Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (6): 164-169    DOI: 10.11868/j.issn.1001-4381.2020.000253
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
聚硼硅氧烷的合成及其流变性能
刘晨阳1, 李峰1,2,*(), 翟哲1, 李慧1
1 西安理工大学 材料科学与工程学院,西安 710048
2 西安匹克玄铠新材料有限公司,西安 710024
Synthesis and rheological property of polyborosiloxanes
Chenyang LIU1, Feng LI1,2,*(), Zhe ZHAI1, Hui LI1
1 School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
2 Xi'an Peak Xuankai New Material Co., Ltd., Xi'an 710024, China
全文: PDF(3386 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

为了探究聚硼硅氧烷(PBDMSs)的物理交联网络结构对体系黏弹性的影响,将不同羟基含量的端羟基聚二甲基硅氧烷(PDMS)分别与硼酸进行反应,制备不同硼化交联密度的PBDMSs,并对合成的PBDMSs的结构、热力学及流变性能进行表征。结果表明:制备的PBDMSs中含有Si—O—Si,Si—O—B,CH3—Si—CH3和B—O—B结构单元;PBDMSs具有优异的耐低温性能,其玻璃化转变温度随着原料PDMS中羟基含量的增加而升高,且当原料PDMS的羟基含量较低时(1%和2%,质量分数),生成物PBDMSs具有一定的结晶能力;PBDMSs具有频率敏感性的特征,并且具有良好的抗冲击能力、优异的阻尼耗散能力和出色的回弹性能,原料PDMS的羟基含量影响生成物PBDMSs的物理交联网络结构,进而对PBDMSs的动态模量有显著影响,实际应用时可根据需求改变PDMS的羟基含量来调节PBDMSs的黏弹性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘晨阳
李峰
翟哲
李慧
关键词 端羟基聚二甲基硅氧烷玻璃化转变温度黏弹性抗冲击性能    
Abstract

In order to explore the influence of the physical crosslinking network structure of polyborosiloxanes(PBDMSs) on the viscoelasticity of the system, hydroxyl terminated polydimethylsiloxane (PDMS) with different hydroxyl contents were reacted with boric acid to prepare PBDMSs with different boronization crosslinking densities. Thereafter the structure, thermodynamics and rheological properties of the as prepared samples were characterized. The results show that PBDMSs contain Si—O—Si, Si—O—B, CH3—Si—CH3 and B—O—B structural units. And PBDMSs have excellent low temperature resistance, while their glass transition temperature increases with the increase of hydroxyl content in PDMS. And at low hydroxyl content of PDMS (1% and 2%, mass fraction), crystallization of PBDMSs are observed. Moreover, PBDMSs possess the characteristics of frequency sensitivity, good impact resistance, excellent damping dissipation and excellent resilience. The hydroxyl content of PDMS obviously affects the physical crosslinking network structure of PBDMSs, and thus has a significant impact on the dynamic modulus of PBDMSs. In practical application, the viscoelasticity of PBDMSs can be adjusted by changing the hydroxyl content of PDMS.

Key wordshydroxyl terminated polydimethylsiloxane    glass transition temperature    viscoelasticity    impact resistance
收稿日期: 2020-03-25      出版日期: 2022-06-20
中图分类号:  O63  
通讯作者: 李峰     E-mail: 7959483@qq.com
作者简介: 李峰(1977—),男,教授,博士,研究方向:高分子智能材料及高分子基复合材料,联系地址:西安市碑林区金花南路5号西安理工大学材料科学与工程学院(710048),E-mail: 7959483@qq.com
引用本文:   
刘晨阳, 李峰, 翟哲, 李慧. 聚硼硅氧烷的合成及其流变性能[J]. 材料工程, 2022, 50(6): 164-169.
Chenyang LIU, Feng LI, Zhe ZHAI, Hui LI. Synthesis and rheological property of polyborosiloxanes. Journal of Materials Engineering, 2022, 50(6): 164-169.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000253      或      http://jme.biam.ac.cn/CN/Y2022/V50/I6/164
Sample Mass fraction of hydroxyl
content in PDMS/%
PDMS∶boric acid
(mass ratio)
PBDMS1 1 100∶3
PBDMS2 2 100∶3
PBDMS3 4 100∶3
PBDMS4 6 100∶3
PBDMS5 9.2 100∶3
Table 1  PBDMSs的制备配方
Fig.1  PBDMSs的红外光谱图
(a)原始图;(b)分峰图
Sample Integralarea
of Si—O—B
Integral area
of Si(CH3)2
Integral area ratio
(Si—O—B/Si(CH3)2)
PBDMS1 2.12 11.62 0.18
PBDMS2 3.58 11.68 0.31
PBDMS3 8.64 11.96 0.72
PBDMS4 8.78 7.61 1.15
PBDMS5 20.32 12.51 1.62
Table 2  吸收峰积分面积
Fig.2  PBDMSs的DSC曲线
Fig.3  PBDMSs的储能模量(G′)和损耗模量(G″)随频率的变化
(a)平移前;(b)平移后
Fig.4  PBDMSs的阻尼因子随频率的变化
1 TANG M , WANG W T , XU D H , et al. Synthesis of structure-controlled polyborosiloxanes and investigation on their viscoelastic response to molecular mass of polydimethylsiloxane triggered by both chemical and physical interactions[J]. Industrial & Engineering Chemistry Research, 2016, 55 (49): 12582- 12589.
2 WU T F , CHEN B Q . Synthesis of multi-walled carbon nanotube-reinforced polyborosiloxane nanocomposites with mechanically adaptive and self-healing capabilities for flexible conductors[J]. ACS Applied Materials & Interfaces, 2016, 8 (36): 1- 8.
3 LIU Z , PICKEN S J , BESSELING N A M . Polyborosiloxanes (PBSs), synthetic kinetics, and characterization[J]. Macromolecules, 2014, 47 (14): 4531- 4537.
doi: 10.1021/ma500632f
4 LI X F , ZHANG D , XIANG K W , et al. Synthesis of polyborosiloxane and its reversible physical cross-links[J]. RSC Advances, 2014, 4 (62): 1- 8.
5 陈欣. 阻尼硅橡胶的制备及性能研究[D]. 济南: 山东大学, 2017.
5 CHEN X. Preparation and properties of damping silicone rubber[D]. Jinan: Shandong University, 2017.
6 DROZDOV F V , MILENIN S A , GORODOV V V , et al. Crosslinked polymers based on polyborosiloxanes: synthesis and properties[J]. Journal of Organometallic Chemistry, 2019, 891, 72- 77.
doi: 10.1016/j.jorganchem.2019.04.016
7 周鼎, 苗应刚, 王严培, 等. 冲击载荷下硼酸改性端羟基聚硅氧烷-二氧化硅复合材料的响应特性[J]. 兵工学报, 2018, 39 (1): 137- 145.
doi: 10.3969/j.issn.1000-1093.2018.01.015
7 ZHOU D , MIAO Y G , WANG Y P , et al. Response characteristics of boric acid modified hydroxyl-terminated polysiloxane-silica composites under impact loading[J]. Journal of Ordnance Engineering, 2018, 39 (1): 137- 145.
doi: 10.3969/j.issn.1000-1093.2018.01.015
8 ZHOU C , WANG B , ZHANG F T , et al. Micro-gels for impact protection[J]. Journal of Applied Polymer Science, 2013, 130, 2345- 2351.
doi: 10.1002/app.39453
9 RAN G , LIU X , GUO J , et al. Improving the flame retardancy and water resistance of polylactic acid by introducing polyborosiloxane microencapsulated ammonium polyphosphate[J]. Composites Part B, 2019, 173, 106772.
doi: 10.1016/j.compositesb.2019.04.033
10 ZHANG D S , JIANG N , CHEN X Y , et al. Rheology of crosslinked entangled polymers: shear stiffening in oscillatory shear[J]. Journal of Applied Polymer Science, 2020, 137 (9): 48421.
doi: 10.1002/app.48421
11 SLAWOMIR R . New facile process for synthesis of borosiloxane resins[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2014, 24 (6): 1092- 1095.
doi: 10.1007/s10904-014-0094-0
12 KASGOZ A , KURAMATA M , MISONO T , et al. Preparation of polyborosiloxane as a precursor for borosilicate fibers[J]. Journal of the Ceramic Society of Japan, 1989, 97 (11): 1432- 1434.
13 WU C L , HSUECH C , HSU J S , et al. Static and dynamic mechanical properties of polydimethylsiloxane/carbon nanotube nanocomposites[J]. Thin Solid Films, 2009, 517 (17): 4895- 4901.
doi: 10.1016/j.tsf.2009.03.146
14 范伟. 聚硼硅氧烷改性硅胶与发泡聚氨酯动态力学性能研究[D]. 西安: 西安理工大学, 2019.
14 FAN W. Study on the dynamic mechanical properties of polysiloxane modified silica gel and polyurethane foam[D]. Xi'an: Xi'an University of Technology, 2019.
15 LIU Z, BESSELING N A M, MENDES E, et al. Self-healing supramolecular polymer nanocomposites[C]//Proceedings of the 3rd International Conference on Self-Healing Materials. Bath: ICHSHM, 2013: 684-687.
16 黄艳华, 石扬, 薛磊, 等. 航空硅橡胶材料研究及应用进展[J]. 航空材料学报, 2016, 36 (3): 79- 91.
16 HUANG Y H , SHI Y , XUE L , et al. Progress in research and application of aviation silicone rubber material[J]. Journal of Aeronautical Materials, 2016, 36 (3): 79- 91.
17 MITROFANOV L A , SIDOROVICH Y A , KARLIN A V , et al. The question of molecular interaction in polyborondimethylsiloxanes (PBDMS)[J]. Polymer Science U.S.S.R, 1969, 11 (4): 882- 888.
doi: 10.1016/0032-3950(69)90312-8
18 LIU C Y , HE J S , RUYMBEKE E V , et al. Evaluation of different methods for the determination of the plateau modulus and the entanglement molecular weight[J]. Polymer, 2006, 47, 4461- 4479.
doi: 10.1016/j.polymer.2006.04.054
[1] 郑镭, 孙维连, 孙铂, 张雪静, 纪宏超. 挤出方式对黏弹性浆料3D打印出料可控性的影响[J]. 材料工程, 2020, 48(3): 134-141.
[2] 苏继龙, 吴金东, 刘远力. 蜂窝结构力学超材料弹性及抗冲击性能的研究进展[J]. 材料工程, 2019, 47(8): 49-58.
[3] 欧秋仁, 嵇培军, 肖军, 武玲, 王璐. 国产T800碳纤维用氰酸酯树脂开发及其复合材料性能[J]. 材料工程, 2019, 47(8): 125-131.
[4] 张晨乾, 陈蔚, 叶宏军, 关志东, 黎增山. 具有双峰反应特性的高韧性双马来酰亚胺树脂固化动力学和TTT图[J]. 材料工程, 2016, 44(10): 17-23.
[5] 张宗华, 刘刚, 张晖, 张忠, 王小群. 纳米氧化铝颗粒对高性能环氧树脂玻璃化转变温度的影响[J]. 材料工程, 2014, 0(9): 39-44.
[6] 来育梅, 程茹, 王晓东, 黄培. 热塑性聚酰亚胺热转变行为研究[J]. 材料工程, 2006, 0(9): 6-9,13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn