Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (7): 35-45    DOI: 10.11868/j.issn.1001-4381.2020.000265
  综述 本期目录 | 过刊浏览 | 高级检索 |
电解液化学保护锂金属电池负极的研究进展
杨珺, 林元华, 廖丽, 陈杨阳, 冯炫杰, 李佩, 纪洪江, 王明珊, 陈俊臣, 李星()
西南石油大学 新能源与材料学院, 成都 610500
Research progress in anode protection of lithium metal batteries by electrolyte chemistry
Jun YANG, Yuan-hua LIN, Li LIAO, Yang-yang CHEN, Xuan-jie FENG, Pei LI, Hong-jiang JI, Ming-shan WANG, Jun-chen CHEN, Xing LI()
School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
全文: PDF(1325 KB)   HTML ( 1 )  
输出: BibTeX | EndNote (RIS)      
摘要 

锂金属电池被认为是最具潜力的高能量密度储能器件之一,但是锂金属电池负极低库仑效率及不可控的枝晶生长等问题阻碍了其商业化进程。在锂金属电池中,电解液会直接参与固态电解质界面膜(SEI)的形成,对锂金属负极的库仑效率、枝晶生长等产生重要影响。传统LiPF6基酯类电解液中,锂金属库仑效率低,且锂枝晶现象严重。近年来通过电解液添加剂、溶剂、锂盐以及锂盐浓度等途径调控电解液化学,在锂金属负极保护上取得了显著效果。例如,采用与锂金属负极兼容性更佳的醚类溶剂,可以降低电解液与锂金属的反应性;采用多种添加剂与新型锂盐复配可以有效抑制锂枝晶的形成;采用高浓度锂盐电解液,可以形成稳定SEI膜等。本文综述了锂枝晶的生长原理以及通过溶剂、锂盐、添加剂和高浓度电解液等策略调控电解液化学保护锂金属电池负极的研究现状,总结了各种途径的优势及局限性。并对锂金属电池电解液的发展提出了新的见解,以激发新的策略面对锂金属电池后续的挑战。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨珺
林元华
廖丽
陈杨阳
冯炫杰
李佩
纪洪江
王明珊
陈俊臣
李星
关键词 锂金属电池锂金属负极库仑效率锂枝晶电解液化学    
Abstract

Lithium metal batteries have been considered as one of the most promising high-energy-density energy storage devices, however, the low Coulombic efficiency and uncontrolled dendrite growth seriously hinder their commercialization. In lithium metal batteries, the electrolytes would directly participate in the formation of solid electrolyte interface (SEI), which play important roles in affecting the lithium metal anode Coulombic efficiency and inhibiting the growth of lithium dendrites.In the traditional LiPF6 based ester electrolyte, lithium metal anode exhibits low Coulomb efficiency and serious lithium dendrites.In recent years, significant improvement has been achieved for the protection of lithium anode through manipulating the electrolyte additive, solvents, lithium salt and lithium salt concentration, etc. For examples, ether solvent presenting better compatibility with lithium metal was selected to reduce the side reactivity of electrolyte with lithium metal; varieties of additives were adopted to suppress the formation of lithium dendrites; high concentration electrolytes were employed to form stable SEI.In this paper, the growth principles of lithium dendrites, the research status of electrolytes chemistries for protection of lithium metal anode by means of solvents, lithium salts, additives and high concentration electrolytes strategies were reviewed and the advantages and limitations of various approaches were summarized.New insights on the development of electrolytes chemistries were also put forward to stimulate new strategies to face the subsequent challenges of lithium-metal batteries.

Key wordslithium metal battery    lithium metal anode    Coulombic efficiency    lithium dendrite    electrolyte chemistry
收稿日期: 2020-03-25      出版日期: 2021-07-19
中图分类号:  TM912  
基金资助:成都市国际合作重点研究项目(2019-GH02-00052-HZ);四川省科技厅重点研发项目(2019YFG0220)
通讯作者: 李星     E-mail: lixing198141@163.com
作者简介: 李星(1981-), 男, 教授, 博士, 研究方向为电解液、锂金属负极保护、富锂锰正极, 联系地址: 四川省成都市新都区新都大道8号西南石油大学(610500), E-mail: lixing198141@163.com
引用本文:   
杨珺, 林元华, 廖丽, 陈杨阳, 冯炫杰, 李佩, 纪洪江, 王明珊, 陈俊臣, 李星. 电解液化学保护锂金属电池负极的研究进展[J]. 材料工程, 2021, 49(7): 35-45.
Jun YANG, Yuan-hua LIN, Li LIAO, Yang-yang CHEN, Xuan-jie FENG, Pei LI, Hong-jiang JI, Ming-shan WANG, Jun-chen CHEN, Xing LI. Research progress in anode protection of lithium metal batteries by electrolyte chemistry. Journal of Materials Engineering, 2021, 49(7): 35-45.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000265      或      http://jme.biam.ac.cn/CN/Y2021/V49/I7/35
Fig.1  各种电池体系能量密度[3]
Fig.2  部分电解液溶剂的HOMO与LUMO能
Fig.3  部分常用锂盐HOMO与LUMO能
Electrolyte formulation Lithium metal full battery performance (cycle number/capacity retention ratio%) Li‖Cu cell Coulombic efficiency(CE)/%
4 mol·L-1 LiFSI-DME[34-35] Cu‖LiFePO4(50/60) 99.1
LiFSI-1.2DME-3TTE[79] Li‖NCM811(250/90) 99.3
3 mol·L-1 LiFNFSI-DOL/DME[42] Li‖LiFePO4(200/98.5) 97
2 mol·L-1 LiTFSI-2 mol·L-1 LiDFOB-DME[38] Li‖NCM333(500/79) 94
LiFSI-3TMS-3TTE[52] Li‖NMC333(300/80) 98.8
4.6 mol·L-1 LiFSI-2.3 mol·L-1 LiTFSI-DME[40] Li‖NMC622(300/88) 98.2
LiFSI-1.1DMC[20] Li‖LNM(100/95) -
1 mol·L-1 LiFSI-DME/TFEO[56] Li‖NMC811(300/80) 99.5
1 mol·L-1 LiFSI-FSA[36] Li‖NMC622(200/89) 99
0.6 mol·L-1 LiBF4-0.6 mol·L-1 LiDFOB-FEC/DEC[19] Cu‖NMC111(90/80) 98.2
LiPF6-PC+LiAsF6+VC[72] Li‖NMC111(250/95) 96.7
0.6 mol·L-1 LiTFSI+0.4 mol·L-1 LiBOB-EC/EMC(mass ratio, 4∶6)+0.05 mol·L-1 LiPF6[17] Li‖NMC442(500/97.1) 90.6
0.6 mol·L-1 LiTFSI-0.4 mol·L-1 LiBOB-EC/EMC(mass ratio, 7∶3)+0.05 mol·L-1 LiPF6+2%(mass fraction, the same below)VC+2%FEC[73] Li‖NMC442(260/92.6) 98.1
1 mol·L-1 LiPF6-FEC/FEMC/HFE(mass ratio, 2∶6∶2)[30] Li‖LCP(1000/93) Li‖NCM811(450/90) 99.2
1.2 mol·L-1 LiFSI/DMC-BTFE[21] Li‖NCM333(700/80) 99.5
7 mol·L-1 LiFSI-FEC[29] Li‖LNM(150/92.78) 99
0.8 mol·L-1 LiTFSI-0.2 mol·L-1 LiDFOB-EMC/FEC(mass ratio, 3∶1)+0.05 mol·L-1 LiPF6[80] Li‖NCM622(500/75) 98.8
Table 1  电解液配方对应的锂金属全电池循环性能以及Li‖Cu电池库仑效率
1 WINTER M , BARNETT B , XU K . Before Li ion batteries[J]. Chemical Reviews, 2018, 118 (23): 11433- 11456.
doi: 10.1021/acs.chemrev.8b00422
2 常增花, 王建涛, 李文进, 等. 锂离子电池硅基负极界面反应的研究进展[J]. 材料工程, 2019, 47 (2): 11- 25.
2 CHANG Z H , WANG J T , LI W J , et al. Research progress on interface reaction of silicon-based anode for lithium-ion battery[J]. Journal of Materials Engineering, 2019, 47 (2): 11- 25.
3 袁颂东, 杨灿星, 江国栋, 等. 锂离子电池高镍三元材料的研究进展[J]. 材料工程, 2019, 47 (10): 1- 9.
doi: 10.11868/j.issn.1001-4381.2018.001301
3 YUAN S D , YANG C X , JIANG G D , et al. Research progress in nickel-rich ternary materials for lithium-ion batteries[J]. Journal of Materials Engineering, 2019, 47 (10): 1- 9.
doi: 10.11868/j.issn.1001-4381.2018.001301
4 CHENG X B , ZHANG R , ZHAO C Z , et al. Toward safe lithium metal anode in rechargeable batteries: a review[J]. Chem Rev, 2017, 117 (15): 10403- 10473.
doi: 10.1021/acs.chemrev.7b00115
5 LIN D , LIU Y , CUI Y . Reviving the lithium metal anode for high-energy batteries[J]. Nat Nanotechnol, 2017, 12 (3): 194- 206.
doi: 10.1038/nnano.2017.16
6 XIAO J . How lithium dendrites form in liquid batteries[J]. Science, 2019, 366 (6464): 426- 427.
doi: 10.1126/science.aay8672
7 CHENG Q , WEI L , LIU Z , et al. Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated Raman scattering microscopy[J]. Nat Commun, 2018, 9 (1): 2942- 2951.
doi: 10.1038/s41467-018-05289-z
8 程新兵, 张强. 金属锂枝晶生长机制及抑制方法[J]. 化学进展, 2018, 30 (1): 51- 72.
8 CHENG X B , ZHANG Q . Growth mechanisms and suppression strategies of lithium metal dendrites[J]. Progress in Chemistry, 2018, 30 (1): 51- 72.
9 COHEN Y S , COHEN Y , AURBACH D . Micromorphological studies of lithium electrodes in alkyl carbonate solutions using in situ atomic force microscopy[J]. The Journal of Physical Chemistry B, 2000, 104 (51): 12282- 12291.
doi: 10.1021/jp002526b
10 STEIGER J , KRAMER D , MÖNIG R . Microscopic observations of the formation, growth and shrinkage of lithium moss during electrodeposition and dissolution[J]. Electrochimica Acta, 2014, 136, 529- 536.
doi: 10.1016/j.electacta.2014.05.120
11 ZHAO J , LIAO L , SHI F , et al. Surface fluorination of reactive battery anode materials for enhanced stability[J]. J Am Chem Soc, 2017, 139 (33): 11550- 11558.
doi: 10.1021/jacs.7b05251
12 LI Y , LI Y , PEI A , et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy[J]. Science, 2017, 358 (6362): 506- 510.
doi: 10.1126/science.aam6014
13 LI Y , HUANG W , LI Y , et al. Correlating structure and function of battery interphases at atomic resolution using cryoelectron microscopy[J]. Joule, 2018, 2 (10): 2167- 2177.
doi: 10.1016/j.joule.2018.08.004
14 ZACHMAN M J , TU Z , CHOUDHURY S , et al. Cryo-STEM mapping of solid-liquid interfaces and dendrites in lithium-metal batteries[J]. Nature, 2018, 560 (7718): 345- 349.
doi: 10.1038/s41586-018-0397-3
15 FANG C , LI J , ZHANG M , et al. Quantifying inactive lithium in lithium metal batteries[J]. Nature, 2019, 572 (7770): 511- 515.
doi: 10.1038/s41586-019-1481-z
16 WANG J , HUANG W , PEI A , et al. Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy[J]. Nature Energy, 2019, 4 (8): 664- 670.
doi: 10.1038/s41560-019-0413-3
17 ZHENG J , ENGELHARD M H , MEI D , et al. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries[J]. Nature Energy, 2017, 2 (3): 17012- 17019.
doi: 10.1038/nenergy.2017.12
18 HAGOS T T , THIRUMALRAJ B , HUANG C J , et al. Locally concentrated LiPF6 in a carbonate-based electrolyte with fluoroethylene carbonate as a diluent for anode-free lithium metal batteries[J]. ACS Appl Mater Interfaces, 2019, 11 (10): 9955- 9963.
doi: 10.1021/acsami.8b21052
19 WEBER R , GENOVESE M , LOULI A J , et al. Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte[J]. Nature Energy, 2019, 4 (8): 683- 689.
doi: 10.1038/s41560-019-0428-9
20 WANG J , YAMADA Y , SODEYAMA K , et al. Superconcentrated electrolytes for a high-voltage lithium-ion battery[J]. Nat Commun, 2016, 7 (1): 12032- 12041.
doi: 10.1038/ncomms12032
21 CHEN S , ZHENG J , MEI D , et al. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes[J]. Adv Mater, 2018, 30 (21): 1706102- 1706108.
doi: 10.1002/adma.201706102
22 REN X , ZOU L , JIAO S , et al. High-concentration ether electrolytes for stable high-voltage lithium metal batteries[J]. ACS Energy Letters, 2019, 4 (4): 896- 902.
doi: 10.1021/acsenergylett.9b00381
23 WANG X , YASUKAWA E , MORI S . Electrochemical behavior of lithium imide/cyclic ether electrolytes for 4 V lithium metal rechargeable batteries[J]. Journal of The Electrochemical Society, 1999, 146 (11): 3992- 3998.
doi: 10.1149/1.1392581
24 PARK M S , MA S B , LEE D J , et al. A highly reversible lithium metal anode[J]. Sci Rep, 2014, 4, 3815- 3822.
25 QIN X , SHAO M , BALBUENA P B . Elucidating mechanisms of Li plating on Li anodes of lithium-based batteries[J]. Electrochimica Acta, 2018, 284, 485- 494.
doi: 10.1016/j.electacta.2018.07.159
26 MIAO R , YANG J , XU Z , et al. A new ether-based electrolyte for dendrite-free lithium-metal based rechargeable batteries[J]. Sci Rep, 2016, 6, 21771- 21779.
doi: 10.1038/srep21771
27 HUANG Z , ZENG H , XIE M , et al. A stable lithium-oxygen battery electrolyte based on fully methylated cyclic ether[J]. Angew Chem Int Ed Engl, 2019, 58 (8): 2345- 2349.
doi: 10.1002/anie.201812983
28 ZHANG Z , HU L , WU H , et al. Fluorinated electrolytes for 5 V lithium-ion battery chemistry[J]. Energy & Environmental Science, 2013, 6, 1806- 1810.
29 SUO L , XUE W , GOBET M , et al. Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries[J]. Proleedings of the National Academy of Sciences, 2018, 115 (6): 1156- 1161.
doi: 10.1073/pnas.1712895115
30 FAN X , CHEN L , BORODIN O , et al. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries[J]. Nat Nanotechnol, 2018, 13 (8): 715- 722.
doi: 10.1038/s41565-018-0183-2
31 CHEN L , FAN X , HU E , et al. Achieving high energy density through increasing the output voltage: a highly reversible 5.3 V battery[J]. Chem, 2019, 5 (4): 896- 912.
doi: 10.1016/j.chempr.2019.02.003
32 FAN X , JI X , CHEN L , et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents[J]. Nature Energy, 2019, 4 (10): 882- 890.
doi: 10.1038/s41560-019-0474-3
33 SUO L , HU Y S , LI H , et al. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries[J]. Nat Commun, 2013, 4, 1481- 1490.
doi: 10.1038/ncomms2513
34 QIAN J , HENDERSON W A , XU W , et al. High rate and stable cycling of lithium metal anode[J]. Nat Commun, 2015, 6 (1): 6362- 6370.
doi: 10.1038/ncomms7362
35 QIAN J , ADAMS B D , ZHENG J , et al. Anode-free rechargeable lithium metal batteries[J]. Advanced Functional Materials, 2016, 26 (39): 7094- 7102.
doi: 10.1002/adfm.201602353
36 XUE W , SHI Z , HUANG M , et al. FSI-inspired solvent and "full fluorosulfonyl" electrolyte for 4 V class lithium-metal batteries[J]. Energy & Environmental Science, 2020, 13, 212- 220.
37 LI X , ZHENG J , ENGELHARD M H , et al. Effects of omide-orthoborate dual-salt mixtures in organic carbonate electrolytes on the stability of lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2018, 10 (3): 2469- 2479.
38 JIAO S , REN X , CAO R , et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes[J]. Nature Energy, 2018, 3 (9): 739- 746.
doi: 10.1038/s41560-018-0199-8
39 MIAO R , YANG J , FENG X , et al. Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility[J]. Journal of Power Sources, 2014, 271, 291- 297.
doi: 10.1016/j.jpowsour.2014.08.011
40 ALVARADO J , SCHROEDER M A , POLLARD T P , et al. Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes[J]. Energy & Environmental Science, 2019, 12 (2): 780- 794.
41 HAN J G , LEE J B , CHA A , et al. Unsymmetrical fluorinated malonatoborate as an amphoteric additive for high-energy-density lithium-ion batteries[J]. Energy & Environmental Science, 2018, 11 (6): 1552- 1562.
42 FANG Z , MA Q , LIU P , et al. Novel concentrated Li[(FSO2)(n-C4F9SO2)N]-based ether electrolyte for Superior stability of metallic lithium anode[J]. ACS Appl Mater Interfaces, 2017, 9 (5): 4282- 4289.
doi: 10.1021/acsami.6b03857
43 YOSHIDA K , NAKAMURA M , KAZUE Y , et al. Oxidative-stability enhancement and charge transport mechanism in glyme-lithium salt equimolar complexes[J]. J Am Chem Soc, 2011, 133 (33): 13121- 13129.
doi: 10.1021/ja203983r
44 CHEN X , LI H R , SHEN X , et al. The origin of the reduced reductive stability of ion-solvent complexes on alkali and alkaline earth metal anodes[J]. Angew Chem Int Ed Engl, 2018, 57 (51): 16643- 16647.
doi: 10.1002/anie.201809203
45 YAMADA Y , FURUKAWA K , SODEYAMA K , et al. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries[J]. J Am Chem Soc, 2014, 136 (13): 5039- 5046.
doi: 10.1021/ja412807w
46 LI F , SHANGGUAN X , JIA G , et al. Dual-salts of LiTFSI and LiODFB for high voltage cathode LiNi0.5Mn1.5O4[J]. Journal of Solid State Electrochemistry, 2016, 20 (12): 3491- 3498.
doi: 10.1007/s10008-016-3313-5
47 KALHOFF J , BRESSER D , BOLLOLI M , et al. Enabling LiTFSI-based electrolytes for safer lithium-ion batteries by using linear fluorinated carbonates as(Co)solvent[J]. Chem Sus Chem, 2014, 7 (10): 2939- 2946.
doi: 10.1002/cssc.201402502
48 PARK K , YU S , LEE C , et al. Comparative study on lithium borates as corrosion inhibitors of aluminum current collector in lithium bis(fluorosulfonyl)imide electrolytes[J]. Journal of Power Sources, 2015, 296, 197- 203.
doi: 10.1016/j.jpowsour.2015.07.052
49 ZHENG J , LOCHALA J A , KWOK A , et al. Research progress towards understanding the unique interfaces between concentrated electrolytes and electrodes for energy storage applications[J]. Advanced Science, 2017, 4 (8): 1700032- 1700050.
doi: 10.1002/advs.201700032
50 ZENG Z , MURUGESAN V , HAN K S , et al. Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries[J]. Nature Energy, 2018, 3 (8): 674- 681.
doi: 10.1038/s41560-018-0196-y
51 NIU C , LEE H , CHEN S , et al. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles[J]. Nature Energy, 2019, 4 (7): 551- 559.
doi: 10.1038/s41560-019-0390-6
52 REN X , CHEN S , LEE H , et al. Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries[J]. Chem, 2018, 4 (8): 1877- 1892.
doi: 10.1016/j.chempr.2018.05.002
53 MA G , WANG L , HE X , et al. Pseudo-concentrated electrolyte with high ionic conductivity and stability enables high-voltage lithium-ion battery chemistry[J]. ACS Applied Energy Materials, 2018, 5446- 5452.
54 YU L , CHEN S , LEE H , et al. A localized high-concentration electrolyte with optimized solvents and lithium difluoro(oxalate)borate additive for stable lithium metal batteries[J]. ACS Energy Letters, 2018, 3 (9): 2059- 2067.
doi: 10.1021/acsenergylett.8b00935
55 AMANCHUKWU C V , KONG X , QIN J , et al. Nonpolar alkanes modify lithium-ion solvation for improved lithium deposition and stripping[J]. Advanced Energy Materials, 2019, 9 (41): 1902116- 1902126.
doi: 10.1002/aenm.201902116
56 CAO X , REN X , ZOU L , et al. Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization[J]. Nature Energy, 2019, 4 (9): 796- 805.
doi: 10.1038/s41560-019-0464-5
57 ZENG G , AN Y , XIONG S , et al. Nonflammable fluorinated carbonate electrolyte with high salt-to-solvent ratios enables stable silicon-based anode for next-generation lithium-ion batteries[J]. ACS Appl Mater Interfaces, 2019, 11 (26): 23229- 23235.
doi: 10.1021/acsami.9b05570
58 MARKEVICH E , SALITRA G , AURBACH D . Fluoroethylene carbonate as an important component for the formation of an effective solid electrolyte interphase on anodes and cathodes for advanced li-ion batteries[J]. ACS Energy Letters, 2017, 2 (6): 1337- 1345.
doi: 10.1021/acsenergylett.7b00163
59 ZHANG X Q , CHEN X , CHENG X B , et al. Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes[J]. Angew Chem Int Ed Engl, 2018, 57 (19): 5301- 5305.
doi: 10.1002/anie.201801513
60 SU C C , HE M , AMINE R , et al. Cyclic carbonate for highly stable cycling of high voltage lithium metal batteries[J]. Energy Storage Materials, 2019, 17, 284- 292.
doi: 10.1016/j.ensm.2018.11.003
61 AURBACH D , GAMOLSKY K , MARKOVSKY B , et al. On the use of vinylene carbonate(VC) as an additive to electrolyte solutions for Li-ion batteries[J]. Electrochimica Acta, 2002, 47 (9): 1423- 1439.
doi: 10.1016/S0013-4686(01)00858-1
62 ZHANG X Q , CHEN X , HOU L P , et al. Regulating anions in the solvation sheath of lithium ions for stable lithium metal batteries[J]. ACS Energy Letters, 2019, 4 (2): 411- 416.
doi: 10.1021/acsenergylett.8b02376
63 QIU F , LI X , DENG H , et al. A concentrated ternary-salts electrolyte for high reversible Li metal battery with slight excess Li[J]. Advanced Energy Materials, 2018, 9 (6): 1803372- 1803380.
64 WANG G , XIONG X , XIE D , et al. Suppressing dendrite growth by a functional electrolyte additive for robust Li metal anodes[J]. Energy Storage Materials, 2019, 23, 701- 706.
doi: 10.1016/j.ensm.2019.02.026
65 FU X , WANG G , DANG D , et al. Sulfuryl chloride as a functional additive towards dendrite-free and long-life Li metal anodes[J]. Journal of Materials Chemistry: A, 2019, 7 (43): 25003- 25009.
doi: 10.1039/C9TA09068A
66 OZHABES Y , GUNCELER D , ARIAS T A . Stability and surface diffusion at lithium-electrolyte interphases with connections to dendrite suppression[J]. Physics, 2015, 1- 7.
67 OUYANG Y , GUO Y , LI D , et al. Single additive with dual functional-ions for stabilizing lithium anodes[J]. ACS Appl Mater Interfaces, 2019, 11 (12): 11360- 11368.
doi: 10.1021/acsami.8b21420
68 PENG Z , CAO X , GAO P , et al. High-power lithium metal batteries enabled by high-concentration acetonitrile-based electrolytes with vinylene carbonate additive[J]. Advanced Functional Materials, 2020, 30 (24): 2001285.
doi: 10.1002/adfm.202001285
69 LIANG X , PANG Q , KOCHETKOV I R , et al. A facile surface chemistry route to a stabilized lithium metal anode[J]. Nature Energy, 2017, 2 (9): 17119- 17125.
doi: 10.1038/nenergy.2017.119
70 BISWAL P , STALIN S , KLUDZE A , et al. Nucleation and early stage growth of Li electrodeposits[J]. Nano Lett, 2019, 19 (11): 8191- 8200.
doi: 10.1021/acs.nanolett.9b03548
71 LU Y , TU Z , ARCHER L A . Stable lithium electrodeposition in liquid and nanoporous solid electrolytes[J]. Nat Mater, 2014, 13 (10): 961- 969.
doi: 10.1038/nmat4041
72 REN X , ZHANG Y , ENGELHARD M H , et al. Guided lithium metal deposition and improved lithium coulombic efficiency through synergistic effects of LiAsF6 and cyclic carbonate additives[J]. ACS Energy Letters, 2017, 3 (1): 14- 19.
73 LI X , ZHENG J , REN X , et al. Dendrite-free and performance-enhanced lithium metal batteries through optimizing solvent compositions and adding combinational additives[J]. Advanced Energy Materials, 2018, 8 (15): 1- 10.
74 DING F , XU W , GRAFF G L , et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism[J]. J Am Chem Soc, 2013, 135 (11): 4450- 4456.
doi: 10.1021/ja312241y
75 WANG Q , YANG C K , YANG J J , et al. Dendrite-free lithium deposition via a superfilling mechanism for high-performance li-metal batteries[J]. Advanced Materials, 2019, 31 (41): 1903248- 1903257.
doi: 10.1002/adma.201903248
76 XU M , HAO L , LIU Y , et al. Experimental and theoretical investigations of dimethylacetamide(DMAc) as electrolyte stabilizing additive for lithium ion batteries[J]. The Journal of Physical Chemistry: C, 2011, 115 (13): 6085- 6094.
doi: 10.1021/jp109562u
77 KIM Y S , KIM T H , LEE H , et al. Electronegativity-induced enhancement of thermal stability by succinonitrile as an additive for Li ion batteries[J]. Energy & Environmental Science, 2011, 4 (10): 4038- 4045.
78 LEE S H , HWANG J Y , PARK S J , et al. Adiponitrile(C6H8 N2): a new bi-functional additive for high-performance Li-metal batteries[J]. Advanced Functional Materials, 2019, 29 (30): 1902496- 1902504.
doi: 10.1002/adfm.201902496
79 REN X , ZOU L , CAO X , et al. Enabling high-voltage lithium-metal batteries under practical conditions[J]. Joule, 2019, 3 (7): 1662- 1676.
doi: 10.1016/j.joule.2019.05.006
80 SUN H H , DOLOCAN A , WEEKS J A , et al. In situ formation of a multicomponent inorganic-rich SEI layer provides a fast charging and high specific energy Li-metal battery[J]. Journal of Materials Chemistry: A, 2019, 7 (30): 17782- 17789.
doi: 10.1039/C9TA05063A
[1] 杨杰, 王凯, 徐亚楠, 王克俭, 马衍伟. 全固态锂电池中金属锂负极及其界面设计的研究进展[J]. 材料工程, 2021, 49(8): 26-42.
[2] 朱晓琪, 葛性波, 张格非, 王凯, 马衍伟. 锂金属电池中复合固态电解质与负极界面的研究进展[J]. 材料工程, 2021, 49(6): 33-43.
[3] 齐新, 王晨, 南文争, 洪起虎, 彭思侃, 燕绍九. 人造固态电解质界面在锂金属负极保护中的应用研究[J]. 材料工程, 2020, 48(6): 50-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn