Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (10): 1-16    DOI: 10.11868/j.issn.1001-4381.2020.000281
  综述 本期目录 | 过刊浏览 | 高级检索 |
难熔高熵合金性能调控与增材制造
孙博1,2, 夏铭2,3, 张志彬2, 梁秀兵2, 沈宝龙1
1. 东南大学 材料科学与工程学院, 南京 211189;
2. 军事科学院 国防科技创新研究院, 北京 100071;
3. 中国矿业大学 化工学院, 江苏 徐州 221116
Property tuning and additive manufacturing of refractory high-entropy alloys
SUN Bo1,2, XIA Ming2,3, ZHANG Zhi-bin2, LIANG Xiu-bing2, SHEN Bao-long1
1. School of Materials Science and Engineering, Southeast University, Nanjing 211189, China;
2. National Innovation Institute of Defense Technology, Academy of Military Science PLA China, Beijing 100071, China;
3. School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
全文: PDF(3323 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 难熔高熵合金(refractory high-entropy alloys,RHEAs)通过添加多种难熔元素形成等原子比或近等原子比的多主元合金,具有简单的相结构和优异的高温性能,在高温合金领域具有极为广阔的应用前景。本文以难熔高熵合金的性能特点与制备工艺为基础,从合金制备与成形面临的挑战出发,综述了难熔高熵合金的性能调控方法与研究进展,介绍了增材制造难熔高熵合金实现的突破与面临的困境,对难熔高熵合金的成分设计及优化、材料制备与加工、增材制造成形进行了展望,并对其未来重点研究方向提出了如下建议:通过调控相结构和相界面克服难熔高熵合金的强韧制约;结合传统强韧化理论与难熔高熵合金自身性能特点进行材料设计;借助增材制造技术的工艺特征促进难熔高熵合金的形性调控;探究难熔高熵合金在高温及多场耦合环境下的使役性能与失效机制。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙博
夏铭
张志彬
梁秀兵
沈宝龙
关键词 难熔高熵合金性能调控增材制造    
Abstract:The refractory high-entropy alloys (RHEAs) usually form a multi-principal elements alloy with equal atomic ratio or near equal atomic ratio via adding a variety of high melting point elements, showing simple phase composition and excellent high temperature properties, and processing a broad application prospect in the field of superalloy. Based on the performance characteristics and preparation process of RHEAs, and from the perspective of the current situation and challenges in fabrication and forming, the property tuning methods and its research progress of RHEAs were summarized, as well as the achieved breakthrough and the facing dilemma of the additive manufactured RHEAs. A prospection on the composition design and optimization, material preparation and processing, and additive manufactured forming of RHEAs was also proposed.The following suggestions are put forward for the key research trend of RHEAs in the future: tuning phase composition and phases interface to overcome the strength-ductility trade-off of RHEAs, designing alloys by combining the mature traditional strengthening and toughening theory with the properties of RHEAs, modifying the formability and properties of RHEAs by drawing support from the processing characteristics of additive manufacturing technology, and investigating the servicing performance and failure mechanism in high temperature or multi-field coupling condition of RHEAs.
Key wordsrefractory high-entropy alloy    property tuning    additive manufacturing
收稿日期: 2020-03-20      出版日期: 2020-10-17
中图分类号:  TG132.3+2  
基金资助: 
通讯作者: 梁秀兵(1974-),男,研究员,博士,主要从事装备亚稳态材料研究,联系地址:北京市丰台区东大街53号院(100071),E-mail:liangxb_d@163.com;沈宝龙(1964-),男,教授,博士,主要从事亚稳态非晶材料设计与微观机理研究,联系地址:江苏省南京市江宁区东南大学路2号东南大学材料科学与工程学院(211189),E-mail:blshen@seu.edu.cn     E-mail: liangxb_d@163.com;blshen@seu.edu.cn
引用本文:   
孙博, 夏铭, 张志彬, 梁秀兵, 沈宝龙. 难熔高熵合金性能调控与增材制造[J]. 材料工程, 2020, 48(10): 1-16.
SUN Bo, XIA Ming, ZHANG Zhi-bin, LIANG Xiu-bing, SHEN Bao-long. Property tuning and additive manufacturing of refractory high-entropy alloys. Journal of Materials Engineering, 2020, 48(10): 1-16.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000281      或      http://jme.biam.ac.cn/CN/Y2020/V48/I10/1
[1] YEH J W,CHEN S K,LIN S J,et al.Nanostructured high-entropy alloys with multiple principal elements:novel alloy design concepts and outcomes[J].Advanced Engineering Materials,2004,6(5):299-303.
[2] 吕昭平,雷智锋,黄海龙,等.高熵合金的变形行为及强韧化[J].金属学报,2018,54(11):1553-1566. LV Z P,LEI Z F,HUANG H L,et al.Deformation behavior and toughening of high-entropy alloys[J]. Acta Metallurgica Sinica,2018, 54(11):1553-1566.
[3] 赵海朝,梁秀兵,乔玉林,等.低密度高熵合金的研究进展[J].航空材料学报,2019,39(5):61-81. ZHAO H C,LIANG X B,QIAO Y L,et al.Research progress of low-density and high-entropy alloys[J].Journal of Aeronautical Materials,2019,39(5):61-81.
[4] DIAO H Y,FENG R,DAHMEN K A,et al.Fundamental deformation behavior in high-entropy alloys:an overview[J].Current Opinion in Solid State and Materials Science,2017,21(5):252-266.
[5] QI T,LI Y,TAKEUCHI A,et al.Soft magnetic Fe25Co25Ni25(B, Si)25 high entropy bulk metallic glasses[J].Intermetallics,2015,66:8-12.
[6] LI J,XUE L,YANG W M,et al.Distinct spin glass behavior and excellent magnetocaloric effect in Er20Dy20Co20Al20RE20(RE=Gd, Tb and Tm) high-entropy bulk metallic glasses[J].Intermetallics,2018,96:90-93.
[7] SENKOV O N,MIRACLE D B,CHAPUT K J,et al.Development and exploration of refractory high entropy alloys-a review[J].Journal of Materials Research,2018,33(19):3092-3128.
[8] XIA W,ZHAO X,YUE L,et al.Microstructural evolution and creep mechanisms in Ni-based single crystal superalloys:a review[J].Journal of Alloys and Compounds,2020,819:152954.
[9] PINEAU A,ANTOLOVICH S D.High temperature fatigue of nickel-base superalloys-a review with special emphasis on deformation modes and oxidation[J].Engineering Failure Analysis,2009,16(8):2668-2697.
[10] TSAI M H,YUAN H,CHENG G M,et al.Morphology, structure and composition of precipitates in Al0.3CoCrCu0.5FeNi high-entropy alloy[J].Materials Science and Engineering:A,2013,32:329-336.
[11] GWALANI B,SONI V,CHOUDHURI D,et al.Stability of ordered L12 and B2 precipitates in face centered cubic based high entropy alloys-Al0.3CoFeCrNi and Al0.3CuFeCrNi2[J].Scripta Materialia,2016,123:130-134.
[12] HE J Y,WANG H,HUANG H L,et al.A precipitation-hardened high-entropy alloy with outstanding tensile properties[J].Acta Materialia,2016,102:187-196.
[13] ZHAO Y L,YANG T,ZHU J H,et al.Development of high-strength Co-free high-entropy alloys hardened by nanosized precipitates[J].Scripta Materialia,2018,148:51-55.
[14] SENKOV O N,WILKS G B,MIRACLE D B,et al.Refractory high-entropy alloys[J].Intermetallics,2010,18:1758-1765.
[15] SENKOV O N,WILKS G B,SCOTT J M,et al.Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J].Intermetallics,2011,19:698-706.
[16] YANG C,AOYAGI K,BIAN H,et al.Microstructure evolution and mechanical property of a precipitation-strengthened refractory high-entropy alloy HfNbTaTiZr[J].Materials Letters,2019,254:46-49.
[17] XU Z Q,MA Z L,WANG M,et al.Design of novel low-density refractory high entropy alloys for high-temperature applications[J].Materials Science and Engineering:A,2019,755:318-322.
[18] 王慧琳,郭亚雄,蓝宏伟,等.光斑类型对激光熔覆MoFeCrTiWAlNb高熔点高熵合金涂层组织和性能的影响[J].表面技术,2019,48(6):130-137. WANG H L,GUO Y X,LAN H W,et al.Effect of spot type on microstructure and properties of MoFeCrTiWAlNb refractory high-entropy alloy coating fabricated by laser cladding[J].Surface Technology,2019,48(6):130-137.
[19] ZHOU Q,SHEIKH S,OU P,et al.Corrosion behavior of Hf0.5Nb0.5Ta0.5Ti1.5Zr refractory high-entropy in aqueous chloride solutions[J].Electrochemistry Communications,2019,98:63-68.
[20] TONG Y G,QI P B,LIANG X B,et al.Different-shaped ultrafine MoNbTaW HEA powders prepared via mechanical alloying[J].Materials,2018,11(7):1250.
[21] YURCHENKO N,PANINA E,TIKHONOVSKY M,et al.Structure and mechanical properties of an in situ refractory Al20Cr10Nb15Ti20V25Zr10 high entropy alloy composite[J].Materials Letters,2020,264:127372.
[22] KANG B,KONG T,RAZA A,et al.Fabrication, microstructure and mechanical property of a novel Nb-rich refractory high-entropy alloy strengthened by in-situ formation of dispersoids[J].International Journal of Refractory Metals and Hard Materials,2019,81:15-20.
[23] KIM H,NAM S,ROH A,et al.Mechanical and electrical properties of NbMoTaW refractory high-entropy alloy thin films[J].International Journal of Refractory Metals and Hard Materials,2019,80:286-291.
[24] TUNES M A,VISHNYAKOV V M.Microstructural origins of the high mechanical damage tolerance of NbTaMoW refractory high-entropy alloy thin films[J].Materials & Design,2019,170:107692.
[25] 卢秉恒.增材制造技术现状与未来[J].中国机械工程,2020,31(1):19-23. LU B H. Additive manufacturing-current situation and future[J].China Mechanical Engineering,2020,31(1):19-23.
[26] KOK Y,TAN X P,WANG P,et al.Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing:a critical review[J].Materials & Design,2018,139:565-586.
[27] KIM S,KIM H,KIM N J.Brittle intermetallic compound makes ultrastrong low-density steel with large ductility[J].Nature,2015,518(7537):77-79.
[28] RITCHIE R O.The conflicts between strength and toughness[J].Nature Materials,2011,10(11):817-822.
[29] WU X,YANG M,YUAN F,et al.Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility[J].Proceedings of the National Academy of Sciences,2015,112(47):14501-14505.
[30] WEI Y, LI Y, ZHU L, et al.Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins[J].Nature Communications,2014,5(1):3580.
[31] WANG Z,BAKER I,CAI Z,et al.The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys[J].Acta Materialia,2016,120:228-239.
[32] SEOL J B,BAE J W,LI Z,et al.Boron doped ultrastrong and ductile high-entropy alloys[J].Acta Materialia,2018,151:366-376.
[33] BHATTACHARJEE T,WANI I S,SHEIKH S,et al.Simultaneous strength-ductility enhancement of a nano-lamellar AlCoCrFeNi2.1 eutectic high entropy alloy by cryo-rolling and annealing[J].Scientific Reports,2018,8(1):3276.
[34] GLUDOVATZ B,HOHENWARTER A,CATOOR D,et al.A fracture-resistant high-entropy alloy for cryogenic applications[J].Science,2014,345(6201):1153-1158.
[35] LI Z,PRADEEP K G,DENG Y,et al.Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off[J].Nature,2016,534(7606):227-230.
[36] LI Z,KÖRMANN F,GRABOWSKI B,et al.Ab initio assisted design of quinary dual-phase high-entropy alloys with transformation-induced plasticity[J].Acta Materialia,2017,136:262-270.
[37] 刘张全,乔珺威.难熔高熵合金的研究进展[J].中国材料进展,2019,38(8):768-774. LIU Z Q,QIAO J W.Research progress of refractory high-entropy alloys[J].Materials China,2019,38(8):768-774.
[38] HAN Z D,CHEN N,ZHAO S F,et al.Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys[J].Intermetallics,2017,84:153-157.
[39] WEI Q,SHEN Q,ZHANG J,et al.Microstructure and mechanical property of a novel ReMoTaW high-entropy alloy with high density[J].International Journal of Refractory Metals and Hard Materials,2018,77:8-11.
[40] SENKOV O N,SCOTT J M,SENKOVA S V,et al.Microstructure and elevated temperature properties of a refractory TaNbHf ZrTi alloy[J].Journal of Materials Science,2012,47(9):4062-4074.
[41] TSENG K,JUAN C,TSO S,et al.Effects of Mo, Nb, Ta, Ti, and Zr on mechanical properties of equiatomic Hf-Mo-Nb-Ta-Ti-Zr alloys[J].Entropy,2018,21(1):15.
[42] WANG W,ZHANG Z,NIU J,et al.Effect of Al addition on structural evolution and mechanical properties of the AlxHfNb TiZr high-entropy alloys[J].Materials Today Communications,2018,16:242-249.
[43] SENKOV O N,SENKOVA S V,MIRACLE D B,et al.Mechanical properties of low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system[J].Materials Science and Engineering:A,2013,565:51-62.
[44] STEPANOV N D,SHAYSULTANOV D G,SALISHCHEV G A,et al.Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy[J].Materials Letters,2015,142:153-155.
[45] SENKOV O N,WOODWARD C F.Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy[J].Materials Science and Engineering:A,2011,529:311-320.
[46] ZHANG M,ZHOU X,LI J.Microstructure and mechanical properties of a refractory CoCrMoNbTi high-entropy alloy[J].Journal of Materials Engineering and Performance,2017,26(8):3657-3665.
[47] XIANG C,FU H M,ZHANG Z M,et al.Effect of Cr content on microstructure and properties of Mo0.5VNbTiCrx high-entropy alloys[J].Journal of Alloys and Compounds,2020,818:153352.
[48] SENKOV O N,JENSEN J K,PILCHAK A L,et al.Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr[J].Materials & Design,2018,139:498-511.
[49] LIU Y,ZHANG Y,ZHANG H,et al.Microstructure and mechanical properties of refractory HfMo0.5NbTiV0.5Six high-entropy composites[J].Journal of Alloys and Compounds,2017,694:869-876.
[50] CHEN Y,LI Y,CHENG X,et al.Interstitial strengthening of refractory ZrTiHfNb0.5Ta0.5Ox(x=0.05, 0.1, 0.2) high-entropy alloys[J].Materials Letters,2018,228:145-147.
[51] LEI Z,LIU X,WU Y,et al.Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes[J].Nature,2018,563(7732):546-550.
[52] HUANG H,WU Y,HE J,et al.Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering[J].Advanced Materials,2017,29(30):1701678.
[53] ZHANG J,HU Y,WEI Q,et al.Microstructure and mechanical properties of RexNbMoTaW high-entropy alloys prepared by arc melting using metal powders[J].Journal of Alloys and Compounds,2020,827:154301.
[54] ZOU Y,MA H,SPOLENAK R.Ultrastrong ductile and stable high-entropy alloys at small scales[J].Nature Communications,2015,6(1):7748.
[55] TAKEUCHI A,INOUE A.Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J].Materials Transactions,2005,46(12):2817-2829.
[56] SENKOV O N,SENKOVA S V,WOODWARD C,et al.Low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system:microstructure and phase analysis[J].Acta Materialia,2013,61(5):1545-1557.
[57] ZHANG M,ZHOU X,ZHU W,et al.Influence of annealing on microstructure and mechanical properties of refractory CoCrMoNbTi0.4 high-entropy alloy[J].Metallurgical and Materials Transaction A,2018,49(4):1313-1327.
[58] 周伟敏,江伯鸿,刘岩,等.Co-x%Mn合金中的fcc→hcp相变和相关的形状记忆效应[J].功能材料,2003,34(4):407-408. ZHOU W M,JIANG B H,LIU Y,et al.Shape memory effect associated with fcc→hcp transformation in Co-x%Mn alloys[J]. Journal of Functional Materials,2003,34(4):407-408.
[59] WANG W R,WANG W L,WANG S C,et al.Effects of Al addition on the microstructure and mechanical property of AlxCoCrFe Ni high-entropy alloys[J].Intermetallics,2012,26:44-51.
[60] YANG T,XIA S,LIU S,et al.Effects of Al addition on microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloy[J].Materials Science and Engineering:A,2015,648:15-22.
[61] CHANG X,ZENG M,LIU K,et al.Phase engineering of high-entropy alloys[J].Advanced Materials,2020,32(14):1907226.
[62] CAO Y,LIU Y,LI Y,et al.Precipitation behavior and mechanical properties of a hot-worked TiNbTa0.5ZrAl0.5 refractory high entropy alloy[J].International Journal of Refractory Metals and Hard Materials,2020,86:105132.
[63] GUO S,NG C,LU J,et al.Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys[J].Journal of Applied Physics,2011,109(10):103505.
[64] CHEN R,QIN G,ZHENG H,et al.Composition design of high entropy alloys using the valence electron concentration to balance strength and ductility[J].Acta Materialia,2018,144:129-137.
[65] MA H,SHEK C H.Effects of Hf on the microstructure and mechanical properties of CoCrFeNi high entropy alloy[J].Journal of Alloys and Compounds,2020,827:154159.
[66] XIANG C,FU H M,ZHANG Z M,et al.First principle calculation of the effect of Cr, Ti content on the properties of VMoNb TaWMx (M=Cr, Ti) refractory high entropy alloy[J]. Vacuum,2020,179:109459.
[67] PAN J,DAI T,LU T,et al.Microstructure and mechanical properties of Nb25Mo25Ta25W25 and Ti8 Nb23Mo23Ta23W23 high entropy alloys prepared by mechanical alloying and spark plasma sintering[J].Materials Science and Engineering:A,2018,738:362-366.
[68] GUO Z,ZHANG A,HAN J,et al.Effect of Si additions on microstructure and mechanical properties of refractory NbTaWMo high-entropy alloys[J].Journal of Materials Science,2019,54(7):5844-5851.
[69] KANG B,LEE J,RYU H J,et al.Ultra-high strength WNbMoTaV high-entropy alloys with fine grain structure fabricated by powder metallurgical process[J].Materials Science and Engineering:A,2018,712:616-624.
[70] ZHANG B,GAO M C,ZHANG Y,et al.Senary refractory high-entropy alloy CrxMoNbTaVW[J].Calphad:Computer Coupling of Phase Diagrams and Thermochemistry,2015,51:193-201.
[71] LONG Y,LIANG X,SU K,et al.A fine-grained NbMoTaWVCr refractory high-entropy alloy with ultra-high strength:microstructural evolution and mechanical properties[J].Journal of Alloys and Compounds,2019,780:607-617.
[72] JUAN C,TSAI M,TSAI C,et al.Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining[J].Materials Letters,2016,184:200-203.
[73] Í?EK J,HAUŠILD P,CIESLAR M,et al.Strength enhancement of high entropy alloy HfNbTaTiZr by severe plastic deformation[J].Journal of Alloys and Compounds,2018,768:924-937.
[74] SOUMYADIPTA M,STEURER W.Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy[J].Acta Materialia,2016,106:87-97.
[75] FAZAKAS É,ZADOROZHNYY V,VARGA L K,et al.Experimental and theoretical study of Ti20Zr20Hf20Nb20X20(X=V or Cr) refractory high-entropy alloys[J].International Journal of Refractory Metals and Hard Materials,2014,47:131-138.
[76] LI J,ZHOU X,BROCHU M,et al.Solidification microstructure simulation of Ti-6Al-4V in metal additive manufacturing:a review[J].Additive Manufacturing,2020,31:100989.
[77] ABOULKHAIR N T,SIMONELLI M,PARRY L,et al.3D printing of aluminium alloys:additive manufacturing of aluminium alloys using selective laser melting[J].Progress in Materials Science,2019,106:100578.
[78] KARUNAKARAN R,ORTGIES S,TAMAYOL A,et al.Additive manufacturing of magnesium alloys[J].Bioactive Materials,2020,5(1):44-54.
[79] BAJAJ P,HARIHARAN A,KINI A,et al.Steels in additive manufacturing:a review of their microstructure and properties[J].Materials Science and Engineering:A,2020,772:138633.
[80] ARAMIAN A,RAZAVI S M J,SADEGHIAN Z,et al.A review of additive manufacturing of cermets[J].Additive Manufacturine,2020,33:101130.
[81] SONG M,ZHOU R,GU J,et al.Nitrogen induced heterogeneous structures overcome strength-ductility trade-off in an additively manufactured high-entropy alloy[J].Applied Materials Today,2020,18:100498.
[82] BARKIA B,AUBRY P,HAGHI A P,et al.On the origin of the high tensile strength and ductility of additively manufactured 316L stainless steel:multiscale investigation[J].Journal of Materials Science & Technology,2020,41:209-218.
[83] WANG Y M,VOISIN T,MCKEOWN J T,et al.Additively manufactured hierarchical stainless steels with high strength and ductility[J].Nature Materials,2018,17(1):63-71.
[84] HOJJATZADEH S M H,PARAB N D,YAN W,et al.Pore elimination mechanisms during 3D printing of metals[J].Nature Communications,2019,10(1):3088.
[85] GUO Q,ZHAO C,ESCANO L I,et al.Transient dynamics of powder spattering in laser powder bed fusion additive manufacturing process revealed by in-situ high-speed high-energy X-ray imaging[J].Acta Materialia,2018,151:169-180.
[86] YIN J,WANG D,YANG L,et al.Correlation between forming quality and spatter dynamics in laser powder bed fusion[J].Additive Manufacturing,2020,31:100958.
[87] SCIPIONI B U,GUSS G,WU S,et al.In-situ characterization of laser-powder interaction and cooling rates through high-speed imaging of powder bed fusion additive manufacturing[J].Materials & Design,2017,135:385-396.
[88] ZHANG H,XU W,XU Y,et al.The thermal-mechanical behavior of WTaMoNb high-entropy alloy via selective laser melting (SLM):experiment and simulation[J].The International Journal of Advanced Manufacturing Technology,2018,96(1):461-474.
[89] 黎兴刚,刘畅,朱强.面向金属增材制造的气体雾化制粉技术研究进展[J].航空制造技术,2019,62(22):22-34. LI X G,LIU C,ZHU Q.Research progress on gas atomization technology for preparation of feedstock powder used in metal additive manufacturing[J].Aeronautical Manufacturing Technology,2019,62(22):22-34.
[90] MOOREHEAD M,BERTSCH K,NIEZGODA M,et al.High-throughput synthesis of Mo-Nb-Ta-W high-entropy alloys via additive manufacturing[J].Materials & Design,2020,187:108358.
[91] WASEEM O A,RYU H J.Combinatorial synthesis and analysis of AlxTayVz-Cr20Mo20Nb20Ti20Zr10 and Al10CrMoxNbTiZr10 refractory high-entropy alloys:oxidation behavior[J].Journal of Alloys and Compounds,2020,828:154427.
[92] LI Q,ZHANG H,LI D,et al.WxNbMoTa refractory high-entropy alloys fabricated by laser cladding deposition[J].Materials,2019,12(3):533.
[93] DOBBELSTEIN H,THIELE M,GUREVICH E L,et al. Direct metal deposition of refractory high entropy alloy MoNbTaW[C]//Physics Procedia,9th International Conference on Photonic Technologies (LANE).Furth:2016,83:624-633.
[94] MELIA M A,WHETTEN S R,PUCKETT R,et al.High-throughput additive manufacturing and characterization of refractory high entropy alloys[J].Applied Materials Today,2020,19:100560.
[95] HUANG C,ZHANG Y,VILAR R,et al.Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti-6Al-4V substrate[J].Materials & Design,2012,41:338-343.
[96] DOBBELSTEIN H,GUREVICH E L,GEORGE E P,et al.Laser metal deposition of a refractory TiZrNbHfTa high-entropy alloy[J].Additive Manufacturing,2018,24:386-390.
[97] DOBBELSTEIN H,GUREVICH E L,GEORGE E P,et al.Laser metal deposition of compositionally graded TiZrNbTa refractory high-entropy alloys using elemental powder blends[J].Additive Manufacturing,2019,25:252-262.
[98] KUNCE I,POLANSKI M,BYSTRZYCKI J.Microstructure and hydrogen storage properties of a TiZrNbMoV high entropy alloy synthesized using laser engineered net shaping (LENS)[J].International Journal of Hydrogen Energy,2014,39(18):9904-9910.
[99] ZHANG M,ZHOU X,YU X,et al.Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding[J].Surface & Coatings Technology,2017,311:321-329.
[100] ZHANG H,ZHAO Y,HUANG S,et al.Manufacturing and analysis of high-performance refractory high-entropy alloy via selective laser melting (SLM)[J].Materials,2019,12(5):720.
[101] 漆陪部,梁秀兵,仝永刚,等.NbMoTaW高熵合金涂层的制备与表征[J].应用激光,2018,38(3):382-386. QI P B,LIANG X B,TONG Y G,et al.Preparation and characterization of NbMoTaW high-entropy alloy coating[J].Applied Laser,2018,38(3):382-386.
[102] GUO Y,LIU Q.MoFeCrTiWAlNb refractory high-entropy alloy coating fabricated by rectangular-spot laser cladding[J].Intermetallics,2018,102:78-87.
[103] WANG H,LIU Q,GUO Y,et al.MoFe1.5CrTiWAlNbx refractory high-entropy alloy coating fabricated by laser cladding[J].Intermetallics,2019,115:106613.
[104] POPOV V V,ALEXANDER K D, KOPTYUG A,et al.Selective electron beam melting of Al0.5CrMoNbTa0.5 high entropy alloys using elemental powder blend[J].Heliyon,2019,5(2):01188.
[1] 刘雨, 陈张伟. 陶瓷光固化3D打印技术研究进展[J]. 材料工程, 2020, 48(9): 1-12.
[2] 崔雪, 张松, 张春华, 吴臣亮, 王强, 董世运. 高性能梯度功能材料激光增材制造研究现状及展望[J]. 材料工程, 2020, 48(9): 13-23.
[3] 赵梓钧, 杨新岐, 李胜利, 李冬晓. 工具形状及工艺过程对搅拌摩擦增材成形及缺陷的影响[J]. 材料工程, 2019, 47(9): 84-92.
[4] 陈勇, 陈辉, 姜亦帅, 汪倩, 吴影, 熊俊, 董世运. 高性能金属材料激光增材制造应力变形调控研究现状[J]. 材料工程, 2019, 47(11): 1-10.
[5] 郜庆伟, 赵健, 舒凤远, 吕成成, 齐宝亮, 于治水. 铝合金增材制造技术研究进展[J]. 材料工程, 2019, 47(11): 32-42.
[6] 杨慧慧, 杨晶晶, 喻寒琛, 王泽敏, 曾晓雁. 激光选区熔化成形TC4合金腐蚀行为[J]. 材料工程, 2018, 46(8): 127-133.
[7] 纪宏超, 张雪静, 裴未迟, 李耀刚, 郑镭, 叶晓濛, 陆永浩. 陶瓷3D打印技术及材料研究进展[J]. 材料工程, 2018, 46(7): 19-28.
[8] 郭龙龙, 贺雨田, 鞠录岩, 吴泽兵, 张勇, 吕澜涛, 王文娟. 脉冲TIG增材制造技术研究进展[J]. 材料工程, 2018, 46(12): 10-17.
[9] 杨平华, 高祥熙, 梁菁, 史亦韦, 徐娜. 金属增材制造技术发展动向及无损检测研究进展[J]. 材料工程, 2017, 45(9): 13-21.
[10] 黄丹, 朱志华, 耿海滨, 熊江涛, 李京龙, 张赋升. 5A06铝合金TIG丝材-电弧增材制造工艺[J]. 材料工程, 2017, 45(3): 66-72.
[11] 张学军, 唐思熠, 肇恒跃, 郭绍庆, 李能, 孙兵兵, 陈冰清. 特约3D打印技术研究现状和关键技术[J]. 材料工程, 2016, 44(2): 122-128.
[12] 王忻凯, 邢丽, 徐卫平, 黄春平, 刘奋成. 工艺参数对铝合金搅拌摩擦增材制造成形的影响[J]. 材料工程, 2015, 43(5): 8-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn