Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (4): 128-134    DOI: 10.11868/j.issn.1001-4381.2020.000274
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
改性碳纤维增强尼龙6复合材料的制备及性能
刘旭1, 徐海2, 徐立新3, 张宏1, 周琼2,*()
1 中国石油大学(北京) 机械与储运工程学院, 北京 102249
2 中国石油大学(北京) 新能源与材料学院, 北京 102249
3 招商局海洋装备研究院有限公司, 广东 深圳 518067
Preparation and properties of modified carbon fiber reinforced polyamide 6 composites
Xu LIU1, Hai XU2, Li-xin XU3, Hong ZHANG1, Qiong ZHOU2,*()
1 College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing 102249, China
2 College of New Energy and Materials, China University of Petroleum-Beijing, Beijing 102249, China
3 China Merchants Marine and Offshore Research Institute Co., Ltd., Shenzhen 518067, Guangdong, China
全文: PDF(7631 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

通过硝酸酸化处理及尼龙溶液浸渍上浆处理对碳纤维(CF)进行表面改性,制备高强度、高模量,同时具有低熔指和优异加工性能的CF增强尼龙6(PA6)复合材料。采用扫描电镜(SEM)、差示扫描量热仪(DSC)和熔融指数仪等方法,对复合材料的微观结构、力学性能和结晶行为进行测试和表征。结果表明,经过PA6溶液浸渍上浆处理后的CF表面形成了一层PA6薄膜覆盖层,大大增强了CF与PA6基体的结合力,改善了CF的分散性,提升了复合材料整体的强度与模量,改性CF加入量为8%(质量分数)时复合材料拉伸强度提升80.8%,弹性模量提升513.9%。进一步对复合材料结晶行为的分析表明,改性CF的加入能够促进PA6由γ晶型向更稳定的α晶型转变,提高其结晶温度及结晶速率,使复合材料的结晶更加均匀、完善,从而提高体系黏度,降低复合材料熔融指数,显著提升了复合材料的加工性能。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘旭
徐海
徐立新
张宏
周琼
关键词 尼龙6碳纤维挤出加工结晶行为    
Abstract

The carbon fibers (CF) were surface modified by nitric acid treatment and polyamide 6 (PA6) solution sizing treatment, and a series of CF/PA6 composites with high strength and high modulus, low melting index, and excellent processability were prepared. Scanning electron microscope (SEM), differential scanning calorimeter (DSC) and melt index meter were used to test and characterize the microstructure, mechanical properties and crystallization behavior of the composite materials. The results show that a layer of PA6 film is formed on the surface CF after immersion and sizing treatment with PA6 solution, which greatly enhances the binding force between the fiber and PA6 matrix, and improves the dispersibility of CF. The overall strength and modulus of the composites are improved. The tensile strength of the CF/PA6 is increased by 80.8% and the elastic modulus is increased by 513.9% when the modified CF amount is 8% (mass fraction). The addition of modified CF can promote the transition of PA6 from the γ crystal form to a more stable α crystal form. At the same time, the crystallization temperature and crystallization rate of the composites are increased, so that the crystallization of the composites are more uniform, thereby reducing the melting index of the composite and improving its processing performance.

Key wordspolyamide 6    carbon fiber    extrusion processing    crystallization behavior
收稿日期: 2020-03-28      出版日期: 2021-04-21
中图分类号:  TB332  
通讯作者: 周琼     E-mail: zhouqiong_cn@163.com
作者简介: 周琼(1966-), 女, 教授, 博士生导师, 研究方向为高性能高分子材料, 联系地址: 北京市昌平区府学路18号中国石油大学(北京)(102249), E-mail: zhouqiong_cn@163.com
引用本文:   
刘旭, 徐海, 徐立新, 张宏, 周琼. 改性碳纤维增强尼龙6复合材料的制备及性能[J]. 材料工程, 2021, 49(4): 128-134.
