Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (10): 165-171    DOI: 10.11868/j.issn.1001-4381.2020.000355
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
活化凹凸棒石合成多级孔钛硅分子筛及其光催化性能研究
张建民, 刘宇琦(), 李红玑
西安工程大学 城市规划与市政工程学院, 西安 710048
Synthesis of multistage porous titanium silicon molecular sieve by activated attapulgite and photocatalytic performance
Jianmin ZHANG, Yuqi LIU(), Hongji LI
College of Town Planning and Municipal Engineering, Xi'an Polytechnic University, Xi'an 710048, China
全文: PDF(6334 KB)   HTML ( 1 )  
输出: BibTeX | EndNote (RIS)      
摘要 

以天然凹凸棒石为硅源,钛酸丁酯为钛源,四丙基氢氧化铵为模板剂一步水热合成钛硅分子筛,并研究了钛硅比对合成产物结构和性能的影响。通过XRD,SEM,UV-Vis和N2吸附-脱附对钛硅分子筛的晶体结构、形貌、钛的存在形式和孔道特征进行表征,并对亚甲基蓝印染废水进行光催化实验考察分子筛的光催化性能。结果表明,当钛硅比为1∶30时,其XRD特征峰强,结晶度高,晶粒大小均匀,呈规则六棱柱状,钛以骨架钛和锐钛矿型TiO2形式存在,孔道结构兼具微孔和介孔。分子筛具有光催化性,光催化反应遵循拟一级反应动力学。利用响应曲面法建立模型优化pH=7.8亚甲基蓝溶液最佳实验条件为初始浓度10.0 g/mL,光催化时间48 min,投加量0.05 g,经光催化降解溶液脱色率达到98.75%。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张建民
刘宇琦
李红玑
关键词 凹凸棒石钛硅分子筛钛硅比光催化响应曲面法    
Abstract

Natural attapulgite was used as silicon source, butyl titanate as titanium source, tetrapropyl ammonium hydroxide as template for one-step hydrothermal synthesis of titanium silicon molecular sieve, the effect of titanium silicon ratio on the structure and performance of synthetic products was studied. XRD, SEM, UV-Vis and N2 adsorption-desorption were used to characterize the crystal structure, morphology, titanium form and pore characteristics of Ti-Si molecular sieves. The results show when the Ti-Si ratio is 1:30, the XRD characteristic peak strength of Ti-Si is high, the grain size is uniform in a regular six-prism shape, titanium exists in the form of skeleton titanium and anatase TiO2, and the pore structure is both microporous and mesoporous. The molecular sieve has photocatalysis, photocatalytic reaction follows quasi-first order kinetics. The optimal experimental conditions of pH=7.8 methylene blue solution for optimizing the model established by response surface method are as follows: the initial concentration is 10.0 g/mL, the photocatalytic time is 48 min, the dosage is 0.05 g, and the decolorization rate of the photocatalytic degradation solution is 98.75%.

Key wordsattapulgite    titanium silicon molecular sieve    titanium silicon ratio    photocatalytic    response surface method
收稿日期: 2020-04-23      出版日期: 2022-10-24
中图分类号:  TQ17  
基金资助:国家自然科学基金资助项目(21573171);陕西省重点研发计划项目(2017GY-121);陕西省教育厅自然科学专项基金(17JK0327);西安工程大学博士科研启动基金项目(BS201932)
通讯作者: 刘宇琦     E-mail: 373438128@qq.com
作者简介: 刘宇琦(1996—), 女, 硕士, 研究方向为废水处理与资源化理论与技术, 联系地址: 陕西省西安市雁塔区金犊路航天佳苑(710000), E-mail: 373438128@qq.com
引用本文:   
张建民, 刘宇琦, 李红玑. 活化凹凸棒石合成多级孔钛硅分子筛及其光催化性能研究[J]. 材料工程, 2022, 50(10): 165-171.
Jianmin ZHANG, Yuqi LIU, Hongji LI. Synthesis of multistage porous titanium silicon molecular sieve by activated attapulgite and photocatalytic performance. Journal of Materials Engineering, 2022, 50(10): 165-171.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000355      或      http://jme.biam.ac.cn/CN/Y2022/V50/I10/165
Fig.1  不同钛硅比TS-1样品的XRD谱图
Fig.2  不同钛硅比TS-1样品的SEM照片
(a)S1;(b)S2;(c)S3;(d)S4
Fig.3  不同钛硅比TS-1样品的UV-Vis谱图
Fig.4  不同钛硅比TS-1样品的N2吸附-脱附曲线
Fig.5  不同钛硅比TS-1样品的孔径分布图
Sample SBET/(m2·g-1) Smic/(m2·g-1) Smes/(m2·g-1) Vtot/(cm3·g-1) Vmic/(cm3·g-1) Vmes/(cm3·g-1)
S1 335.883 219.590 116.293 0.213 0.127 0.086
S2 333.139 219.100 114.039 0.208 0.126 0.082
S3 285.748 172.045 113.703 0.180 0.100 0.080
S4 283.547 170.950 112.920 0.175 0.099 0.076
Table 1  不同钛硅比TS-1样品晶化产物质构特性
Fig.6  MB溶液的连续紫外-可见光谱变化
Fig.7  光催化实验后样品的UV-Vis谱图
Fig.8  MB溶液光催化降解动力学拟合图
Fig.9  投加量和光催化时间对MB溶液降解率的响应分析
Fig.10  MB溶液的连续紫外-可见光谱变化
1 TARAMASSO M, PEREGO G, NOTARI B, et al. Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides: US4410501[P]. 1983-10-18.
2 HU Y , CHEN D , TAO W , et al. Cyclohexanone ammoximation over TS-1 catalyst without organic solvent in a microreaction system[J]. Chemical Engineering Science, 2018, 187, 60- 66.
doi: 10.1016/j.ces.2018.04.044
3 QI D , GUO Y , PEI W , et al. Synthesis of hierarchically porous TS-1 zeolite with excellent deep desulfurization performance under mild conditions[J]. Microporous & Mesoporous Materials, 2018, 264, 272- 280.
4 XUE Y , ZUO G , WEN Y , et al. Seed-assisted synthesis of TS-1 crystals containing Al with high catalytic performances in cyclohexanone ammoximation[J]. RSC Advances, 2019, 9 (5): 2386- 2394.
doi: 10.1039/C8RA10104C
5 LI C , TENG X , JIAN D , et al. Hydrothermal synthesis and catalytic performance of bulky titanium silicalite-1 aggregates assembled by bridged organosilane[J]. Chinese Journal of Catalysis, 2018, 39 (2): 275- 282.
doi: 10.1016/S1872-2067(18)63026-8
6 XIONG G , HU D , GUO Q , et al. An efficient titanium silicalite-1 catalyst for propylene epoxidation synthesized by a combination of aerosol-assisted hydrothermal synthesis and recrystallization[J]. Microporous and Mesoporous Mater, 2018, 268, 93- 99.
doi: 10.1016/j.micromeso.2018.04.015
7 左士祥, 吴红叶, 刘文杰, 等. 凹凸棒石/g-C3N4/LaCoO3复合材料的制备及其光催化脱硫性能[J]. 硅酸盐学报, 2020, 48 (5): 753- 760.
7 ZUO S X , WU H Y , LIU W J , et al. Preparation of attapulgite/g-C3N4/LaCoO3 composites and their performance of photocatalytic desulfurization[J]. Journal of the Chinese Ceramic Society, 2020, 48 (5): 753- 760.
8 LUO Y T , LUO J , HUA Y X , et al. One pot synthesis of α-AgVO3/palygorskite nanocoposites with enhanced photocatalytic activity using triple roles of palygorskiter, supporter, dispersant and growth-directing agent[J]. Dalton T, 2018, 47, 16855- 16861.
doi: 10.1039/C8DT02636J
9 LAKBITA O , RHOUTA B , MAURY F , et al. Influence of the crystal structure of Ag2CO3 on the photocatalytic activity under visible light of Ag2CO3-Palygorskite nanocomposite material[J]. Applied Surface Science, 2019, 464, 205- 211.
10 LU L , LI X Y , LIU X Q , et al. Enhancing hydrostability and catalytic performance of metal-organic frameworks by hybridizing with attapulgite, a natural clay[J]. Chemistry of Materials, 2015, 3 (13): 6998- 7005.
doi: 10.1039/C5TA00959F
11 RUTKOWSKA M , PACIA I , BASAG S , et al. Catalytic performance of commercial Cu-ZSM-5 zeolite modified by desilication in NH3-SCR and NH3-SCO processes[J]. Microporous and Mesoporous Materials, 2017, 246, 193- 206.
doi: 10.1016/j.micromeso.2017.03.017
12 李红玑, 周孝德, 张建民, 等. CTAB对多级孔分子筛合成及孔道层次结构影响[J]. 无机材料学报, 2018, 33 (6): 629- 634.
12 LI H J , ZHOU X D , ZHANG J M , et al. CTAB on synthesis and pore structure of hierarchical zeolite[J]. Journal of Inorganic Materials, 2018, 33 (6): 629- 634.
13 YANG D H , LI J H , WANG X B , et al. Rapid synthesis and catalytic application of B-EU-1/ZSM-5 composite zeolite based on dual template[J]. Journal of Inorganic Materials, 2016, 31 (3): 248- 256.
doi: 10.15541/jim20150363
14 张娟, 赵地顺, 王春芳, 等. 钛硅分子筛光催化氧化二苯并噻吩的研究[J]. 化学工程, 2012, 40 (10): 60- 63.
14 ZHANG J , ZHAO D S , WANG C F , et al. Photocatalytic oxidization of dibenzothiophene by titanium-silicium molecular sieve[J]. Chemical Engineering(China), 2012, 40 (10): 60- 63.
15 吴强顺, 王慧娟, 周广顺, 等. TS-1分子筛的制备及光催化降解偶氮染料AO7[J]. 印染, 2016, 42 (20): 1- 5.
15 WU Q S , WANG H J , ZHOU G S , et al. Preparation of TS-1 molecular sieve and photocatalytic degradation of azo dye AO7[J]. Dyeing & Finishing, 2016, 42 (20): 1- 5.
16 刘群, 丁斌, 郝凤岭, 等. Ts-1分子筛光催化氧化降解偶氮染料直接湖蓝5B[J]. 印染, 2015, (23): 11- 14.
16 LIU Q , DING B , HAO F L , et al. Photocatalytic oxidation degradation of azo dye Direct Sky Blue 5B by Ts-1 molecular sieve[J]. Dyeing & Finishing, 2015, (23): 11- 14.
17 赵地顺, 王佳蕾, 张志刚, 等. TS-1分子筛光催化氧化降解氧化乐果[J]. 化学工程, 2010, 38 (2): 94- 97.
doi: 10.3969/j.issn.1005-9954.2010.02.024
17 ZHAO D S , WANG J L , ZHANG Z G , et al. Photocatalytic oxidization degradation of omethoate by using TS-1 zeolite[J]. Chemical Engineering(China), 2010, 38 (2): 94- 97.
doi: 10.3969/j.issn.1005-9954.2010.02.024
18 员汝胜, 范少龙, 周华希, 等. TS-1及HZSM-5分子筛对典型气相分子的光催化降解与选择性氧化[J]. 化学学报, 2013, 71 (10): 1401- 1410.
18 YUAN R S , FAN S L , ZHOU H X , et al. Photocatalytic degradation and selective oxidation of typical gas phase molecules with TS-1 and HZSM-5 zeolites[J]. Acta Chimica Sinica, 2013, 71 (10): 1401- 1410.
19 杨虹, 田大勇, 孙琦, 等. 多级孔TS-1分子筛研究进展[J]. 天然气化工, 2019, 44 (2): 109- 115.
19 YANG H , TIAN D Y , SUN Q , et al. Recent advances in hierarchical TS-1 zeolites[J]. Natural Gas Chemical Industry, 2019, 44 (2): 109- 115.
20 陈佩佩, 张弘, 郑华, 等. UV-Fenton光催化法深度处理紫胶漂白废水[J]. 环境工程学报, 2017, 11 (8): 4459- 4466.
20 CHEN P P , ZHANG H , ZHENG H , et al. Advanced treatment and degradation kinetics of shellac bleaching wastewater by UV-Fenton photocatalytic process[J]. Chinese Journal of Environmental Engineering, 2017, 11 (8): 4459- 4466.
21 王永磊, 刘威, 亓华, 等. 基于响应曲面法的逆向-同向流气浮工艺的优化[J]. 水处理技术, 2019, 45 (12): 31- 36.
21 WANG Y L , LIU W , QI H , et al. Optimization of countercurrent-cocurrent dissolved air floatation process based on response surface method[J]. Technology of Water Treatment, 2019, 45 (12): 31- 36.
22 ZHOU X , SUN H L , ZHANG Z Q . Application of process optimization of wasterwater treatment using response surface methodology[J]. Chemical Research and Application, 2017, 29 (6): 753- 760.
[1] 刘源, 赵华, 李会鹏, 蔡天凤, 王禹程. 碳氯共掺杂介孔g-C3N4的气泡模板法制备及光催化性能[J]. 材料工程, 2022, 50(9): 70-77.
[2] 李思骏, 邵兰兴, 冯丽, 程琥, 庄金亮. 二维Ce-MOFs纳米片的合成及可见光介导脱羧氧化性能[J]. 材料工程, 2022, 50(9): 89-96.
[3] 张铭泰, 余少彬, 李希成, 冯萃敏, 石梦童, 汪长征, 王强. 新型复合纳米材料用于光催化降解染料废水的研究进展[J]. 材料工程, 2022, 50(7): 59-68.
[4] 赵卫峰, 郝宁, 张改, 钱慧锦, 马爱洁, 周宏伟, 陈卫星. 苝四羧酸二酰亚胺修饰增强g-C3N4光催化性能[J]. 材料工程, 2022, 50(3): 98-106.
[5] 雷铭, 刘岳林, 谢水波, 葛玉杰, 刘迎九. ZnO/g-C3N4复合光催化剂的制备及光催化还原U (Ⅵ)[J]. 材料工程, 2022, 50(10): 157-164.
[6] 张文娟, 寇苗. 二维材料MXene在水处理领域的应用[J]. 材料工程, 2021, 49(9): 14-26.
[7] 褚召冉, 陈功, 赵雪伶, 林东海, 陈诚. 光子晶体在光催化领域的研究进展[J]. 材料工程, 2021, 49(8): 43-53.
[8] 李华鹏, 董旭晟, 孙彬, 周国伟. TiO2/MXene纳米复合材料的可控制备及在光催化和电化学中的应用研究进展[J]. 材料工程, 2021, 49(8): 54-62.
[9] 晏秘, 薛云, 申妍铭, 程琥, 庄金亮. 分级结构苯并噻二唑聚合物应用于可见光诱导硫醚选择性氧化[J]. 材料工程, 2021, 49(7): 64-70.
[10] 葛玉杰, 吴姣, 何志强, 王国华, 刘金香. g-C3N4基异质耦合光催化剂制备及在环境污染物去除领域的研究进展[J]. 材料工程, 2021, 49(4): 23-33.
[11] 向小倩, 廖小刚, 李纲, 胡学步, 田甜. 分级微/纳结构ZnO的制备及其光催化性能[J]. 材料工程, 2021, 49(4): 150-158.
[12] 谢桂香, 龚朋, 吕芬芬, 胡志彪. 原位构建P-N结复合材料及其可见光光催化性能[J]. 材料工程, 2021, 49(3): 107-114.
[13] 周锋, 任向红, 强洪夫, 曾逸智, 樊苗苗. GO增强g-C3N4气凝胶的可见光响应及其光催化降解偏二甲肼废水[J]. 材料工程, 2021, 49(11): 171-178.
[14] 李鹏鹏, 苏复, 顾正桂. CeO2-Ag/AgBr复合微球的合成及光催化性能[J]. 材料工程, 2020, 48(9): 69-76.
[15] 杨程, 时双强, 郝思嘉, 褚海荣, 戴圣龙. 石墨烯光催化材料及其在环境净化领域的研究进展[J]. 材料工程, 2020, 48(7): 1-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn