Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (4): 89-94    DOI: 10.11868/j.issn.1001-4381.2020.000288
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
高应变速率下等径角挤压高纯粗晶铝中的形变孪晶与退火孪晶
刘敬勇, 卢磊, 钟政烨()
西南交通大学 材料先进技术教育部重点实验室, 成都 610031
Deformation twins and annealing twins in high purity coarse-grained aluminum by equal channel angular pressing at high strain rate
Jing-yong LIU, Lei LU, Zheng-ye ZHONG()
Key Laboratory of Advanced Technologies of Materials(Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
全文: PDF(7783 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

在室温下对铸态高纯粗晶铝进行一道次高应变率动态等径角挤压(D-ECAP)变形,利用电子背散射衍射技术(EBSD)研究挤压过程中所形成的孪晶。结果表明:利用D-ECAP能够在粗晶铝中同时制备出形变孪晶和退火孪晶,但两者在形态、Kernel平均取向差(KAM)以及与相邻晶粒的取向差三个方面存在较大差异。D-ECAP高应变率和大剪切变形使高层错能铝中形成了百微米级的形变孪晶,形变孪晶的形态为透镜状,后续变形使得孪晶界偏离3 60°〈111〉取向关系且KAM值主要集中于0.6°~1.8°。高应变率剪切变形下形成的大量层错和复杂的位错组态以及高形变储存能在变形温升的作用下促进了退火孪晶的形成。退火孪晶的形态较不规则,但孪晶界的取向关系更接近于3 60°〈111〉且KAM值主要集中于0.2°~0.5°。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘敬勇
卢磊
钟政烨
关键词 高纯粗晶铝高应变速率等径角挤压形变孪晶退火孪晶    
Abstract

An as-cast high purity coarse-grained aluminum was deformed by dynamic equal channel angular pressing (D-ECAP) at high strain rate for one pass at room temperature.The twins formed during extrusion were studied with electron backscatter diffraction.The results show that deformation twins and annealing twins can be synthesized simultaneously in the coarse-grained aluminum via D-ECAP, which can be differentiated by their morphology, Kernel average misorientation (KAM) and the misorientation between adjacent grains.Due to the high strain rate and large shear deformation of D-ECAP, deformation twins with size of several hundred microns can be formed in aluminum with high stacking fault energy, and their shapes are lenticular.The twin boundaries deviate from 3 60°〈111〉 orientation relationship as a result of subsequent deformation, and the KAM values are mainly between 0.6°-1.8°.The high strain rate shear deformation contributes to the formation of abundant stacking fault, intricate dislocation patterns, and high deformation stored energy, and thus the ensuing temperature rise facilitates the formation of annealing twins.The morphology of annealing twins is irregular, but the orientation relationship of annealing twin boundaries is more close to 3 60°〈111〉 and the KAM values of annealing twins are mainly between 0.2°-0.5°.

Key wordshigh purity coarse-grained aluminum    high strain rate    equal channel angular pressing    deformation twin    annealing twin
收稿日期: 2020-04-02      出版日期: 2021-04-21
中图分类号:  TG146.2+1  
基金资助:中央高校基本科研业务费专项资金(2682018CX47);四川省科技项目(2019YFG0445)
通讯作者: 钟政烨     E-mail: zhongzhengye@swjtu.edu.cn
作者简介: 钟政烨(1984-), 男, 讲师, 博士, 研究方向为金属材料的变形与损伤, 联系地址: 四川省成都市金牛区二环路北一段111号西南交通大学机械馆(610031), E-mail: zhongzhengye@swjtu.edu.cn
引用本文:   
刘敬勇, 卢磊, 钟政烨. 高应变速率下等径角挤压高纯粗晶铝中的形变孪晶与退火孪晶[J]. 材料工程, 2021, 49(4): 89-94.
Jing-yong LIU, Lei LU, Zheng-ye ZHONG. Deformation twins and annealing twins in high purity coarse-grained aluminum by equal channel angular pressing at high strain rate. Journal of Materials Engineering, 2021, 49(4): 89-94.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000288      或      http://jme.biam.ac.cn/CN/Y2021/V49/I4/89
Fig.1  D-ECAP实验装置示意图
Fig.2  D-ECAP变形后高纯铝中形变孪晶EBSD表征结果
(a)取向成像图;(b)图(a)对应的KAM图;(c)孪晶界取向差图
Fig.3  D-ECAP变形后高纯铝中退火孪晶微观结构的EBSD表征结果
(a)取向成像图;(b)图(a)对应的KAM图
Fig.4  D-ECAP变形后高纯铝中退火孪晶EBSD表征结果
(a)取向成像图;(b)孪晶界取向差图;(c)图(a)对应的KAM图;(d)菊池带衬度分布图
Fig.5  图 2~4中KAM柱状统计图
1 宋广胜, 纪开盛, 张士宏. AZ31镁合金棒材循环扭转变形及其对力学性能的影响[J]. 材料工程, 2019, 47 (9): 46- 54.