Xu LIU, Hai XU, Li-xin XU, Hong ZHANG, Qiong ZHOU. Preparation and properties of modified carbon fiber reinforced polyamide 6 composites. Journal of Materials Engineering, 2021, 49(4): 128-134.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000274      或      http://jme.biam.ac.cn/CN/Y2021/V49/I4/128
Fig.1  原始未处理CF (a),aCF (b)与sCF (c)的SEM照片
Fig.2  不同纤维含量的CF/PA6复合材料的弹性模量
Fig.3  不同纤维含量的CF/PA6复合材料的拉伸强度
Fig.4  不同处理方法CF增强的复合材料断口SEM照片
(a)未处理CF/PA6;(b)aCF/PA6;(c)sCF/PA6;(d)sCF/PA6局部放大图
Fig.5  不同处理方法CF增强的复合材料的熔融指数对比
Fig.6  不同处理方法CF增强的复合材料的熔融曲线
(a)CF/PA6;(b)aCF/PA6;(c)sCF/PA6
Fig.7  不同处理方法CF增强的复合材料的结晶曲线
(a)CF/PA6;(b)aCF/PA6;(c)sCF/PA6
Fig.8  不同处理方法CF增强的复合材料的结晶度对比
1 阎军, 英玺蓬, 步宇峰, 等. 深水柔性立管结构技术进展综述[J]. 海洋工程装备与技术, 2019, (6): 745- 749.
1 YAN J , YING X P , BU Y F , et al. Summary of development of flexible riser structural technology in deep water[J]. Ocean Engineering Equipment and Technology, 2019, (6): 745- 749.
2 余荣华, 袁鹏斌. 海洋非粘结型柔性软管的性能结构及其研究热点[J]. 油气储运, 2016, 35 (12): 1255- 1260.
2 YU R H , YUAN P B . Structure and research focus of marine unbonded flexible pipes[J]. Oil & Gas Storage and Transportation, 2016, 35 (12): 1255- 1260.
3 王玮, 孙丽萍, 白勇. 水下油气生产系统[J]. 中国海洋平台, 2009, 24 (6): 41- 45.
3 WANG W , SUN L P , BAI Y . Investigation on subsea production systems[J]. China Offshore Platform, 2009, 24 (6): 41- 45.
4 潜凌, 李培江, 张文燕. 海洋复合柔性管发展及应用现状[J]. 石油矿场机械, 2012, 41 (2): 90- 92.
4 QIAN L , LI P J , ZHANG W Y . Development and applications of marine composite flexible pipe[J]. Oil Field Equipment, 2012, 41 (2): 90- 92.
5 LAMBERT A, DO A T, FELIX H A, et al. Qualification of unbonded dynamic riser with carbon fiber composite armours[C]//ASME 201231st International Conference on Ocean, Offshore and Arctic Engineering, 2012: 117-125.
6 HUANG H , YAN L , GUO Y , et al. Morphological, mechanical and thermal properties of PA6 nanocomposites co-incorporated with nano-Al2O3 and graphene oxide fillers[J]. Polymer, 2020, (188): 122119.
7 NGUYENTRAN H D , HOANG V T , DO V T , et al. Effect of multiwalled carbon nanotubes on the mechanical properties of carbon fiber-reinforced polyamide-6/polypropylene composites for lightweight automotive parts[J]. Materials, 2018, 11 (3): 429- 441.
doi: 10.3390/ma11030429
8 殷小春, 尹有华, 成迪, 等. 正应力支配下混合顺序对PA6/HDPE/CNTs体系结构及性能的影响[J]. 材料工程, 2020, 48 (2): 87- 93.
8 YIN X C , YIN Y H , CHENG D , et al. Microstructure and properties of PA6/HDPE/CNTs blends of different mixing sequences under normal stress dominated flow field[J]. Journal of Materials Engineering, 2020, 48 (2): 87- 93.
9 李培耀, 王俊荣, 于曙光, 等. 耐高温输油管道内衬材料的改性研究[J]. 塑料工业, 2004, 32 (12): 22- 24.
9 LI P Y , WANG J R , YU S G , et al. Investigation of modification of inner-liner for heat resistant oil pipe[J]. China Plastics Industry, 2004, 32 (12): 22- 24.
10 TIBBETTS G G , LAKE M L , STRONG K L , et al. A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites[J]. Compos Sci Technol, 2007, 67 (7): 1709- 1718.
11 COLEMAN J N , KHAN U , GUN' KO Y K . Mechanical reinforcement of polymers using carbon nanotubes[J]. Adv Mater, 2006, 18 (6): 689- 706.
12 ESAWI A M K , FARAG M M . Carbon nanotube reinforced composites: potential and current challenges[J]. Mater Design, 2007, 28 (9): 2394- 2401.
13 MAZUR K , KUCIEL S , SALASINSKA K . Mechanical, fire, and smoke behaviour of hybrid composites based on polyamide 6 with basalt/carbon fibres[J]. Journal of Composite Materials, 2019, 53 (28/30): 3979- 3991.
14 KIM B J , CHA S H , KANG G H , et al. Interfacial control through ZnO nanorod growth on plasma-treated carbon fiber for multiscale reinforcement of carbon fiber/polyamide 6 composites[J]. Materials Today Communications, 2018, 17 (12): 438- 449.
15 PENG Q , LI Y , HE X , et al. Interfacial enhancement of carbon fiber composites by poly(amido amine) functionalization[J]. Composites Science and Technology, 2013, 74 (1): 37- 42.
16 VARELIDIS P C , MCCULLOUGH R L , PAPASPYRIDES C D . The effect on the mechanical properties of carbon/epoxy composites of polyamide coatings on the fibers[J]. Composites Science and Technology, 1999, 59 (12): 1813- 1823.
[1] 孔国强, 安振河, 魏化震, 李莹, 邵蒙, 于秋兵, 纪校君, 李居影, 王康. 碳纤维丝束结构对碳纤维/酚醛复合材料烧蚀性能的影响[J]. 材料工程, 2022, 50(9): 113-119.
[2] 邢宇, 张代军, 王成博, 倪洪江, 李军, 陈祥宝. PEEK复合材料用碳纤维上浆剂研究进展[J]. 材料工程, 2022, 50(8): 70-81.
[3] 李守佳, 罗春燕, 陈卫星, 方铭港, 孙健鑫. 氧化石墨烯接枝聚乙二醇对左旋聚乳酸结晶行为和热稳定性的影响[J]. 材料工程, 2022, 50(8): 99-106.
[4] 程子敬, 王凯峰, 张连洪. 基于微观尺度X射线断层扫描技术的短切碳纤维SMC复合材料失效分析[J]. 材料工程, 2022, 50(5): 130-138.
[5] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[6] 阚侃, 王珏, 付东, 郑明明, 张晓臣. 氮掺杂碳纤维包覆石墨烯纳米片的构建及电容特性[J]. 材料工程, 2022, 50(2): 94-102.
[7] 金启豪, 陈娟, 彭立明, 李子言, 阎熙, 李春曦, 侯城成, 袁铭扬. 碳纤维增强树脂基复合材料与铝/镁合金连接研究进展[J]. 材料工程, 2022, 50(1): 15-24.
[8] 易著武, 刘跃军, 刘小超, 杨坚, 李祥刚, 范淑红. 乙烯-乙烯醇共聚物/尼龙6复合材料的加工流变性能[J]. 材料工程, 2021, 49(8): 145-152.
[9] 焦春荣, 焦健. 料浆对熔渗工艺制备碳纤维织物增强碳化硅复合材料的影响[J]. 材料工程, 2021, 49(7): 78-84.
[10] 张代军, 陈俊, 包建文, 钟翔屿, 陈祥宝. 树脂基体中热塑性树脂含量对碳纤维环氧复合材料Ⅱ型层间断裂韧性的影响[J]. 材料工程, 2021, 49(6): 178-184.
[11] 顾善群, 张代军, 付善龙, 刘燕峰, 李军, 邹齐, 陈祥宝. 碳纤维/双马树脂复合材料抗高速冲击性能[J]. 材料工程, 2021, 49(11): 73-82.
[12] 周松, 贾耀雄, 许良, 边钰博, 涂宜鸣. 湿热环境对T800碳纤维/环氧树脂基复合材料力学性能的影响[J]. 材料工程, 2021, 49(10): 138-143.
[13] 黄成杰, 杨敏, 李红, 任慕苏, 孙晋良. 三维织造预制体微观结构及致密化[J]. 材料工程, 2021, 49(1): 104-111.
[14] 包建文, 钟翔屿, 张代军, 彭公秋, 李伟东, 石峰晖, 李晔, 姚锋, 常海峰. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8): 33-48.
[15] 孙莉莉, 吴南, 彭睿. 拉伸处理对碳纳米纤维/聚偏氟乙烯复合材料结晶行为和AC导电性能的影响[J]. 材料工程, 2020, 48(6): 106-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn