1 Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China 2 National Innovation Institute of Defense Technology, Academy of Military Sciences of the PLA of China, Beijing 100071, China
The high-entropy metallic glasses, as a new kind of alloyed materials, have attracted considerable attention due to its excellent mechanical, anti-corrosion and magnetic properties and so forth, which combines the advantages of high-entropy alloys and metallic glasses. Herein, a comprehensive understanding of the concepts and features of high-entropy metallic glasses was provided as well as its preparation methods, distinguished structure and performance characteristics. The recent developments in the corrosion resistance mechanism and anti-corrosion properties were summarized. A new paradigm of using machine learning to design high-entropy metallic glasses was prospected. It was also pointed out that the precondition to the extensive use of this sort of materials is to explore the corrosion failure mechanism under the working conditions, and to achieve the micro-corrosion resistance mechanism perfection and its preparation process optimization. At present, the applied basic research on the development of high-entropy metallic glasses and its corrosion resistance will provide advanced technical support and material guarantee for the "Marching into the deep ocean" of China's marine industry.
ZHAO K , XIA X X , BAI H Y , et al. Room temperature homogeneous flow in a bulk metallic glass with low glass transition temperature[J]. Applied Physics Letters, 2011, 98 (14): 141913.
doi: 10.1063/1.3575562
2
TAKEUCHI A , CHEN N , WADA T , et al. Pd20Pt20Cu20Ni20P20 high-entropy alloy as a bulk metallic glass in the centimeter[J]. Intermetallics, 2011, 19 (10): 1546- 1554.
doi: 10.1016/j.intermet.2011.05.030
3
KLEMENT W , WILLENS R H , DUWEZ P . Non-crystalline structure in solidified gold-silicon alloys[J]. Nature, 1960, 187 (4740): 869- 870.
4
INOUE A . Stabilization of metallic supercooled liquid and bulk amorphous alloys[J]. Acta Materialia, 2000, 48 (1): 279- 306.
doi: 10.1016/S1359-6454(99)00300-6
WANG W H . The nature and properties of amorphous matter[J]. Progress in Physics, 2013, 33 (5): 177- 351.
6
YEH J W , CHEN S K , LIN S J , et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6 (5): 299- 303.
doi: 10.1002/adem.200300567
7
MIRACLE D B , SENKOV O N . A critical review of high entropy alloys (HEAs) and related concepts[J]. Acta Materialia, 2017, 122, 448- 511.
doi: 10.1016/j.actamat.2016.08.081
8
LI Z Z , ZHAO S T , RITCHIE R O , et al. Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys[J]. Progress in Materials Science, 2019, 102, 296- 345.
doi: 10.1016/j.pmatsci.2018.12.003
9
LI R X , ZHANG Y . Entropy and glass formation[J]. Acta Physica Sinica, 2017, 66 (17): 350- 357.
10
MA L Q , WANG L M , ZHANG T , et al. Bulk glass formation of Ti-Zr-Hf-Cu-M (M=Fe, Co, Ni) alloys[J]. Materials Transactions, 2002, 43 (2): 277- 280.
doi: 10.2320/matertrans.43.277
11
XING Q W , ZHANG Y . Amorphous phase formation rules in high-entropy alloys[J]. Chinese Physics B, 2017, 26 (1): 65- 73.
12
LI H F , XIE X H , ZHAO K , et al. In vitro and in vivo studies on biodegradable CaMgZnSrYb high-entropy bulk metallic glass[J]. Acta Biomaterialia, 2013, 9 (10): 8561- 8573.
doi: 10.1016/j.actbio.2013.01.029
13
CHENG C Y , YEH J W . High thermal stability of the amorphous structure of GexNbTaTiZr (x=0.5, 1) high-entropy alloys[J]. Materials Letters, 2016, 181, 223- 226.
doi: 10.1016/j.matlet.2016.06.040
14
WANG Y , ZHANG K , FENG Y H , et al. Excellent irradiation tolerance and mechanical behaviors in high-entropy metallic glasses[J]. Journal of Nuclear Materials, 2019, 527, 151785.
doi: 10.1016/j.jnucmat.2019.151785
15
HUO J T , WANG J Q , WANG W H . Denary high entropy metallic glass with large magnetocaloric effect[J]. Journal of Alloys and Compounds, 2019, 776, 202- 206.
doi: 10.1016/j.jallcom.2018.10.328
YAO K F, DING H Y. High entropy amorphous alloy material and its preparation method: ZL201310224674.5[P]. 2013-10-02.
17
QI T L , LI Y H , TAKEUCHI A , et al. Soft magnetic Fe25Co25Ni25(B, Si)25 high entropy bulk metallic glasses[J]. Intermetallics, 2015, 66, 8- 12.
doi: 10.1016/j.intermet.2015.06.015
18
WANG F , INOUE A , KONG F L , et al. Formation, thermal stability and mechanical properties of high entropy (Fe, Co, Ni, Cr, Mo)-B amorphous alloys[J]. Journal of Alloys and Compounds, 2018, 732, 637- 645.
doi: 10.1016/j.jallcom.2017.10.227
DONG X Y, XU X F, SUN H, et al. The invention relates to an Fe-based soft magnetic high entropy amorphous alloy with high plasticity and its preparation and application: ZL201810122747.2[P]. 2018-08-03.
20
WU J L , ZHOU Z Y , YANG H , et al. Structure related potential-upsurge during tensile creep of high entropy Al20Ce20La20Ni20Y20 metallic glass[J]. Journal of Alloys and Compounds, 2020, 827, 154298.
doi: 10.1016/j.jallcom.2020.154298
21
ZHAO S F , WANG H B , XIAO L , et al. High strain rate sensitivity of hardness in quinary Ti-Zr-Hf-Cu-Ni high entropy metallic glass thin films[J]. Physica E, 2017, 94, 100- 105.
doi: 10.1016/j.physe.2017.07.021
22
ZHAO Y Y , YE Y X , LIU C Z , et al. Tribological behavior of an amorphous Zr20Ti20Cu20Ni20Be20 high-entropy alloy studied using a nanoscratch technique[J]. Intermetallics, 2019, 113, 106561.
doi: 10.1016/j.intermet.2019.106561
23
ZHOU Q , DU Y , HAN W C , et al. Identifying the origin of strain rate sensitivity in a high entropy bulk metallic glass[J]. Scripta Materialia, 2019, 164, 121- 125.
doi: 10.1016/j.scriptamat.2019.02.002
24
HUO J T , HUO L S , MEN H , et al. The magnetocaloric effect of Gd-Tb-Dy-Al-M (M=Fe, Co and Ni) high-entropy bulk metallic glasses[J]. Intermetallics, 2015, 58, 31- 35.
doi: 10.1016/j.intermet.2014.11.004
25
LI J , XUE L , YANG W M , et al. Distinct spin glass behavior and excellent magnetocaloric effect in Er20Dy20Co20 Al20RE20 (RE=Gd, Tb and Tm) high-entropy bulk metallic glasses[J]. Intermetallics, 2018, 96, 90- 93.
doi: 10.1016/j.intermet.2018.03.002
26
WU K N , LIU C , LI Q , et al. Magnetocaloric effect of Fe25Co25Ni25Mo5P10B10 high-entropy bulk metallic glass[J]. Journal of Magnetism and Magnetic Materials, 2019, 489, 165404.
doi: 10.1016/j.jmmm.2019.165404
27
DING H Y , YAO K F . High entropy Ti20Zr20Cu20Ni20Be20 bulk metallic glass[J]. Journal of Non-Crystalline Solids, 2013, 364, 9- 12.
doi: 10.1016/j.jnoncrysol.2013.01.022
28
YANG X G , ZHOU Y , ZHU R H , et al. A novel, amorphous, non-equiatomic FeCrAlCuNiSi high-entropy alloy with exceptional corrosion resistance and mechanical properties[J]. Acta Metallurgica Sinica(English letters), 2020, 33, 1057- 1063.
doi: 10.1007/s40195-019-00977-1
XU Y, CHEN Y. A kind of high entropy alloy amorphous powder for 3D printing and its preparation method: ZL201610090111.5[P]. 2016-04-27.
30
LI Y , WANG S , WANG X , et al. New FeNiCrMo(P, C, B) high-entropy bulk metallic glasses with unusual thermal stability and corrosion resistance[J]. Journal of Materials Science & Technology, 2020, 42, 32- 39.
31
DING H Y , SHAO Y , GONG P , et al. A senary TiZrHfCuNiBe high entropy bulk metallic glass with large glass-forming ability[J]. Materials Letters, 2014, 125, 151- 153.
doi: 10.1016/j.matlet.2014.03.185
32
LIU J N , XING Z G , WANG H D , et al. Microstructure and fatigue damage mechanism of FeCoNiAlTiZr high-entropy alloy film by nanoscale dynamic mechanical analysis[J]. Vacuum, 2019, 159, 516- 523.
doi: 10.1016/j.vacuum.2018.10.061
33
BRAIC M , BRAIC V , BALACEANU M , et al. Characteristics of (TiAlCrNbY)C films deposited by reactive magnetron sputtering[J]. Surface and Coatings Technology, 2010, 204 (12/13): 2010- 2014.
34
HSUEH H T , SHEN W J , TSAI M H , et al. Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr)100-xNx[J]. Surface and Coatings Technology, 2012, 206 (19/20): 4106- 4112.
35
LIN C H , DUH J G , YEH J W . Multi-component nitride coatings derived from Ti-Al-Cr-Si-V target in RF magnetron sputter[J]. Surface and Coatings Technology, 2007, 201 (14): 6304- 6308.
doi: 10.1016/j.surfcoat.2006.11.041
36
LAI C H , LIN S J , YEH J W , et al. Preparation and characterization of AlCrTaTiZr multi-element nitride coatings[J]. Surface and Coatings Technology, 2006, 201 (6): 3275- 3280.
doi: 10.1016/j.surfcoat.2006.06.048
37
XIA Z H , ZHANG M , ZHANG Y , et al. Effects of Ni-P amorphous films on mechanical and corrosion properties of Al0.3CoCrFeNi high-entropy alloys[J]. Intermetallics, 2018, 94, 65- 72.
doi: 10.1016/j.intermet.2017.12.021
38
SHU F Y , LIU S , ZHAO H Y , et al. Structure and high-temperature property of amorphous composite coating synthesized by laser cladding FeCrCoNiSiB high-entropy alloy powder[J]. Journal of Alloys and Compounds, 2018, 731, 662- 666.
doi: 10.1016/j.jallcom.2017.08.248
CHEN W, SUN B, HAN J, et al. Preparation with amorphous and high-entropy coating: ZL201811653039.8[P]. 2019-03-08.
40
ZHANG B , DUAN Y P , YANG X , et al. Tuning magnetic properties based on FeCoNiSi0.4 with dual-phase nano-crystal and nano-amorphous microstructure[J]. Intermetallics, 2020, 117, 106678.
doi: 10.1016/j.intermet.2019.106678
41
SANG L M , XU Y . Amorphous behavior of ZrxFeNiSi0.4B0.6 high entropy alloys synthesized by mechanical alloying[J]. Journal of Non-Crystalline Solids, 2020, 530, 119854.
doi: 10.1016/j.jnoncrysol.2019.119854
42
TAN Z , WANG L , XUE Y , et al. High-entropy alloy particle reinforced Al-based amorphous alloy composite with ultrahigh strength prepared by spark plasma sintering[J]. Materials & Design, 2016, 109, 219- 226.
43
CAO D , WU Y , LI H X , et al. Beneficial effects of oxygen addition on glass formation in a high-entropy bulk metallic glass[J]. Intermetallics, 2018, 99, 44- 50.
doi: 10.1016/j.intermet.2018.05.007
44
ZHAO K , JIAO W , MA J , et al. Formation and properties of strontium-based bulk metallic glasses with ultralow glass transition temperature[J]. Journal of Materials Research, 2012, 27 (20): 2593- 2600.
doi: 10.1557/jmr.2012.214
XI S Q, YANG X G, ZHOU Y, et al. The invention related to an amorphous high entropy alloy with high corrosion resistance and a preparation method: CN201611066271.2[P]. 2017-05-31.
46
LIU L , ZHU J B , HOU C , et al. Dense and smooth amorphous films of multicomponent FeCoNiCuVZrAl high-entropy alloy deposited by direct current magnetron sputtering[J]. Materials & Design, 2013, 46, 675- 679.
47
SHU C Q , CHEN K , YANG H M , et al. Effect of V and ball milling time on microstructure and thermal properties of CoCrCuFeNiVx by mechanical alloying[J]. Physica B, 2019, 571, 235- 242.
doi: 10.1016/j.physb.2019.07.028
48
BILJAKOVIC' K , REMENYI G , FIGUEROA I A , et al. Electronic structure and properties of (TiZrNbCu)1-xNix high entropy amorphous alloys[J]. Journal of Alloys and Compounds, 2017, 695, 2661- 2668.
doi: 10.1016/j.jallcom.2016.11.179
49
ZHENG S , CAI Z , PU J , et al. A feasible method for the fabrication of VAlTiCrSi amorphous high entropy alloy film with outstanding anti-corrosion property[J]. Applied Surface Science, 2019, 483, 870- 874.
doi: 10.1016/j.apsusc.2019.03.338
50
HAN Z H , WANG D Z , CHEN X H , et al. Characterization and properties of CuZrAITiNiSi high entropy alloy coating obtained by mechanical alloying and vacuum hot-pressing sintering[J]. JOM, 2020, 72 (3): 1254- 1263.
doi: 10.1007/s11837-020-04005-x
YU H Y, ZUO J L, LIU Z W, et al. The invention relates to a high entropy amorphous alloys with soft magnetic, anti-high temperature and anti-corrosion and its preparation method: ZL201910180210.6[P]. 2019-06-25.
52
DING J , INOUE A , HAN Y , et al. High entropy effect on structure and properties of (Fe, Co, Ni, Cr)-B amorphous alloys[J]. Journal of Alloys and Compounds, 2017, 696, 345- 352.
doi: 10.1016/j.jallcom.2016.11.223
53
WANG W , LI B Y , ZHAI S C , et al. Alloying behavior and properties of FeSiBAlNiCox high entropy alloys fabricated by mechanical alloying and spark plasma sintering[J]. Metals and Materials International, 2018, 24, 1112- 1119.
doi: 10.1007/s12540-018-0047-1
54
LIN C H , DUH J G . Corrosion behavior of (Ti-Al-Cr-Si-V)xNy coatings on mild steels derived from RF magnetron sputtering[J]. Surface and Coatings Technology, 2008, 203 (5/7): 558- 561.
55
HUNG S B , WANG C J , CHEN Y Y , et al. Thermal and corrosion properties of V-Nb-Mo-Ta-W and V-Nb-Mo-Ta-W-Cr-B high entropy alloy coatings[J]. Surface and Coatings Technology, 2019, 375, 802- 809.
doi: 10.1016/j.surfcoat.2019.07.079
LIANG X B , FAN J W , ZHANG Z B , et al. Microstructure and corrosion properties of aluminum base amorphous and nanocrystalline composite coating[J]. Acta Metallurgica Sinica, 2018, 54 (8): 1193- 1203.
SUN J L , ZOU D , JIN J , et al. Localized corrosion resistance of three commonly-used stainless steels[J]. Chinese Journal of Materials Research, 2017, 31 (9): 665- 671.
58
QIU X W . Corrosion behavior of Al2CrFeCoxCuNiTi high-entropy alloy coating in alkaline solution and salt solution[J]. Results in Physics, 2019, 12 (3): 1737- 1741.
59
CHENG J B , FENG Y , YAN C , et al. Development and characterization of Al-based amorphous coating[J]. JOM, 2020, 72 (2): 745- 753.
doi: 10.1007/s11837-019-03966-y
60
WANG H D , LIU J N , XING Z G , et al. Microstructure and corrosion behaviour of AlCoFeNiTiZr high-entropy alloy films[J]. Surface Engineering, 2019, 36 (1): 78- 85.
61
ZHANG W , TANG R , YANG Z B , et al. Preparation, structure, and properties of high-entropy alloy multilayer coatings for nuclear fuel cladding: a case study of AlCrMoNbZr/(AlCrMo-NbZr)N[J]. Journal of Nuclear Materials, 2018, 512, 15- 24.
doi: 10.1016/j.jnucmat.2018.10.001
62
HUANG B , ZHANG C , ZHANG G , et al. Wear and corrosion resistant performance of thermal-sprayed Fe-based amorphous coatings: a review[J]. Surface and Coatings Technology, 2019, 377 (15): 124896.
63
ZHANG G Y , ZHANG H , YUE S Q , et al. Preparation of non-magnetic and ductile Co-based bulk metallic glasses with high GFA and hardness[J]. Intermetallics, 2019, 107, 47- 52.
doi: 10.1016/j.intermet.2019.01.012
64
XU T , PANG S J , ZHANG T . Glass formation, corrosion behavior, and mechanical properties of novel Cr-rich Cr-Fe-Mo-C-B-Y bulk metallic glasses[J]. Journal of Alloys and Compounds, 2015, 625, 318- 322.
doi: 10.1016/j.jallcom.2014.09.166
65
LUO H , LI Z , MINGERS A M , et al. Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution[J]. Corrosion Science, 2018, 134, 131- 139.
doi: 10.1016/j.corsci.2018.02.031
66
SHU F Y , ZHANG B L , LIU T , et al. Effects of laser power on microstructure and properties of laser cladded CoCrBFeNiSi high-entropy alloy amorphous coatings[J]. Surface and Coatings Technology, 2019, 358, 667- 675.
doi: 10.1016/j.surfcoat.2018.10.086
67
RANGANATHAN S . Alloyed pleasures: multimetallic cocktails[J]. Current Science, 2003, 85 (10): 1404- 1406.
TENG Q , LI S , XUE P J , et al. High-temperature corrosion resistance of Inconel 718 fabricated by selective laser melting[J]. The Chinese Journal of Nonferrous Metals, 2019, 29 (7): 1417- 1426.
69
CUI Y , LI C J , LI J , et al. Characterization of FeCrAlY thin film deposited by magnetron sputtering and its corrosion resistance under high-temperature water vapor environment[J]. Surface Technology, 2020, 49 (1): 72- 78.
CHEN S , ZHOU X , ZHANG H , et al. High-temperature corrosion behavior of novel material Mg2SiO4 for thermal barrier coatings in molten salt environment[J]. Journal of Synthetic Crystals, 2019, 48 (8): 1534- 1538.
71
ZHOU Q Y , SHEIKH S , OU P , et al. Corrosion behavior of Hf0.5Nb0.5Ta0.5Ti1.5Zr refractory high-entropy in aqueous chloride solutions[J]. Electrochemistry Communications, 2019, 98, 63- 68.
doi: 10.1016/j.elecom.2018.11.009
72
ZHANG M N , ZHOU X L , YU X N , et al. Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding[J]. Surface and Coatings Technology, 2017, 311, 321- 329.
doi: 10.1016/j.surfcoat.2017.01.012
73
GUO Y X , LIU Q B . MoFeCrTiWAlNb refractory high-entropy alloy coating fabricated by rectangular-spot laser cladding[J]. Intermetallics, 2018, 102, 78- 87.
doi: 10.1016/j.intermet.2018.09.005
74
ZHANG M , GONG P , LI N , et al. Oxidation behavior of a Ti16.7Cu16.7Ni16.7Be16.7 high-entropy bulk metallic glass[J]. Materials Letters, 2019, 236, 135- 138.
doi: 10.1016/j.matlet.2018.10.056
75
ZHANG C , SONG A N , YUAN Y , et al. Study on the hydrogen storage properties of a TiZrNbTa high entropy alloy[J]. International Journal of Hydrogen Energy, 2020, 45 (8): 5367- 5374.
doi: 10.1016/j.ijhydene.2019.05.214
76
DING Q Q , ZHANG Y , CHEN X , et al. Tuning element distribution, structure and properties by composition in high-entropy alloys[J]. Nature, 2019, 574 (7777): 223- 227.
doi: 10.1038/s41586-019-1617-1
77
XU Y Q , BU Y Q , LIU J B , et al. In-situ high throughput synthesis of high-entropy alloys[J]. Scripta Materialia, 2019, 160, 44- 47.
doi: 10.1016/j.scriptamat.2018.09.040
78
HU Q , GUO S , WANG J M , et al. Parametric study of amorphous high-entropy alloys formation from two new perspectives: atomic radius modification and crystalline structure of alloying elements[J]. Scientific Reports, 2017, 7, 39917.
doi: 10.1038/srep39917
WU J Q , SUN Y T , WANG W H , et al. Application of machine learning approach in disordered materials[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2020, 50 (6): 7- 20.
80
WEN C , ZHANG Y , WANG C X , et al. Machine learning assisted design of high entropy alloys with desired property[J]. Acta Materialia, 2019, 170, 109- 117.
doi: 10.1016/j.actamat.2019.03.010
81
DAI D B , XU T , WEI X , et al. Using machine learning and feature engineering to characterize limited material datasets of high-entropy alloys[J]. Computational Materials Science, 2020, 175, 109618.
doi: 10.1016/j.commatsci.2020.109618