1 SONG G S , JI K S , ZHANG S H . Cyclic torsion of AZ31 magnesium alloy rod and its effect on mechanical property[J]. Journal of Materials Engineering, 2019, 47 (9): 46- 54.
2 LU L , SHEN Y , CHEN X , et al. Ultrahigh strength and high electrical conductivity in copper[J]. Science, 2004, 304 (5669): 422- 426.
doi: 10.1126/science.1092905
3 卢磊, 卢柯. 纳米孪晶金属材料[J]. 金属学报, 2010, 46 (11): 1422- 1427.
3 LU L , LU K . Metallic materials with nano-scale twins[J]. Acta Metallurgica Sinica, 2010, 46 (11): 1422- 1427.
4 HUNTER A , BEYERLEIN I J . Stacking fault emission from grain boundaries: material dependencies and grain size effects[J]. Materials Science and Engineering: A, 2014, 600, 200- 210.
doi: 10.1016/j.msea.2014.02.030
5 董明慧, 韩培德, 张彩丽, 等. Al-Mg合金中层错和孪晶形变能的第一性原理研究[J]. 金属学报, 2011, 47 (5): 573- 577.
5 DONG M H , HAN P D , ZHANG C L , et al. First-principles study of stacking fault energy and deformation twin energy in Al-Mg alloys[J]. Acta Metallurgica Sinica, 2011, 47 (5): 573- 577.
6 HAN W , CHENG G , LI S , et al. Deformation induced microtwins and stacking faults in aluminum single crystal[J]. Physical Review Letters, 2008, 101 (11): 115505.
doi: 10.1103/PhysRevLett.101.115505
7 刘满平, 王俊, 蒋婷慧, 等. 高压扭转大塑性变形Al-Mg铝合金中的层错和形变孪晶[J]. 中国有色金属学报, 2014, 24 (6): 1383- 1392.
7 LIU M P , WANG J , JIANG T H , et al. Stacking faults and deformation twins in Al-Mg alloys subjected to high pressure torsion[J]. The Chinese Journal of Nonferrous Metals, 2014, 24 (6): 1383- 1392.
8 CAO B , DAPHALAPURKAR N P , RAMESH K T . Ultra-high-strain-rate shearing and deformation twinning in nanocrystalline aluminum[J]. Meccanica, 2015, 50 (2): 561- 574.
doi: 10.1007/s11012-014-9952-7
9 ZHAO F , WANG L , FAN D , et al. Macrodeformation twins in single-crystal aluminum[J]. Physical Review Letters, 2016, 116 (7): 075501.
doi: 10.1103/PhysRevLett.116.075501
10 HAN W , ZHANG Z , WU S , et al. Combined effects of crystallographic orientation, stacking fault energy and grain size on deformation twinning in fcc crystals[J]. Philosophical Magazine, 2008, 88 (24): 3011- 3029.
doi: 10.1080/14786430802438168
11 YAMAGUCHI D , HORITA Z , NEMOTO M , et al. Significance of adiabatic heating in equal-channel angular pressing[J]. Scripta Materialia, 1999, 41 (8): 791- 796.
doi: 10.1016/S1359-6462(99)00233-X
12 KAPOOR R , NEMATN S . Determination of temperature rise during high strain rate deformation[J]. Mechanics of Materials, 1998, 27 (1): 1- 12.
doi: 10.1016/S0167-6636(97)00036-7
13 PEROCHEAU F , DRIVER J . Slip system rheology of Al-1% Mn crystals deformed by hot plane strain compression[J]. International Journal of Plasticity, 2002, 18 (2): 185- 202.
doi: 10.1016/S0749-6419(00)00075-9
14 LUGO N , LLORCA N , CABRERA J , et al. Microstructures and mechanical properties of pure copper deformed severely by equal-channel angular pressing and high pressure torsion[J]. Materials Science and Engineering: A, 2008, 477 (1/2): 366- 371.
15 BRANDON D . The structure of high-angle grain boundaries[J]. Acta Metallurgica, 1966, 14 (11): 1479- 1484.
doi: 10.1016/0001-6160(66)90168-4
16 LOU C , ZHANG X , DUAN G , et al. Characteristics of twin lamellar structure in magnesium alloy during room temperature dynamic plastic deformation[J]. Journal of Materials Science & Technology, 2014, 30 (1): 41- 46.
17 LIN H P , CHEN Y C , CHEN D , et al. Effect of cold deformation on the recrystallization behavior of FePd alloy at the ordering temperature using electron backscatter diffraction[J]. Materials Characterization, 2014, 94, 138- 148.
doi: 10.1016/j.matchar.2014.05.018
18 LU H , SIVAPRASAD P , DAVIES C H J . Treatment of misorientation data to determine the fraction of recrystallized grains in a partially recrystallized metal[J]. Materials Characterization, 2003, 51 (5): 293- 300.
doi: 10.1016/j.matchar.2004.01.005
19 JIN Y , LIN B , BERNACKI M , et al. Annealing twin development during recrystallization and grain growth in pure nickel[J]. Materials Science and Engineering: A, 2014, 597, 295- 303.
doi: 10.1016/j.msea.2014.01.018
20 CHEN M , MA E , HEMKER K J , et al. Deformation twinning in nanocrystalline aluminum[J]. Science, 2003, 300 (5623): 1275- 1277.
doi: 10.1126/science.1083727
21 GRAY G T Ⅲ . High-strain-rate deformation: mechanical behavior and deformation substructures induced[J]. Annual Review of Materials Research, 2012, 42, 285- 303.
doi: 10.1146/annurev-matsci-070511-155034
22 VENABLES J . Deformation twinning in face-centred cubic metals[J]. Philosophical Magazine, 1961, 6 (63): 379- 396.
doi: 10.1080/14786436108235892
23 MISZCZYK M M , PAUL H , DRIVER J H , et al. Recrystallization nucleation in stable aluminium-base single crystals: crystallography and mechanisms[J]. Acta Materialia, 2017, 125, 109- 124.
doi: 10.1016/j.actamat.2016.11.054
24 CAHOON J R , LI Q Y , RICHARDS N L . Microstructural and processing factors influencing the formation of annealing twins[J]. Materials Science and Engineering: A, 2009, 526 (1/2): 56- 61.
25 WANG W , BRISSET F , HELBERT A , et al. Influence of stored energy on twin formation during primary recrystallization[J]. Materials Science and Engineering: A, 2014, 589, 112- 118.
doi: 10.1016/j.msea.2013.09.071
26 FIELD D P , EAMES R C , LILLO T M . The role of shear stress in the formation of annealing twin boundaries in copper[J]. Scripta Materialia, 2006, 54 (6): 983- 986.
doi: 10.1016/j.scriptamat.2005.11.037
27 MAHAJAN S , PANDE C , IMAM M , et al. Formation of annealing twins in fcc crystals[J]. Acta Materialia, 1997, 45 (6): 2633- 2638.
doi: 10.1016/S1359-6454(96)00336-9
28 UPMANYU M , SROLOVITZ D , SHVINDLERMAN L , et al. Misorientation dependence of intrinsic grain boundary mobility: simulation and experiment[J]. Acta Materialia, 1999, 47 (14): 3901- 3914.
doi: 10.1016/S1359-6454(99)00240-2
29 JIN Z H , GUMBSCH P , ALBE K , et al. Interactions between non-screw lattice dislocations and coherent twin boundaries in face-centered cubic metals[J]. Acta Materialia, 2008, 56 (5): 1126- 1135.
doi: 10.1016/j.actamat.2007.11.020
[1] 孙琦迪, 杨蔚涛, 郝庆国, 关肖虎, 章斌, 杨旗. 低周疲劳变形过程中Fe-33Mn-4Si合金钢的微观组织演变[J]. 材料工程, 2022, 50(4): 162-171.
[2] 刘正, 董阳, 毛萍莉, 于金程. 轧制AZ31镁合金板材(4mm)动态压缩性能与失效行为[J]. 材料工程, 2015, 43(2): 61-66.
[3] 毛萍莉, 席通, 刘正, 董阳, 刘遵鑫, 邸金南. 高应变率下AZ31镁合金焊接接头动态力学性能[J]. 材料工程, 2014, 0(5): 53-58.
[4] 刘兆华, 王晓琪, 陈亮伟, 起华荣, 史庆南. 复合SPD制备超细晶6061铝合金的组织及性能[J]. 材料工程, 2014, 0(11): 62-66.
[5] 胥广亮, 陈国清, 周文龙, 付雪松, 任晓, 孙中刚. 等径角挤压对AZ31镁合金组织及力学性能的影响[J]. 材料工程, 2011, 0(2): 69-72.
[6] 周国华, 曾效舒, 张湛, 徐强, 罗超. 挤压温度对等径角挤压碳纳米管增强AZ31镁基复合材料显微组织的影响[J]. 材料工程, 2009, 0(9): 20-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn