Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (5): 24-37    DOI: 10.11868/j.issn.1001-4381.2020.000338
  综述 本期目录 | 过刊浏览 | 高级检索 |
生物可降解医用镁合金体内外降解行为研究进展
田亚强, 赵冠璋, 刘芸, 张源, 郑小平, 陈连生
华北理工大学 教育部现代冶金技术重点实验室, 河北 唐山 063210
Research progress in degradation behavior of biodegradable medical Mg-based alloys in vivo and in vitro
TIAN Ya-qiang, ZHAO Guan-zhang, LIU Yun, ZHANG Yuan, ZHENG Xiao-ping, CHEN Lian-sheng
Key Laboratory of the Ministry of Education for Modern Metallurgy Technology, North China University of Science and Technology, Tangshan 063210, Hebei, China
全文: PDF(20773 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 作为新一代医用可降解生物材料,镁合金凭借其良好的生物相容性、独特的降解性、优异的力学传递性,被誉为"革命性的医用金属材料"。然而,镁合金耐蚀性能较差,存在降解过快以及降解不均匀等现象。本文从微合金化、热加工工艺、塑性变形工艺以及表面改性4种处理方式全面介绍了目前改善镁合金降解性能的研究进展,并对比了不同工艺处理方式下医用镁合金的体内外降解速率和降解模式,揭示了镁合金不同工艺处理条件下的组织演变、膜层特性对Cl-的膜层破坏机制及三维降解形貌的影响规律,建立起在模拟液中不同工艺条件与镁合金腐蚀降解速率的关联数据分析模型,最后指出从多角度解析微观结构对镁合金降解性能的作用机制,构建微观组织对镁合金降解寿命预测模型是未来该领域的研究重点。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田亚强
赵冠璋
刘芸
张源
郑小平
陈连生
关键词 可降解镁合金体内降解体外降解降解速率膜层特征    
Abstract:As a new generation of medical degradable biomaterials, magnesium alloys were known as "revolutionary medical metal materials" due to their good biocompatibility, unique degradability and excellent mechanical transmission. However, the corrosion resistance of magnesium alloys is poor and there are phenomena such as rapid and uneven degradation.The research progress in improving the degradation properties of magnesium alloys was introduced from four aspects: microalloying, heat treatment process, plastic deformation and surface modification. The degradation rate and degradation modes of medical magnesium alloys in vivo and in vitro under different processing methods were compared. The influence of microstructure evolution and film characteristics of magnesium alloys under different processing conditions on the destruction mechanism of the Cl- for the film layer and the three-dimensional degradation morphology were revealed.The correlation data analysis model between different process conditions and corrosion degradation rate of magnesium alloys in simulated solution was established.Finally, it was pointed out that the focus of future research in this field is to analyse the main action mechanism of microstructure on magnesium alloys degradation properties from multiple perspectives and to build a prediction model of microstructure on magnesium alloys degradation life.
Key wordsdegradable Mg alloy    degradation in vivo    degradation in vitro    degradation rate    film layer feature
收稿日期: 2020-04-17      出版日期: 2021-05-21
中图分类号:  TG178  
  R318.08  
基金资助:河北省自然科学基金青年基金(E2020209153);辽宁省自然科学基金(2019-KF-25-01);河北省省属高校基本科研业务费(JYG-2019001);河北省高等学校科学技术研究重点项目(ZD2019064);唐山市科学技术研究与发展计划(20130205b);新金属材料国家重点实验室开放基金(2020-Z12)
通讯作者: 张源(1988-),男,副教授,博士,研究方向为医用金属材料降解机理研究,联系地址:河北省唐山市曹妃甸区渤海大道21号华北理工大学冶金与能源学院(063210),zhangy130481@ncst.edu.cn     E-mail: zhangy130481@ncst.edu.cn
引用本文:   
田亚强, 赵冠璋, 刘芸, 张源, 郑小平, 陈连生. 生物可降解医用镁合金体内外降解行为研究进展[J]. 材料工程, 2021, 49(5): 24-37.
TIAN Ya-qiang, ZHAO Guan-zhang, LIU Yun, ZHANG Yuan, ZHENG Xiao-ping, CHEN Lian-sheng. Research progress in degradation behavior of biodegradable medical Mg-based alloys in vivo and in vitro. Journal of Materials Engineering, 2021, 49(5): 24-37.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000338      或      http://jme.biam.ac.cn/CN/Y2021/V49/I5/24
[1] AGARWAL S, CURTIN J, DUFFY B, et al.Biodegradable magnesium alloys for orthopaedic applications:a review on corrosion, biocompatibility and surface modifications[J].Materials Science and Engineering:C, 2016, 68(1):948-963.
[2] 万天, 宋述鹏, 王今朝, 等.生物医用镁合金腐蚀行为的研究进展[J].材料工程, 2020, 48(1):19-26. WAN T, SONG S P, WANG J Z, et al.Research progress in corrosion behavior of biomedical magnesium alloys[J].Journal of Materials Engineering, 2020, 48(1):19-26.
[3] YANG Y W, HE C X, E D Y, et al.Mg bone implant:features, developments and perspectives[J].Materials & Design, 2020, 185:108259.
[4] LI J L, QIN L, YANG K, et al.Materials evolution of bone plates for internal fixation of bone fractures:a review[J].Journal of Materials Science and Technology, 2020, 36:190-208.
[5] ALI M, HUSSEIN M A, AL-AQQELI N.Magnesium-based composites and alloys for medical applications:a review of mechanical and corrosion properties[J].Journal of Alloys and Compounds, 2019, 792:1162-1190.
[6] DING P F, LIU Y C, HE X H, et al.In vitro and vivo biocompatibility of Mg-Zn-Ca alloy operative clip[J].Bioactive Materials, 2019, 4:236-244.
[7] WU Y F, WANG Y M, ZHAO D W, et al.In vivo study of micro-arc oxidation coated Mg alloy as a substitute for bone defect repairing:degradation behavior, mechanical properties, and bone respone[J].Colloids and Surfaces B:Biointerfaces, 2019, 181(1):349-359.
[8] WANG H X, GUAN S K, WANG Y S, et al.In vivo degradation behavior of Ca-deficient hydroxyapatite coated Mg-Zn-Ca alloy for bone implant application[J].Colloids and Surfaces B:Biointerfaces, 2011, 88(1):254-259.
[9] LI Z, SUN S Z, CHEN M F, et al.In vitro and in vivo corrosion, mechanical properties and biocompatibility evaluation of MgF2-coated Mg-Zn-Zr alloy as cancellous screws[J].Materials Science and Engineering:C, 2017, 75:1268-1280.
[10] ZHONG L P, WANG Y J, LUO H, et al.Influence of aging prior to extrusion on the microstructure and corrosion resistance of Mg-8Sn-2Zn-0.2Mn alloy[J].Journal of Alloys and Compounds, 2019, 780:783-791.
[11] LUO Y F, DENG Y L, GUAN L Q, et al.The microstructure and corrosion resistance of as extruded Mg-6Gd-2Y-(0-1.5) Nd-0.2Zr alloys[J].Materials & Design, 2020, 186:108289.
[12] ZHANG Y, LI J X, LI J Y.Microstructure, mechanical properties, corrosion behavior and film formation mechanism of Mg-Zn-Mn-xNd in Kokubo's solution[J].Journal of Alloys and Compounds, 2018, 730:458-470.
[13] ZHANG Y, LI J Y, LIAW P K, et al.Effects of heat treatment on the mechanical properties and corrosion behaviour of the Mg-2Zn-0.2Mn-xNd alloys[J].Journal of Alloys and Compounds, 2018, 769:552-565.
[14] ZHANG Y, LI J X, LI J Y, et al.Effect of calcium addition on phase characteristics and corrosion behaviors of Mg-2Zn-0.2Mn-xCa in simulated body fluid[J].Journal of Alloys and Compounds, 2017, 728:37-46.
[15] LI J X, ZHANG Y, LI J Y, et al.Effect of trace HA on microstructure, mechanical properties and corrosion behavior of Mg-2Zn-0.5Sr alloy[J].Journal of Materials Science and Technology, 2017, 34(2):299-310.
[16] JEONG Y S, KIM W J.Enhancement of mechanical properties and corrosion resistance of Mg-Ca alloys through microstructure refinement by indirect extrusion[J].Corrosion Science, 2014, 82:392-403.
[17] MOHAMED A, EL-AZIZ A M, BREITINGER H G.Study of the degradation behavior and the biocompatibility of Mg-0.8Ca alloy for orthopedic implant applications[J].Journal of Magnesium and Alloys, 2019, 7(2):249-257.
[18] LIU Y H, CHENG W L, ZHANG Y, et al.Microstructure, tensile properties, and corrosion resistance of extruded Mg-1Bi-1Zn alloy:the influence of minor Ca addition[J].Journal of Alloys and Compounds, 2020, 815:152414.
[19] 王勇, 周红, 乔丽英, 等.Ca含量对ZM61组织及模拟体液中腐蚀行为的影响[J].材料工程, 2013(6):87-91. WANG Y, ZHOU H, QIAO L Y, et al.Effect of Ca content on microstructure and corrosion performance in SBF of ZM61 alloy[J].Journal of Materials Engineering, 2013(6):87-91.
[20] XIA Y H, ZHANG B P, WANG Y, et al.In vitro cytotoxicity and in vivo biocompatibility of as extruded Mg-4.0Zn-0.2Ca alloy[J].Materials Science and Engineering:C, 2012, 32(4):665-669.
[21] KOC E, KANNAN M B, UNAL M, et al.Influence of zinc on the microstructure, mechanical properties and in vitro corrosion behavior of magnesium-zinc binary alloys[J].Journal of Alloys and Compounds, 2015, 648(5):291-296.
[22] ABDEL-GAWAD S A, SHOEIB M A.Corrosion studies and microstructure of Mg-Zn-Ca alloys for biomedical applications[J].Surface and Interfaces, 2019, 14:108-116.
[23] ZHANG S Y, ZHENG Y, ZHANG L M, et al.In vitro and in vivo corrosion and histocompatibility of pure Mg and a Mg-6Zn alloy as urinary implants in rat model[J].Materials Science and Engineering:C, 2016, 68(1):414-422.
[24] CIHOVA M, MARTINELLI E, SCHMUTZ P, et al.The role of zinc in the bio-corrosion behavior of resorbable of Mg-Zn-Ca alloys[J].Acta Biomaterialia, 2019, 100:398-414.
[25] CHO D H, LEE B M, PARK J Y, et al.Effect of Mn addition on corrosion properties of biodegradable Mg-4Zn-0.5Ca-xMn alloy[J].Journal of Alloys and Compounds, 2017, 695:1166-1174.
[26] XU L P, YU G N, ZHANG E L, et al.In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application[J].Journal of Biomedical Materials Research Part A, 2007, 83(3):703-711.
[27] ZHAO C Y, PAN F S, ZHANG L, et al.Microstructure, mechanical properties, bio-corrosion properties and cytotoxicity of as extruded Mg-Sr alloy[J].Materials Science and Engineering:C, 2017, 70(2):1081-1088.
[28] CHENG M X, CHEN J H, YAN H G, et al.Effects of minor Sr addition on microstructure, mechanical and bio-corrosion properties of the Mg-5Zn based alloy system[J].Journal of Alloys and Compounds, 2017, 691:95-102.
[29] PAN H, PANG K, GUI F Z, et al.Effect of alloyed Sr on the microstructure and corrosion behavior of biodegradable Mg-Zn-Mn alloy in Hank's solution[J].Corrosion Science, 2019, 157:420-437.
[30] GAO Z H, SONG M S, LIU R L, et al.Improving in vitro and in vivo antibacterial functionality of Mg alloys through micro-alloying with Sr and Ga[J].Materials Science and Engineering:C, 2019, 104:109926.
[31] BORNAPOUR M, MAHJOUBI H, VALI H, et al.Surface characterization, in vitro and in vivo biocompatibility of Mg-0.3Sr-0.3Ca for temporary cardiovascular implant[J].Materials Science and Engineering:C, 2016, 67:72-84.
[32] TIE D, GUAN R G, LIU H N, et al.An in vivo study on the metabolism and osteogenic activity of bioabsorbable Mg-1Sr alloy[J].Acta Biomaterialia, 2016, 29:455-467.
[33] 刘军, 张金玲, 渠治波, 等.稀土Gd对AZ31镁合金耐蚀性能的影响[J].材料工程, 2018, 46(6):73-79. LIU J, ZHANG J L, QU Z B, et al.Effect of rare earth Gd on corrosion resistance of AZ31 magnesium alloy[J].Journal of Materials Engineering, 2018, 46(6):73-79.
[34] 赵曦, 贾瑞灵, 周伟光, 等.稀土对AZ91镁合金干/湿循环腐蚀产物及阻抗行为的影响[J].材料工程, 2017, 45(4):41-50. ZHAO X, JIA R L, ZHOU W G, et al.Effect of rare earth on corrosion products and impedance behavior of AZ91 magnesium alloy under dry-wet cycles[J].Journal of Materials Engineering, 2017, 45(4):41-50.
[35] CAI C H, SONG R B, WANG L X, et al.Surface corrosion behavior and reaction product film deposition mechanism of Mg-Zn-Zr-Nd alloys during degradation process in Hank's solution[J].Surface and Coatings Technology, 2018, 342:57-68.
[36] CHEN J X, TAN L L, YU X M, et al.Effect of minor content of Gd on the mechanical and degradable properties of as cast Mg-2Zn-xNd-0.5Zr alloys[J].Journal of Materials Science and Technology, 2019, 35(4):503-511.
[37] LIU X B, SHAN D Y, SONG Y W, et al.Influence of yttrium element on the corrosion behaviors of Mg-Y binary magnesium alloy[J].Journal of Magnesium and Alloys, 2017, 5(1):26-34.
[38] ZHANG J, LI H Y, WANG W, et al.The degradation and transport mechanism of a Mg-Nd-Zn-Zr stent in rabbit common carotid artery:a 20-month study[J].Acta Biomaterialia, 2018, 69:372-384.
[39] LUKYANOVA E, ANISIMOVA N, MARTYNENKO N, et al.Features of in vitro and in vivo behaviour of magnesium alloy WE43[J].Materials Letters, 2018, 215:308-311.
[40] ZHANG Y, LI J X, LI J Y.Effects of microstructure transformation on mechanical properties, corrosion behaviors of Mg-Zn-Mn-Ca alloys in simulated body fluid[J].Journal of the Mechanical Behavior of Biomedical Materials, 2018, 80:246-257.
[41] JANBOZORGI M, TAHERI K K, TAHERI A K.Microstructural evolution, mechanical properties, and corrosion resistance of a heat-treated Mg alloy for the bio-medical application[J]. Journal of Magnesium and Alloys, 2019, 7(1):80-89.
[42] LIU J, YANG L X, ZHANG C Y, et al.Significantly improved corrosion resistance of Mg-15Gd-2Zn-0.39Zr alloys:effect of heat-treatment[J].Journal of Materials Science and Technology, 2019, 35(8):1644-1654.
[43] TORRONI A, XIANG C C, WITEK L, et al.Biocompatibility and degradation properties of WE43 Mg alloy with and without heat treatment:in vivo evaluation and comparison in a cranial bone sheep model[J].Journal of Cranio-Maxillofacial Surgery, 2017, 45(12):2075-2083.
[44] ZHANG Z Q, LIU X, HU W Y, et al.Microstructures, mechanical properties and corrosion behaviors of Mg-Y-Zn-Zr alloys with specific Y/Zn mole ratios[J].Journal of Alloys and Compounds, 2015, 624:116-125.
[45] XU H, ZHANG X, ZHANG K, et al.Effect of extrusion on corrosion behavior and corrosion mechanism of Mg-Y alloy[J].Journal of Rare Earths, 2016, 34:315-327.
[46] HOU L D, LI Z, ZHAO H, et al.Microstructure, mechanical properties, corrosion behavior and biocompatibility of as extruded biodegradable Mg-3Sn-1Zn-0.5Mn alloy[J].Journal of Materials Science and Technology, 2016, 32(9):874-882.
[47] GUI Z Z, KANG Z X, LI Y Y.Corrosion mechanism of the as cast and as extruded biodegradable Mg-3.0Gd-2.7Zn-0.4Zr-0.1Mn alloys[J].Materials Science and Engineering:C, 2019, 96:831-840.
[48] 谢鑫, 唐建国, 石洪吉, 等.挤压温度对Mg-5.3Gd-2.6Y-1.1Nd-0.3Zr合金的力学性能和耐生物腐蚀性能的影响[J].材料工程, 2019, 47(10):76-81. XIE X, TANG J G, SHI H J, et al.Effect of extrusion temperature on mechanical properties and biological corrosion resistance of Mg-5.3Gd-2.6Y-1.1Nd-0.3Zr alloy[J].Journal of Materials Engineering, 2019, 47(10):76-81.
[49] MIAO H W, ZHANG D D, CHEN C X, et al.Research on biodegradable Mg-Zn-Gd alloys for potential orthopedic implants:in vitro and in vivo evaluations[J].ACS Biomaterials Science and Engineering, 2019, 5(3):1623-1634.
[50] CAO F F, DENG K K, NIE K B, et al.Microstructure and corrosion properties of Mg-4Zn-2Gd-0.5Ca alloy influenced by multidirectional forging[J].Journal of Alloys and Compounds, 2019, 770:1208-1220.
[51] HARANDI S E, IDRIS M H, JAFARI H.Effect of forging process on microstructure, mechanical and corrosion properties of biodegradable Mg-1Ca alloy[J].Materials & Design, 2011, 32(5):2596-2603.
[52] NENE S S, KASHYAP B P, PRABHU N, et al.Microstructure refinement and its effect on specific strength and bio-corrosion resistance in ultralight Mg-4Li-1Ca (LC41) alloy by hot rolling[J].Journal of Alloys and Compounds, 2014, 615:501-506.
[53] BAHMANI A, ARTHANARI S, SHIN K S.Improvement of corrosion resistance and mechanical properties of a magnesium alloy using screw rolling[J].Journal of Alloys and Compounds, 2020, 813:152155.
[54] HAN P, CHENG P F, ZHANG S X, et al.In vitro and in vivo studies on the degradation of high-purity Mg (99.99 wt.%) screw with femoral intracondylar fractured rabbit model[J].Biomaterials, 2015, 64:57-69.
[55] GU X N, XIE X H, LI N, et al.In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal[J].Acta Biomaterialia, 2012, 8(6):2360-2374.
[56] KENNEDY E, SHIVAPPA, SRIRAMAN, et al.Influence of PEO coatings on mechanical and corrosion properties of Mg-7Y-1Zn alloy[J].Materialstoday:Proceedings, 2020, 27(3):2236-2238.
[57] JIN W H, WANG G M, QASIM A M, et al.Corrosion protection and enhanced biocompatibility of biomedical Mg-Y-RE alloy coated with tin dioxide[J].Surface and Coatings Technology, 2019, 375:78-82.
[58] PRAKASH C, SINGH S, PABLA B S, et al.Synthesis, characterization, corrosion and bioactivity investigation of nano-HA coating deposited on biodegradable Mg-Zn-Mn alloy[J].Surface and Coatings Technology, 2018, 346:9-18.
[59] KUANG J, BA Z X, LI Z Z, et al.The study on corrosion resistance of superhydrophobic coatings on magnesium[J].Applied Surface Science, 2020, 501:144137.
[60] SHI Y J, ZHANG L, CHEN J H, et al.In vitro and in vivo degradation of rapamycin-eluting Mg-Nd-Zn-Zr alloy stents in porcine coronary arteries[J].Materials Science and Engineering:C, 2017, 80:1-6.
[61] JIANG H F, WANG J B, CHEN M F, et al.Biological activity evaluation of magnesium fluoride coated Mg-Zn-Zr alloy in vivo[J].Materials Science and Engineering:C, 2017, 75:1068-1074.
[62] KIM S Y, KIM Y K, KIM K S, et al.Enhancement of bone formation on LBL-coated Mg alloy depending on the different concentration of BMP-2[J].Colloids and Surfaces B:Biointerfaces, 2019, 173:437-446.
[1] 陈燕宁, 吴量, 陈勇花, 程苓, 姚文辉, 潘复生. 镁合金表面氧化石墨烯复合涂层的研究现状[J]. 材料工程, 2021, 49(12): 1-13.
[2] 黄居峰, 宋光铃. 镁合金阳极的析氢、效率与电偶腐蚀放大效应[J]. 材料工程, 2021, 49(12): 48-56.
[3] 谢治辉, 舒雅, 胡婷. 不同无机阴离子插层层状双金属氢氧化物的合成及其离子交换特性[J]. 材料工程, 2021, 49(12): 65-71.
[4] 谷籽旺, 郭文敏, 张弘鳞, 李文娟. 基于核壳结构粉体设计的CoNiCrAlY-Al2O3复合涂层组织结构及其抗氧化性能[J]. 材料工程, 2021, 49(7): 112-123.
[5] 陈海燕, 曾越, 李艺, 吴建新, 许世锬, 邹燕成. 基于非线性超声空化效应的铝合金热浸镀工艺[J]. 材料工程, 2021, 49(7): 133-140.
[6] 杜娟, 曹翔宇, 宋海鹏, 魏子明, 李香云, 杨涵清, 杨梓铭, 李伯阳, 李海龙. 氧化石墨烯在金属表面的应用及其机理研究进展[J]. 材料工程, 2021, 49(2): 32-41.
[7] 张舒研, 高洋洋, 张志彬, 梁秀兵, 王立忠. 高熵非晶合金耐腐蚀性能研究进展[J]. 材料工程, 2021, 49(1): 44-54.
[8] 宿辉, 刘辉, 张春波. AZ91D镁合金表面环境友好直接化学镀镍工艺研究[J]. 材料工程, 2020, 48(8): 163-168.
[9] 赵慧生, 陈国清, 盖鹏涛, 李志强, 周文龙, 付雪松. 拉-拉疲劳载荷下钛合金湿喷丸的残余应力松弛及再次喷丸工艺[J]. 材料工程, 2020, 48(5): 136-143.
[10] 孙伟, 朱立群, 李卫平, 刘慧丛. 硅溶胶改性水性丙烯酸树脂对镀锌三价铬钝化膜的封闭作用[J]. 材料工程, 2018, 46(12): 110-116.
[11] 周梦林, 饶少凯, 周均, 郑照县, 肖衡, 郑靖. 微弧氧化处理镁合金在接骨板服役工况下的微动磨损特性[J]. 材料工程, 2018, 46(9): 80-87.
[12] 蒋晓, 郭瑞光, 唐长斌. 硬脂酸改性镁合金铈钒转化膜的制备与性能[J]. 材料工程, 2017, 45(5): 13-19.
[13] 戴景杰, 张丰云, 王阿敏, 陈传忠, 翁飞. Nb掺杂对Ti-Al合金化层抗高温氧化性能的影响[J]. 材料工程, 2017, 45(2): 24-31.
[14] 祁星, 宋仁国, 祁文娟, 金骥戎, 王超, 李海. pH值对7050铝合金膜致应力和应力腐蚀敏感性的影响[J]. 材料工程, 2016, 44(5): 86-92.
[15] 薛燕鹏, 胡立杰, 赵金乾, 李嘉荣. 吹砂、抛光及其电解腐蚀后处理对单晶高温合金表面组织和再结晶行为的影响[J]. 材料工程, 2016, 44(2): 1-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn