Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (2): 1-9    DOI: 10.11868/j.issn.1001-4381.2020.000351
  综述 本期目录 | 过刊浏览 | 高级检索 |
含BCC/B2共格结构多主元合金研究进展
董亚光1, 陈尚1, 王俊升1,2, 靳柯1,2
1. 北京理工大学 材料学院, 北京 100081;
2. 北京理工大学 前沿交叉科学研究院, 北京 100081
Research progress in multi-principal element alloys containing coherent BCC/B2 structure
DONG Ya-guang1, CHEN Shang1, WANG Jun-sheng1,2, JIN Ke1,2
1. School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China;
2. Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
全文: PDF(17073 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 引入共格析出相是强化合金的重要方式。近年来发现在BCC结构多主元合金中引入共格B2相可有效提升其力学性能,形成了一类重要的合金体系。本文综述了含BCC/B2共格结构多主元合金的研究现状,重点讨论这一系列新型合金在成分、组织形貌、结构稳定性以及力学性能等方面的特征,并指出此类合金在宽温域下强度较高、塑性因成分差异而不同的变化特点。目前,这类合金在高于500℃时的结构稳定性较差,无法满足工程应用的需求,而成分设计是解决此问题较为简单易行的方法。本文旨在为含BCC/B2共格结构多主元合金的设计提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董亚光
陈尚
王俊升
靳柯
关键词 多主元合金共格相有序BCC相结构稳定性力学性能    
Abstract:Introducing coherent precipitates is an important method to strengthen alloys. Recently, it is found that the introduction of coherent B2 phase in multi-principal element alloys with BCC structure can improve the mechanical properties significantly, developing a new class of important series alloys. The up-to-date knowledge of these alloys from the perspectives of composition, microstructure, phase stability, and mechanical properties was summarized. These alloys exhibit high yield strength over a wide temperature regime, but the ductility presents different characterization due to the compositional difference. At present, their engineering application is limited due to their weaker thermal stability at elevated temperature, especially above 500℃, and furthermore, the design of compositional content appears to be more easy method to resolve the problem. This paper aims at providing guidance to further design of multi-principal element alloys with coherent BCC/B2 dual-phases.
Key wordsmulti-principal element alloy    coherent phase    ordered BCC phase    structure stability    mecha-nical property
收稿日期: 2020-04-20      出版日期: 2021-02-27
中图分类号:  TG139  
基金资助:国家自然科学基金项目(11905008)
通讯作者: 靳柯(1988-),男,教授,博士,研究方向:材料辐照损伤、新型核用合金的设计与制备、离子辐照材料表征等,联系地址:北京市海淀区中关村南大街5号北京理工大学材料学院(100081),E-mail:jinke@bit.edu.cn     E-mail: jinke@bit.edu.cn
引用本文:   
董亚光, 陈尚, 王俊升, 靳柯. 含BCC/B2共格结构多主元合金研究进展[J]. 材料工程, 2021, 49(2): 1-9.
DONG Ya-guang, CHEN Shang, WANG Jun-sheng, JIN Ke. Research progress in multi-principal element alloys containing coherent BCC/B2 structure. Journal of Materials Engineering, 2021, 49(2): 1-9.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000351      或      http://jme.biam.ac.cn/CN/Y2021/V49/I2/1
[1] WERINOS M,ANTREKOWITSCH H,EBNER T,et al. Design strategy for controlled natural aging in Al-Mg-Si alloys[J]. Acta Materialia,2016,118:296-305.
[2] KIM S H,KIM H,KIM N J.Brittle intermetallic compound makes ultrastrong low-density steel with large ductility[J]. Nature,2015,518(7537):77-79.
[3] 吕昭平,雷智锋,黄海龙,等. 高熵合金的变形行为及强韧化[J]. 金属学报,2018,54(11):1553-1566. LU Z P,LEI Z F,HUANG H L,et al.Deformation behavior and toughening of high-entropy alloys[J].Acta Metallurgica Sinica,2018,54(11):1553-1566.
[4] ZHAO H L,DONG Y G,DONG X L,et al. Effects of trace alloy-ing elements Fe and Cr on the microstructure and aging properties of Cu-3Ti alloy foils[J]. Metals,2018,8(11):881.
[5] 信思树,王镇华,李春玲,等. 体心立方BCC基多主元合金中的共格析出及强化[J]. 材料导报,2020,34(7):7130-7137. XIN S S,WANG Z H,LI C L,et al.Coherent precipitation and strengthening in body-centered-cubic-based multi-component alloys[J].Materials Reports,2020,34(7):7130-7137.
[6] JIANG S H,WANG H,WU Y,et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation[J]. Nature,2017,544(7651):460-464.
[7] DORIN T,RAMAJAYAM M,LAMB J,et al. Effect of Sc and Zr addition on the microstructure/strength of Al-Cu binary alloys[J]. Materials Science and Engineering:A,2017,707:58-64.
[8] MOCHUGOVSKIY A G,MIKHAYLOVSKAYA A V,TABACH- KOVA N Y,et al. The mechanism of L12 phase precipitation, microstructure and tensile properties of Al-Mg-Er-Zr alloy[J]. Materials Science and Engineering:A,2019,744:195-205.
[9] YEH J W,CHEN S K,LIN S J,et al. Nanostructured high-entropy alloys with multiple principal elements:novel alloy design concepts and outcomes[J]. Advanced Engineering Materials,2004,6(5):299-303.
[10] CANTOR B,CHANG I T H,KNIGHT P,et al. Microstructural development in equiatomic multicomponent alloys[J]. Materials Science and Engineering:A,2004,375/377:213-218.
[11] ZHANG K,GAO X L,DONG Y G,et al. Effect of annealing on the microstructure, microhardness, and corrosion resistance of Ni62Nb33Zr5 metallic glass and its composites[J]. Journal of Non-Crystalline Solids,2015,425:46-51.
[12] GUO S,HU Q,NG C,et al. More than entropy in high-entropy alloys:forming solid solutions or amorphous phase[J]. Intermetallics,2013,41:96-103.
[13] ZHANG Y,LU Z P,MA S G,et al. Guidelines in predicting phase formation of high-entropy alloys[J]. MRS Communications,2014,4(2):57-62.
[14] GUO S,NG C,LU J,et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys[J]. Journal of Applied Physics,2011,109:103505.
[15] YANG X,ZHANG Y. Prediction of high-entropy stabilized so-lid-solution in multi-component alloys[J].Materials Chemistry and Physics,2012,132:233-238.
[16] SINGH A K,KUMAR N,DWIVEDI A,et al. A geometrical parameter for the formation of disordered solid solutions in multi-component alloys[J]. Intermetallics,2014,53:112-119.
[17] TODA-CARABALLO I,RIVERA-DÍAZ-DEL-CASTILLO P E J. A criterion for the formation of high entropy alloys based on lattice distortion[J]. Intermetallics,2016,71:76-87.
[18] LU Y P,GAO X Z,LI J,et al. Directly cast bulk eutectic and near-eutectic high enropy alloys with balanced strength and ductility in a wide temperature range[J]. Acta Materialia,2017,124:143-150.
[19] LU Y P,DONG Y,GUO S,et al. A promising new class of high-temperature alloys:eutectic high-entropy alloys[J]. Scientific Reports,2014,4:6200.
[20] WU Z,BEI H B,PHARR G M,et al. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures[J]. Acta Materialia,2014,81:428-441.
[21] LU C Y,NIU L L,CHEN N J,et al. Enhancing radiation tole-rance by controlling defect mobility and migration pathways in multicomponent single-phase alloys[J]. Nature Communications,2016,7:13564.
[22] ZHANG Y,ZUO T,TANG Z,et al. Microstructures and pro-perties of high-entropy alloys[J] Progress in Materials Science,2014,61:1-93.
[23] HE J Y,WANG H,HUANG H L,et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties[J]. Acta Materialia,2016,102:187-196.
[24] ZHENG Y,JIA N N,QIAN F,et al. Thermal stability of (CoCrFeNi)94Ti2Al4 alloy containing coherent nanoprecipitates at intermediate temperatures[J]. Materialia,2020,12:100775.
[25] LIANG Y J,WANG L J,WANG Y R,et al. High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys[J]. Nature Communications,2018,9:4063.
[26] FEUERBACHER M,LIENIG T,THOMAS C. A single-phase bcc high-entropy alloy in the refractory Zr-Nb-Ti-V-Hf system[J]. Scripta Materialia,2018,152:40-43.
[27] WU Y D,CAI Y H,CAI X H,et al. Phase composition and solid solution strengthening effect in TiZrNbMoV high-entropy alloys[J]. Materials & Design,2015,83:651-660.
[28] MA Y,WANG Q,JIANG B B,et al. Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al2(Ni,Co,Fe,Cr)14 compositions[J]. Acta Materialia,2018,147:213-225.
[29] SONI V,GWALANI B,ALAM T,et al. Phase inversion in a two-phase, BCC+B2, refractory high entropy alloy[J]. Acta Materialia,2020,185:89-97.
[30] JENSEN J K,WELK B A,WILLIAMS R E A,et al. Characte-rization of the microstructure of the compositionally complex alloy Al1Mo0.5Nb1Ta0.5Ti1Zr1[J]. Scripta Materialia,2016,121:1-4.
[31] OVRUTSKY A,PROKHODA A. Particularities of nucleation and growth of the B2-phase:results of simulations for the Al50Ni50 alloy[J]. Computational Materials Science,2013,79:193-200.
[32] PREMKUMAR M,SINGH A K. Deformation behavior of an ordered B2 phase in Ti-25Al-25Zr alloy[J]. Intermetallics,2010,18:199-201.
[33] DAS K,DAS S. Order-disorder transformation of the body centered cubic phase in the Ti-Al-X (X=Ta, Nb, or Mo) system[J]. Journal of Materials Science,2003,38:3995-4002.
[34] SINGH A K,BANUMATHY S,SOWJANYA D,et al. On the structure of the B2 phase in Ti-Al-Mo alloys[J]. Journal of App-lied Physics,2008,103:103519.
[35] TAKEUCHI A,INOUE A. Classification of bulk metallic gla-sses by atomic size difference, heat of mixing and period of consi-tuent elements and its application to characterization of the main alloying element[J]. Materials Transactions,2005,46:2817-2829.
[36] HE J Y,LIU W H,WANG H,et al. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system[J]. Acta Materialia,2014,62:105-113.
[37] MA Y,JIANG B B,LI C L,et al. The BCC/B2 morphologies in AlxNiCoFeCr high-entropy alloys[J]. Metals,2017,7:57.
[38] CHEN X,QI J Q,SUI Y W,et al. Effects of aluminum on microstructure and compressive properties of Al-Cr-Fe-Ni eutectic multi-component alloys[J]. Materials Science and Engineering:A,2017,681:25-31.
[39] WANG W R,WANG W L,WANG S C,et al. Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys[J]. Intermetallics,2012,26:44-51.
[40] SANTODONATO L J,LIAW P K,UNOCIC R R,et al. Predictive multiphase evolution in Al-containing high-entropy alloys[J]. Nature Communications,2018,9:4520.
[41] ZHANG L,ZHOU D,LI B S. Anomalous microstructure and excellent mechanical properties of Ni35Al21.67Cr21.67Fe21.67 high-entropy alloy with BCC and B2 structure[J]. Materials Letters,2018,216:252-255.
[42] SENKOV O N,ILKS G B,SCOTT J M,et al. Mechanical pro-perties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloy[J]. Intermetallics,2011,19:698-706.
[43] SENKOV O N,SCOTT J M,SENKOVA S V,et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy[J]. Journal of Alloys and Compounds,2011,509:6043-6048.
[44] JIA N N,LI Y K,LIU X,et al. Thermal stability and mechanical properties of low-activation single-phase Ti-V-Ta medium entropy alloys[J]. JOM,2019,71:3490-3498.
[45] 陈永星,朱胜,王晓明,等. 高熵合金制备及研究进展[J]. 材料工程,2017,45(11):129-138. CHEN Y X,ZHU S,WANG X M,et al.Progress in preparation and research of high entropy alloys[J]. Journal of Materials Engineering,2017,45(11):129-138.
[46] WHITFIELD T E,PICKERING E J,TALBOT C E,et al. Observation of a refractory metal matrix containing Zr-Ti-rich precipitates in a Mo0.5NbTa0.5TiZr high entropy alloy[J]. Scripta Materialia,2020,180:71-76.
[47] SENKOV O N,ISHEIM D,SEIDMAN D N,et al. Development of a refractory high entropy superalloy[J]. Entropy,2016,18:102.
[48] WHITFIELD T E,PICKERING E J,OWEN L R,et al. The effect of Al on the formation and stability of a BCC-B2 microstructure in a refractory metal high entropy superalloy system[J]. Materialia,2020,13:100858.
[49] SENKOV O N,JENSEN J K,PILCHAK A L,et al. Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr[J]. Materials & Design,2018,139:498-511.
[50] SONI V,SENKOV O N,GWALANI B,et al. Microstructural design for improving ductility of an initially brittle refractory high entropy alloy[J]. Scientific Reports,2018,8:8816.
[51] SCHLIEPHAKE D,MEDVEDEV A E,IMRAN M K,et al. Precipitation behaviour and mechanical properties of novel Al0.5MoTaTi complex concentrated alloy[J]. Scripta Materialia,2019,173:16-20.
[52] ZHANG X K,YE H T,HUANG J C,et al. Nano-scaled creep response of TiAlV low density medium entropy alloy at elevated temperatures[J]. Materials,2020,13:36.
[53] KÖRMANN F,RUBAN A V,SLUITER M H F. Long-ranged interactions in bcc NbMoTaW high-entropy alloys[J]. Materials Research Letters,2017,5:35-40.
[54] KÖRMANN F,SLUITER M H F. Interplay between lattice distortions, vibrations and phase stability in NbMoTaW high entropy alloys[J]. Entropy,2016,18(8):403.
[55] SENKOV O N,WILKS G B,MIRACLE D B,et al. Refractory high-entropy alloys[J]. Intermetallics,2010,18:1758-1765.
[56] ZOU Y,MAITI S,STEURER W,et al. Size-dependent plasticity in an Nb25Mo25Ta25 W25 refractory high-entropy alloy[J]. Acta Materialia,2014,65:85-97.
[57] MA Y,HAO J M,WANG Q,et al. Temperature-affected microstructural stability of coherent cuboidal B2 particles in precipitation-strengthened body-centered-cubic Al0.7CoCr2FeNi high-entropy alloy[J].Journal of Materials Science,2019,54:8696-8710.
[58] WANG W R,WANG W L,YEH J W. Phases,microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures[J]. Journal of Alloys and Compounds,2014,589:143-152.
[59] SHAYSULTANOV D G,SALISHCHEV G A,IVANISENKO Y V,et al. Novel Fe36Mn21Cr18Ni15Al10 high entropy alloy with bcc/B2 dual-phase structure[J]. Journal of Alloys and Compounds,2017,705:756-763.
[60] SONI V,SENKOV O N,COUZINIE J P,et al. Phase stability and microstructure evolution in a ductile refractory high entropy alloy Al10Nb15Ta5Ti30Zr40[J]. Materialia,2020,9:100569.
[61] SONI V,GWALANI B,SENKOV O N,et al. Phase stability as a function of temperature in a refractory entropy alloy[J]. Journal of Materials Research,2018,33:3235-3246.
[62] ARDELL A J. Precipitation hardening[J]. Metallurgical and Materials Transactions A,1985,16(12):2131-2165.
[63] MELNICK A B,SOOLSHENKO V K. Thermodynamic design of high-entropy refractory alloys[J]. Journal of Alloys and Compounds,2017,694:223-227.
[64] ZHOU Y,JIN X,ZHANG L,et al. A hierarchical nanostructured Fe34Cr34Ni14Al14Co4 high-entropy alloy with good compressive mechanical properties[J]. Materials Sicence and Engineering:A,2018,716:235-239.
[65] WANG Q,MA Y,JIANG B B,et al. A cuboidal B2 nanoprecipitation-enhanced body-centered-cubic alloy Al0.7CoCrFe2Ni with prominent tensile properties[J]. Scripta Materialia,2016,120:85-89.
[66] STEPANOV N D,SHAYSULTANOV D G,CHERNICHENKO R S,et al. Effect of Al on structure and mechanical properties of Fe-Mn-Cr-Ni-Al non-equiatomic high entropy alloys with high Fe content[J]. Journal of Alloys and Compounds,2019,770:194-203.
[67] SENKOV O N,WOODWARD C,MIRACLE D B. Microstructure and properties of aluminum-containing refractory high-entropy alloys[J]. JOM,2014,66:2030-2042.
[68] SENKOV O N,SCOTT J M,SENKOVA S V,et al. Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy[J]. Journal of Materials Science,2012,47:4062-2074.
[1] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[2] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
[3] 陈帅, 陶凤和, 贾长治, 孙河洋. 成形角度对选区激光熔化4Cr5MoSiV1钢组织和性能的影响[J]. 材料工程, 2022, 50(3): 122-130.
[4] 唐鹏钧, 房立家, 王兴元, 李沛勇, 张学军. 人工时效对激光选区熔化AlMg4.5Sc0.55Mn0.5Zr0.2合金显微组织和力学性能的影响[J]. 材料工程, 2022, 50(2): 84-93.
[5] 邵震, 崔雷, 王东坡, 陈永亮, 胡正根, 王非凡. 几何参数对2219铝合金拉拔式摩擦塞补焊接头微观组织及力学性能的影响[J]. 材料工程, 2022, 50(1): 25-32.
[6] 吴程浩, 刘涛, 高嵩, 石磊, 刘洪涛. 铝/钢异种金属的超声振动强化搅拌摩擦焊接工艺[J]. 材料工程, 2022, 50(1): 33-42.
[7] 徐学宏, 郑义珠, 陈吉平, 宁博, 刘晓忱. 缝合参数对泡沫夹层结构复合材料力学性能的影响[J]. 材料工程, 2022, 50(1): 132-137.
[8] 肖伟, 杨占旭, 乔庆东. 石墨电极表面聚丙烯腈纳米纤维膜的制备及性能[J]. 材料工程, 2021, 49(9): 60-68.
[9] 王庆娟, 吴金城, 王伟, 杜忠泽, 尹仁锟. 超高强β钛合金等温相转变特性及力学性能[J]. 材料工程, 2021, 49(9): 94-100.
[10] 孙昊飞, 肖志, 韦凯, 杨旭静, 齐军. 预弯曲变形对CP800复相钢力学性能的影响[J]. 材料工程, 2021, 49(8): 81-88.
[11] 姜卓钰, 束小文, 吕晓旭, 高晔, 周怡然, 董禹飞, 焦健. SiC晶须增强SiCf/SiC复合材料的力学性能[J]. 材料工程, 2021, 49(8): 89-96.
[12] 张海连, 段淼, 李四中, 林志勇. 催化炭化-原位反应/反应熔体浸渗法制备C/C-SiC复合材料[J]. 材料工程, 2021, 49(7): 85-91.
[13] 唐延川, 万能, 唐兴昌, 刘德佳, 焦海涛, 胡勇, 赵龙志. 合金化组元(Al,Cr,Si,Ti)含量对激光沉积(FeNiCo)-(AlCrSiTi)非等原子比多组元合金涂层组织与力学性能的影响[J]. 材料工程, 2021, 49(7): 92-102.
[14] 邢宇轩, 郭英奎, 陈磊, 赵壮志, 王玉金. 气压浸渗法制备ZrC-W-Cu复合材料的显微组织与力学性能[J]. 材料工程, 2021, 49(7): 124-132.
[15] 詹强坤, 刘允中, 刘小辉, 周志光. 激光选区熔化成形含锆7×××系铝合金的显微组织与力学性能[J]. 材料工程, 2021, 49(6): 85-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn