Lithium metal batteries have been considered as one of the most promising high-energy-density energy storage devices, however, the low Coulombic efficiency and uncontrolled dendrite growth seriously hinder their commercialization. In lithium metal batteries, the electrolytes would directly participate in the formation of solid electrolyte interface (SEI), which play important roles in affecting the lithium metal anode Coulombic efficiency and inhibiting the growth of lithium dendrites.In the traditional LiPF6 based ester electrolyte, lithium metal anode exhibits low Coulomb efficiency and serious lithium dendrites.In recent years, significant improvement has been achieved for the protection of lithium anode through manipulating the electrolyte additive, solvents, lithium salt and lithium salt concentration, etc. For examples, ether solvent presenting better compatibility with lithium metal was selected to reduce the side reactivity of electrolyte with lithium metal; varieties of additives were adopted to suppress the formation of lithium dendrites; high concentration electrolytes were employed to form stable SEI.In this paper, the growth principles of lithium dendrites, the research status of electrolytes chemistries for protection of lithium metal anode by means of solvents, lithium salts, additives and high concentration electrolytes strategies were reviewed and the advantages and limitations of various approaches were summarized.New insights on the development of electrolytes chemistries were also put forward to stimulate new strategies to face the subsequent challenges of lithium-metal batteries.
CHANG Z H , WANG J T , LI W J , et al. Research progress on interface reaction of silicon-based anode for lithium-ion battery[J]. Journal of Materials Engineering, 2019, 47 (2): 11- 25.
YUAN S D , YANG C X , JIANG G D , et al. Research progress in nickel-rich ternary materials for lithium-ion batteries[J]. Journal of Materials Engineering, 2019, 47 (10): 1- 9.
doi: 10.11868/j.issn.1001-4381.2018.001301
4
CHENG X B , ZHANG R , ZHAO C Z , et al. Toward safe lithium metal anode in rechargeable batteries: a review[J]. Chem Rev, 2017, 117 (15): 10403- 10473.
doi: 10.1021/acs.chemrev.7b00115
5
LIN D , LIU Y , CUI Y . Reviving the lithium metal anode for high-energy batteries[J]. Nat Nanotechnol, 2017, 12 (3): 194- 206.
doi: 10.1038/nnano.2017.16
6
XIAO J . How lithium dendrites form in liquid batteries[J]. Science, 2019, 366 (6464): 426- 427.
doi: 10.1126/science.aay8672
7
CHENG Q , WEI L , LIU Z , et al. Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated Raman scattering microscopy[J]. Nat Commun, 2018, 9 (1): 2942- 2951.
doi: 10.1038/s41467-018-05289-z
CHENG X B , ZHANG Q . Growth mechanisms and suppression strategies of lithium metal dendrites[J]. Progress in Chemistry, 2018, 30 (1): 51- 72.
9
COHEN Y S , COHEN Y , AURBACH D . Micromorphological studies of lithium electrodes in alkyl carbonate solutions using in situ atomic force microscopy[J]. The Journal of Physical Chemistry B, 2000, 104 (51): 12282- 12291.
doi: 10.1021/jp002526b
10
STEIGER J , KRAMER D , MÖNIG R . Microscopic observations of the formation, growth and shrinkage of lithium moss during electrodeposition and dissolution[J]. Electrochimica Acta, 2014, 136, 529- 536.
doi: 10.1016/j.electacta.2014.05.120
11
ZHAO J , LIAO L , SHI F , et al. Surface fluorination of reactive battery anode materials for enhanced stability[J]. J Am Chem Soc, 2017, 139 (33): 11550- 11558.
doi: 10.1021/jacs.7b05251
12
LI Y , LI Y , PEI A , et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy[J]. Science, 2017, 358 (6362): 506- 510.
doi: 10.1126/science.aam6014
13
LI Y , HUANG W , LI Y , et al. Correlating structure and function of battery interphases at atomic resolution using cryoelectron microscopy[J]. Joule, 2018, 2 (10): 2167- 2177.
doi: 10.1016/j.joule.2018.08.004
14
ZACHMAN M J , TU Z , CHOUDHURY S , et al. Cryo-STEM mapping of solid-liquid interfaces and dendrites in lithium-metal batteries[J]. Nature, 2018, 560 (7718): 345- 349.
doi: 10.1038/s41586-018-0397-3
15
FANG C , LI J , ZHANG M , et al. Quantifying inactive lithium in lithium metal batteries[J]. Nature, 2019, 572 (7770): 511- 515.
doi: 10.1038/s41586-019-1481-z
16
WANG J , HUANG W , PEI A , et al. Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy[J]. Nature Energy, 2019, 4 (8): 664- 670.
doi: 10.1038/s41560-019-0413-3
17
ZHENG J , ENGELHARD M H , MEI D , et al. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries[J]. Nature Energy, 2017, 2 (3): 17012- 17019.
doi: 10.1038/nenergy.2017.12
18
HAGOS T T , THIRUMALRAJ B , HUANG C J , et al. Locally concentrated LiPF6 in a carbonate-based electrolyte with fluoroethylene carbonate as a diluent for anode-free lithium metal batteries[J]. ACS Appl Mater Interfaces, 2019, 11 (10): 9955- 9963.
doi: 10.1021/acsami.8b21052
19
WEBER R , GENOVESE M , LOULI A J , et al. Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte[J]. Nature Energy, 2019, 4 (8): 683- 689.
doi: 10.1038/s41560-019-0428-9
20
WANG J , YAMADA Y , SODEYAMA K , et al. Superconcentrated electrolytes for a high-voltage lithium-ion battery[J]. Nat Commun, 2016, 7 (1): 12032- 12041.
doi: 10.1038/ncomms12032
21
CHEN S , ZHENG J , MEI D , et al. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes[J]. Adv Mater, 2018, 30 (21): 1706102- 1706108.
doi: 10.1002/adma.201706102
22
REN X , ZOU L , JIAO S , et al. High-concentration ether electrolytes for stable high-voltage lithium metal batteries[J]. ACS Energy Letters, 2019, 4 (4): 896- 902.
doi: 10.1021/acsenergylett.9b00381
23
WANG X , YASUKAWA E , MORI S . Electrochemical behavior of lithium imide/cyclic ether electrolytes for 4 V lithium metal rechargeable batteries[J]. Journal of The Electrochemical Society, 1999, 146 (11): 3992- 3998.
doi: 10.1149/1.1392581
24
PARK M S , MA S B , LEE D J , et al. A highly reversible lithium metal anode[J]. Sci Rep, 2014, 4, 3815- 3822.
25
QIN X , SHAO M , BALBUENA P B . Elucidating mechanisms of Li plating on Li anodes of lithium-based batteries[J]. Electrochimica Acta, 2018, 284, 485- 494.
doi: 10.1016/j.electacta.2018.07.159
26
MIAO R , YANG J , XU Z , et al. A new ether-based electrolyte for dendrite-free lithium-metal based rechargeable batteries[J]. Sci Rep, 2016, 6, 21771- 21779.
doi: 10.1038/srep21771
27
HUANG Z , ZENG H , XIE M , et al. A stable lithium-oxygen battery electrolyte based on fully methylated cyclic ether[J]. Angew Chem Int Ed Engl, 2019, 58 (8): 2345- 2349.
doi: 10.1002/anie.201812983
28
ZHANG Z , HU L , WU H , et al. Fluorinated electrolytes for 5 V lithium-ion battery chemistry[J]. Energy & Environmental Science, 2013, 6, 1806- 1810.
29
SUO L , XUE W , GOBET M , et al. Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries[J]. Proleedings of the National Academy of Sciences, 2018, 115 (6): 1156- 1161.
doi: 10.1073/pnas.1712895115
30
FAN X , CHEN L , BORODIN O , et al. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries[J]. Nat Nanotechnol, 2018, 13 (8): 715- 722.
doi: 10.1038/s41565-018-0183-2
31
CHEN L , FAN X , HU E , et al. Achieving high energy density through increasing the output voltage: a highly reversible 5.3 V battery[J]. Chem, 2019, 5 (4): 896- 912.
doi: 10.1016/j.chempr.2019.02.003
32
FAN X , JI X , CHEN L , et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents[J]. Nature Energy, 2019, 4 (10): 882- 890.
doi: 10.1038/s41560-019-0474-3
33
SUO L , HU Y S , LI H , et al. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries[J]. Nat Commun, 2013, 4, 1481- 1490.
doi: 10.1038/ncomms2513
34
QIAN J , HENDERSON W A , XU W , et al. High rate and stable cycling of lithium metal anode[J]. Nat Commun, 2015, 6 (1): 6362- 6370.
doi: 10.1038/ncomms7362
35
QIAN J , ADAMS B D , ZHENG J , et al. Anode-free rechargeable lithium metal batteries[J]. Advanced Functional Materials, 2016, 26 (39): 7094- 7102.
doi: 10.1002/adfm.201602353
36
XUE W , SHI Z , HUANG M , et al. FSI-inspired solvent and "full fluorosulfonyl" electrolyte for 4 V class lithium-metal batteries[J]. Energy & Environmental Science, 2020, 13, 212- 220.
37
LI X , ZHENG J , ENGELHARD M H , et al. Effects of omide-orthoborate dual-salt mixtures in organic carbonate electrolytes on the stability of lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2018, 10 (3): 2469- 2479.
38
JIAO S , REN X , CAO R , et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes[J]. Nature Energy, 2018, 3 (9): 739- 746.
doi: 10.1038/s41560-018-0199-8
39
MIAO R , YANG J , FENG X , et al. Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility[J]. Journal of Power Sources, 2014, 271, 291- 297.
doi: 10.1016/j.jpowsour.2014.08.011
40
ALVARADO J , SCHROEDER M A , POLLARD T P , et al. Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes[J]. Energy & Environmental Science, 2019, 12 (2): 780- 794.
41
HAN J G , LEE J B , CHA A , et al. Unsymmetrical fluorinated malonatoborate as an amphoteric additive for high-energy-density lithium-ion batteries[J]. Energy & Environmental Science, 2018, 11 (6): 1552- 1562.
42
FANG Z , MA Q , LIU P , et al. Novel concentrated Li[(FSO2)(n-C4F9SO2)N]-based ether electrolyte for Superior stability of metallic lithium anode[J]. ACS Appl Mater Interfaces, 2017, 9 (5): 4282- 4289.
doi: 10.1021/acsami.6b03857
43
YOSHIDA K , NAKAMURA M , KAZUE Y , et al. Oxidative-stability enhancement and charge transport mechanism in glyme-lithium salt equimolar complexes[J]. J Am Chem Soc, 2011, 133 (33): 13121- 13129.
doi: 10.1021/ja203983r
44
CHEN X , LI H R , SHEN X , et al. The origin of the reduced reductive stability of ion-solvent complexes on alkali and alkaline earth metal anodes[J]. Angew Chem Int Ed Engl, 2018, 57 (51): 16643- 16647.
doi: 10.1002/anie.201809203
45
YAMADA Y , FURUKAWA K , SODEYAMA K , et al. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries[J]. J Am Chem Soc, 2014, 136 (13): 5039- 5046.
doi: 10.1021/ja412807w
46
LI F , SHANGGUAN X , JIA G , et al. Dual-salts of LiTFSI and LiODFB for high voltage cathode LiNi0.5Mn1.5O4[J]. Journal of Solid State Electrochemistry, 2016, 20 (12): 3491- 3498.
doi: 10.1007/s10008-016-3313-5
47
KALHOFF J , BRESSER D , BOLLOLI M , et al. Enabling LiTFSI-based electrolytes for safer lithium-ion batteries by using linear fluorinated carbonates as(Co)solvent[J]. Chem Sus Chem, 2014, 7 (10): 2939- 2946.
doi: 10.1002/cssc.201402502
48
PARK K , YU S , LEE C , et al. Comparative study on lithium borates as corrosion inhibitors of aluminum current collector in lithium bis(fluorosulfonyl)imide electrolytes[J]. Journal of Power Sources, 2015, 296, 197- 203.
doi: 10.1016/j.jpowsour.2015.07.052
49
ZHENG J , LOCHALA J A , KWOK A , et al. Research progress towards understanding the unique interfaces between concentrated electrolytes and electrodes for energy storage applications[J]. Advanced Science, 2017, 4 (8): 1700032- 1700050.
doi: 10.1002/advs.201700032
50
ZENG Z , MURUGESAN V , HAN K S , et al. Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries[J]. Nature Energy, 2018, 3 (8): 674- 681.
doi: 10.1038/s41560-018-0196-y
51
NIU C , LEE H , CHEN S , et al. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles[J]. Nature Energy, 2019, 4 (7): 551- 559.
doi: 10.1038/s41560-019-0390-6
52
REN X , CHEN S , LEE H , et al. Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries[J]. Chem, 2018, 4 (8): 1877- 1892.
doi: 10.1016/j.chempr.2018.05.002
53
MA G , WANG L , HE X , et al. Pseudo-concentrated electrolyte with high ionic conductivity and stability enables high-voltage lithium-ion battery chemistry[J]. ACS Applied Energy Materials, 2018, 5446- 5452.
54
YU L , CHEN S , LEE H , et al. A localized high-concentration electrolyte with optimized solvents and lithium difluoro(oxalate)borate additive for stable lithium metal batteries[J]. ACS Energy Letters, 2018, 3 (9): 2059- 2067.
doi: 10.1021/acsenergylett.8b00935
55
AMANCHUKWU C V , KONG X , QIN J , et al. Nonpolar alkanes modify lithium-ion solvation for improved lithium deposition and stripping[J]. Advanced Energy Materials, 2019, 9 (41): 1902116- 1902126.
doi: 10.1002/aenm.201902116
56
CAO X , REN X , ZOU L , et al. Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization[J]. Nature Energy, 2019, 4 (9): 796- 805.
doi: 10.1038/s41560-019-0464-5
57
ZENG G , AN Y , XIONG S , et al. Nonflammable fluorinated carbonate electrolyte with high salt-to-solvent ratios enables stable silicon-based anode for next-generation lithium-ion batteries[J]. ACS Appl Mater Interfaces, 2019, 11 (26): 23229- 23235.
doi: 10.1021/acsami.9b05570
58
MARKEVICH E , SALITRA G , AURBACH D . Fluoroethylene carbonate as an important component for the formation of an effective solid electrolyte interphase on anodes and cathodes for advanced li-ion batteries[J]. ACS Energy Letters, 2017, 2 (6): 1337- 1345.
doi: 10.1021/acsenergylett.7b00163
59
ZHANG X Q , CHEN X , CHENG X B , et al. Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes[J]. Angew Chem Int Ed Engl, 2018, 57 (19): 5301- 5305.
doi: 10.1002/anie.201801513
60
SU C C , HE M , AMINE R , et al. Cyclic carbonate for highly stable cycling of high voltage lithium metal batteries[J]. Energy Storage Materials, 2019, 17, 284- 292.
doi: 10.1016/j.ensm.2018.11.003
61
AURBACH D , GAMOLSKY K , MARKOVSKY B , et al. On the use of vinylene carbonate(VC) as an additive to electrolyte solutions for Li-ion batteries[J]. Electrochimica Acta, 2002, 47 (9): 1423- 1439.
doi: 10.1016/S0013-4686(01)00858-1
62
ZHANG X Q , CHEN X , HOU L P , et al. Regulating anions in the solvation sheath of lithium ions for stable lithium metal batteries[J]. ACS Energy Letters, 2019, 4 (2): 411- 416.
doi: 10.1021/acsenergylett.8b02376
63
QIU F , LI X , DENG H , et al. A concentrated ternary-salts electrolyte for high reversible Li metal battery with slight excess Li[J]. Advanced Energy Materials, 2018, 9 (6): 1803372- 1803380.
64
WANG G , XIONG X , XIE D , et al. Suppressing dendrite growth by a functional electrolyte additive for robust Li metal anodes[J]. Energy Storage Materials, 2019, 23, 701- 706.
doi: 10.1016/j.ensm.2019.02.026
65
FU X , WANG G , DANG D , et al. Sulfuryl chloride as a functional additive towards dendrite-free and long-life Li metal anodes[J]. Journal of Materials Chemistry: A, 2019, 7 (43): 25003- 25009.
doi: 10.1039/C9TA09068A
66
OZHABES Y , GUNCELER D , ARIAS T A . Stability and surface diffusion at lithium-electrolyte interphases with connections to dendrite suppression[J]. Physics, 2015, 1- 7.
67
OUYANG Y , GUO Y , LI D , et al. Single additive with dual functional-ions for stabilizing lithium anodes[J]. ACS Appl Mater Interfaces, 2019, 11 (12): 11360- 11368.
doi: 10.1021/acsami.8b21420
68
PENG Z , CAO X , GAO P , et al. High-power lithium metal batteries enabled by high-concentration acetonitrile-based electrolytes with vinylene carbonate additive[J]. Advanced Functional Materials, 2020, 30 (24): 2001285.
doi: 10.1002/adfm.202001285
69
LIANG X , PANG Q , KOCHETKOV I R , et al. A facile surface chemistry route to a stabilized lithium metal anode[J]. Nature Energy, 2017, 2 (9): 17119- 17125.
doi: 10.1038/nenergy.2017.119
70
BISWAL P , STALIN S , KLUDZE A , et al. Nucleation and early stage growth of Li electrodeposits[J]. Nano Lett, 2019, 19 (11): 8191- 8200.
doi: 10.1021/acs.nanolett.9b03548
71
LU Y , TU Z , ARCHER L A . Stable lithium electrodeposition in liquid and nanoporous solid electrolytes[J]. Nat Mater, 2014, 13 (10): 961- 969.
doi: 10.1038/nmat4041
72
REN X , ZHANG Y , ENGELHARD M H , et al. Guided lithium metal deposition and improved lithium coulombic efficiency through synergistic effects of LiAsF6 and cyclic carbonate additives[J]. ACS Energy Letters, 2017, 3 (1): 14- 19.
73
LI X , ZHENG J , REN X , et al. Dendrite-free and performance-enhanced lithium metal batteries through optimizing solvent compositions and adding combinational additives[J]. Advanced Energy Materials, 2018, 8 (15): 1- 10.
74
DING F , XU W , GRAFF G L , et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism[J]. J Am Chem Soc, 2013, 135 (11): 4450- 4456.
doi: 10.1021/ja312241y
75
WANG Q , YANG C K , YANG J J , et al. Dendrite-free lithium deposition via a superfilling mechanism for high-performance li-metal batteries[J]. Advanced Materials, 2019, 31 (41): 1903248- 1903257.
doi: 10.1002/adma.201903248
76
XU M , HAO L , LIU Y , et al. Experimental and theoretical investigations of dimethylacetamide(DMAc) as electrolyte stabilizing additive for lithium ion batteries[J]. The Journal of Physical Chemistry: C, 2011, 115 (13): 6085- 6094.
doi: 10.1021/jp109562u
77
KIM Y S , KIM T H , LEE H , et al. Electronegativity-induced enhancement of thermal stability by succinonitrile as an additive for Li ion batteries[J]. Energy & Environmental Science, 2011, 4 (10): 4038- 4045.
78
LEE S H , HWANG J Y , PARK S J , et al. Adiponitrile(C6H8 N2): a new bi-functional additive for high-performance Li-metal batteries[J]. Advanced Functional Materials, 2019, 29 (30): 1902496- 1902504.
doi: 10.1002/adfm.201902496
79
REN X , ZOU L , CAO X , et al. Enabling high-voltage lithium-metal batteries under practical conditions[J]. Joule, 2019, 3 (7): 1662- 1676.
doi: 10.1016/j.joule.2019.05.006
80
SUN H H , DOLOCAN A , WEEKS J A , et al. In situ formation of a multicomponent inorganic-rich SEI layer provides a fast charging and high specific energy Li-metal battery[J]. Journal of Materials Chemistry: A, 2019, 7 (30): 17782- 17789.
doi: 10.1039/C9TA05063A