[J]. 材料工程, 2019, 47(11): 71-83.
[13] 张国芳, 孙涵丰, 许剑轶, 张羊换. 具可变价态稀土氧化物对Mg2Ni合金储氢性能的催化作用[J]. 材料工程, 2019, 47(10): 90-96.
[14] 李诗杰, 韩奎华. 基于“蛋盒”结构海藻基超级活性炭的制备及电化学性能[J]. 材料工程, 2019, 47(10): 97-104.
[15] 李高锋, 李智敏, 宁涛, 张茂林, 闫养希, 向黔新. 锂离子电池正极材料表面包覆改性研究进展[J]. 材料工程, 2018, 46(9): 23-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn