Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (2): 10-20    DOI: 10.11868/j.issn.1001-4381.2020.000357
  综述 本期目录 | 过刊浏览 | 高级检索 |
镁电池正极材料性能提升策略的研究进展
曾静, 武东政, 庄奕超, 赵金保
厦门大学 化学化工学院, 福建 厦门 361005
Research progress in strategies for improving performance of cathode materials for magnesium batteries
ZENG Jing, WU Dong-zheng, ZHUANG Yi-chao, ZHAO Jin-bao
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
全文: PDF(13396 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 低成本、高能量密度、高安全性的镁电池有望应用在未来大规模储能和动力汽车等领域。然而,镁电池目前仍处于初步发展的阶段,正极是限制电池性能的关键原因。由于Mg2+电荷密度高,在正极材料中扩散缓慢,因此如何提高正极材料的电化学性能是镁电池研究的重点与难点。本文通过分析正极材料的相关研究,总结出提升正极材料电化学性能的6种策略,分别为减小粒径、借助溶剂的屏蔽效应、增大层间距、调控阴离子、开发新结构和发展双离子电池。通过明确策略有效的根本原因、分析策略的优势与局限性,为高性能镁电池正极材料的开发提供有价值的指导。最后,对镁电池正极的发展现状进行总结,并对镁电池的正极及整个电池体系的未来发展趋势进行展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曾静
武东政
庄奕超
赵金保
关键词 镁电池正极提升策略电化学性能动力学    
Abstract:Magnesium batteries with the advantages of low cost, high energy density and high safety are expected to be applied in large-scale energy storage and power vehicles in the future. However, magnesium batteries are still in the early development, and cathode is the key reason that limits the battery performance. The high charge density of Mg2+ results in slow diffusion of Mg2+ in cathode materials. Therefore, how to improve the electrochemical performance of cathode materials is the focus and difficulty in the field of magnesium batteries. By analysing the related researches, six strategies for improving the electrochemical performance of cathode materials were summarized in this paper, namely, reducing the particle size, using the shielding effect of the solvent, increasing the interlayer distance, regulating anions, exploring new structures and developing double ion batteries. By clarifying the root cause that makes the strategies effective and pointing out the advantages and limitations of the strategies, this paper provides valuable guidance for the development of high-performance cathode materials for magnesium batteries. Finally, the development status of magnesium battery cathode materials was summarized, and the future development trend of cathode and the whole battery system was prospected.
Key wordsmagnesium battery    cathode    promotion strategy    electrochemical performance    kinetics
收稿日期: 2020-04-21      出版日期: 2021-02-27
中图分类号:  TN249  
基金资助:国家自然科学基金项目(21875198)
通讯作者: 赵金保(1963-),男,教授,博士,主要从事锂离子电池关键材料与技术的开发、新型低成本储能体系的研究,联系地址:福建省厦门市思明区思明南路422号厦门大学化学楼(361005),E-mail:jbzhao@xmu.edu.cn     E-mail: jbzhao@xmu.edu.cn
引用本文:   
曾静, 武东政, 庄奕超, 赵金保. 镁电池正极材料性能提升策略的研究进展[J]. 材料工程, 2021, 49(2): 10-20.
ZENG Jing, WU Dong-zheng, ZHUANG Yi-chao, ZHAO Jin-bao. Research progress in strategies for improving performance of cathode materials for magnesium batteries. Journal of Materials Engineering, 2021, 49(2): 10-20.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000357      或      http://jme.biam.ac.cn/CN/Y2021/V49/I2/10
[1] 张念,张逸航. 镁在汽车工业中的应用现状[J]. 中国有色金属, 2019(6):40-41. ZHANG N, ZHANG Y H. Application status of magnesium in automobile industry[J]. China Nonferrous Metals, 2019(6):40-41.
[2] CANEPA P, SAI GAUTAM G, HANNAH D, et al. Odyssey of multivalent cathode materials:open questions and future challenges[J]. Chemical Reviews,2017, 117(5):4287-4341.
[3] HUIE M M, BOCK D C, TAKEUCHI E S, et al. Cathode materials for magnesium and magnesium-ion based batteries[J]. Coordination Chemistry Reviews,2015, 287:15-27.
[4] AURBACH D, LU Z, SCHECHTER A, et al. Prototype systems for rechargeable magnesium batteries[J]. Nature,2000, 407(6805):724-727.
[5] 熊碧云. 国外镁电池最新发展[J]. 电源技术,2012(8):1250-1251. XIONG B Y. The latest development of foreign magnesium batteries[J]. Chinese Journal of Power Sources, 2012(8):1250-1251.
[6] 安琴友,车子璠,张辰, 等. 多价离子电池的研究现状与前沿[J]. 中国基础科学,2018(2):1-6. AN Q Y, CHE Z F, ZHANG C, et al. Research status and frontiers of multivalent ion batteries[J]. China Basic Science, 2018(2):1-6.
[7] 刘凡凡,王田甜,范丽珍. 镁离子电池关键材料研究进展[J]. 硅酸盐学报,2020, 48(7):1-16. LIU F F, WANG T T, FAN L Z. Recent development on key materials for rechargeable magnesium batteries[J]. Journal of the Chinese Ceramic Society,2020, 48(7):1-16.
[8] 刘渝萍,谢剑,李婷婷, 等. 镁-过渡金属复合物正极材料[J]. 化学进展,2014, 26(9):1596-1608. LIU Y P, XIE J, LI T T, et al. Development of Mg transition metal complex as cathode materials[J]. Progress in Chemistry,2014, 26(9):1596-1608.
[9] RONG Z, MALIK R, CANEPA P, et al. Materials design rules for multivalent ion mobility in intercalation structures[J]. Chemistry of Materials,2015, 27(17):6016-6021.
[10] LEVI E, GOFER Y, AURBACH D. On the way to rechargeable Mg batteries:the challenge of new cathode materials[J]. Chemistry of Materials,2010, 22(3):860-868.
[11] CHEN S Q, WU C, SHEN L F, et al. Challenges and perspectives for nasicon-type electrode materials for advanced sodium-ion batteries[J]. Advanced Materials,2017, 29(48):1700431.
[12] WU N, YIN Y X, GUO Y G. Size-dependent electrochemical magnesium storage performance of spinel lithium titanate[J]. Chemistry- an Asian Journal,2014, 9(8):2099-2102.
[13] YIN J F, BRADY A B, TAKEUCHI E S, et al. Magnesium-ion battery-relevant electrochemistry of MgMn2O4:crystallite size effects and the notable role of electrolyte water content[J]. Chemical Communications,2017, 53(26):3665-3668.
[14] CHENG Y W, PARENT L R, SHAO Y Y, et al. Facile synthesis of chevelphase nanocubes and their applications for multivalent energy storage[J]. Chemistry of Materials,2014, 26(17):4904-4907.
[15] GERSHINSKY G, YOO H D, GOFER Y, et al. Electrochemical and spectroscopic analysis of Mg2+ intercalation into thin film electrodes of layered oxides:V2O5 and MoO3[J]. Langmuir,2013, 29(34):10964-10972.
[16] WANG L, ASHEIM K, VULLUM P E, et al. Sponge-like porous manganese(Ⅱ,Ⅲ) oxide as a highly efficient cathode material for rechargeable magnesium ion batteries[J]. Chemistry of Materials,2016, 28(18):6459-6470.
[17] ZHAO J B, ZHANG Y Y, WANG Y H, et al. The application of nanostructured transition metal sulfides as anodes for lithium ion batteries[J]. Journal of Energy Chemistry,2018, 27(6):1536-1554.
[18] LI X L, LI Y D. MoS2 nanostructures:synthesis and electrochemical Mg2+ intercalation[J]. The Journal of Physical Chemistry B,2004, 108(37):13893-13900.
[19] LIANG Y, YOO H D, LI Y F, et al. Interlayer-expanded molybdenum disulfide nanocomposites for electrochemical magnesium storage[J]. Nano Letters,2015, 15(3):2194-2202.
[20] LIU Y C, FAN L Z, JIAO L F. Graphene intercalated in graphene-like MoS2:a promising cathode for rechargeable Mg batteries[J]. Journal of Power Sources,2017, 340:104-110.
[21] XUE X L, CHEN R P, YAN C Z, et al. One-step synthesis of 2-ethylhexylamine pillared vanadium disulfide nanoflowers with ultralarge interlayer spacing for high-performance magnesium storage[J]. Advanced Energy Materials,2019, 9(22):1900145.
[22] PEI C Y, YIN Y M, SUN R M, et al. Interchain-expanded vanadium tetrasulfide with fast kinetics for rechargeable magnesium batteries[J]. ACS Applied Materials & Interfaces,2019, 11(35):31954-31961.
[23] SHEN Y L, WANG Y J, MIAO Y C, et al. High-energy interlayer-expanded copper sulfide cathode material in non-corrosive electrolyte for rechargeable magnesium batteries[J]. Advanced Materials,2019, 32(4):1905524.
[24] YOO H D, LIANG Y L, DONG H, et al. Fast kinetics of magnesium monochloride cations in interlayer-expanded titanium disulfide for magnesium rechargeable batteries[J]. Nature Communications,2017, 8(1):339.
[25] PERERA S D, ARCHER R B, DAMIN C A, et al. Controlling interlayer interactions in vanadium pentoxide-poly(ethylene oxide) nanocomposites for enhanced magnesium-ion charge transport and storage[J]. Journal of Power Sources,2017, 343:580-591.
[26] WU D Z, ZENG J, HUA H M, et al. NaV6O15:a promising cathode material for insertion/extraction of Mg2+ with excellent cycling performance[J]. Nano Research,2020, 13(2):335-343.
[27] DENG X W, XU Y N, AN Q Y, et al. Manganese ion pre-intercalated hydrated vanadium oxide as a high-performance cathode for magnesium ion batteries[J]. Journal of Materials Chemistry A,2019, 7(17):10644-10650.
[28] XU Y N, DENG X W, LI Q D, et al. Vanadium oxide pillared by interlayer Mg2+ ions and water as ultralong-life cathodes for magnesium-ion batteries[J]. Chem,2019, 5(5):1194-1209.
[29] TANG H, XIONG F Y, JIANG Y L, et al. Alkali ions pre-intercalated layered vanadium oxide nanowires for stable magnesium ions storage[J]. Nano Energy,2019, 58:347-354.
[30] RASHAD M, ZHANG H Z, ASIF M, et al. Low-cost room-temperature synthesis of NaV3O8·1.69H2O nanobelts for Mg batteries[J]. ACS Applied Materials & Interfaces,2018, 10(5):4757-4766.
[31] ZHANG R G, YU X Q, NAM K W, et al. α-MnO2 as a cathode material for rechargeable Mg batteries[J]. Electrochemistry Communications,2012, 23:110-113.
[32] WANG M Q, YAGI S. Layered birnessite MnO2 with enlarged interlayer spacing for fast Mg-ion storage[J]. Journal of Alloys and Compounds,2020, 820:153135.
[33] ER D Q, LI J W, NAGUIB M, et al. Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries[J]. ACS Applied Materials & Interfaces,2014, 6(14):11173-11179.
[34] XU M, LEI S L, QI J, et al. Opening magnesium storage capability of two-dimensional MXene by intercalation of cationic surfactant[J]. ACS Nano,2018, 12(4):3733-3740.
[35] ZHOU L M, LIU Q, ZHANG Z H, et al. Interlayer-spacing-regulated VOPO4 nanosheets with fast kinetics for high-capacity and durable rechargeable magnesium batteries[J]. Advanced Materials,2018, 30(32):1801984.
[36] NOVÁK P, DESILVESTRO J. Electrochemical insertion of magnesium in metal oxides and sulfides from aprotic electrolytes[J]. Journal of the Electrochemical Society,1993, 140(1):140.
[37] NOVÁK P, SCHEIFELE W, JOHO F, et al. Electrochemical insertion of magnesium into hydrated vanadium bronzes[J]. Journal of the Electrochemical Society,1995, 142(8):2544.
[38] YU L, ZHANG X G. Electrochemical insertion of magnesium ions into V2O5 from aprotic electrolytes with varied water content[J]. Journal of Colloid and Interface Science,2004, 278(1):160-165.
[39] SAI GAUTAM G, CANEPA P, RICHARDS W D, et al. Role of structural H2O in intercalation electrodes:the case of Mg in nanocrystalline xerogel-V2O5[J]. Nano Letters,2016, 16(4):2426-2431.
[40] SA N, KINNIBRUGH T L, WANG H, et al. Structural evolution of reversible Mg insertion into a bilayer structure of V2O5·nH2O xerogel material[J]. Chemistry of Materials,2016, 28(9):2962-2969.
[41] JI X, CHEN J, WANG F, et al. Water-activated VOPO4 for magnesium ion batteries[J]. Nano Letters,2018, 18(10):6441-6448.
[42] NAM K W, KIM S, LEE S, et al. The high performance of crystal water containing manganese birnessite cathodes for magnesium batteries[J]. Nano Letters,2015, 15(6):4071-4079.
[43] SON S B, GAO T, HARVEY S P, et al. An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes[J]. Nature Chemistry,2018, 10(5):532-539.
[44] LEVI M D, LANCRI E, LEVI E, et al. The effect of the anionic framework of Mo6X8 chevrel phase(X=S, Se) on the thermodynamics and the kinetics of the electrochemical insertion of Mg ions[J]. Solid State Ionics,2005, 176(19/22):1695-1699.
[45] AURBACH D, SURESH G S, LEVI E, et al. Progress in rechargeable magnesium battery technology[J]. Advanced Materials,2007, 19(23):4260-4267.
[46] MAO M L, JI X, HOU S, et al. Tuning anionic chemistry to improve kinetics of Mg intercalation[J]. Chemistry of Materials,2019, 31(9):3183-3191.
[47] WANG Z T, ZHU Y Q, QIAO C, et al. Anionic Se-substitution toward high-performance CuS1-xSex nanosheet cathode for rechargeable magnesium batteries[J]. Small,2019, 15(42):1902797.
[48] TANG H, PENG Z, WU L, et al. Vanadium-based cathode materials for rechargeable multivalent batteries:challenges and opportunities[J]. Electrochemical Energy Reviews,2018, 1(2):169-199.
[49] ZENG J, YANG Y, LAI S B, et al. A promising high-voltage cathode material based on mesoporous Na3V2(PO4)3/C for rechargeable magnesium batteries[J]. Chemistry,2017, 23(66):16898-16905.
[50] ZENG J, WU D Z, WANG X, et al. Insights into the mg storage property and mechanism based on the honeycomb-like structured Na3V2(PO4)3/C/G in anhydrous electrolyte[J]. Chemical Engineering Journal,2019, 372:37-45.
[51] ORIKASA Y, MASESE T, KOYAMA Y, et al. High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements[J]. Scientific Reports,2014, 4:5622.
[52] KOKETSU T, MA J W, MORGAN B J, et al. Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2[J]. Nature Materials,2017, 16(11):1142-1148.
[53] RASHAD M, ASIF M, WANG Y X, et al. Recent advances in electrolytes and cathode materials for magnesium and hybrid-ion batteries[J]. Energy Storage Materials,2020, 25:342-375.
[54] XU Y N, CAO W J, YIN Y M, et al. Novel NaTi2(PO4)3 nanowire clusters as high performance cathodes for Mg-Na hybrid-ion batteries[J]. Nano Energy,2019, 55:526-533.
[55] CHO J H, AYKOL M, KIM S, et al. Controlling the intercalation chemistry to design high-performance dual-salt hybrid rechargeable batteries[J]. Journal of the American Chemical Society,2014, 136(46):16116-16119.
[56] GAO T, HAN F D, ZHU Y J, et al. Hybrid Mg2+/Li+ battery with long cycle life and high rate capability[J]. Advanced Energy Materials,2015, 5(5):1401507.
[57] WALTER M, KRAVCHYK K V, IBÁÑEZ M, et al. Efficient and inexpensive sodium-magnesium hybrid battery[J]. Chemistry of Materials,2015, 27(21):7452-7458.
[58] BIAN X F, GAO Y, FU Q, et al. A long cycle-life and high safety Na+/Mg2+ hybrid-ion battery built by using a TiS2 derived titanium sulfide cathode[J]. Journal of Materials Chemistry A,2017, 5(2):600-608.
[59] DONG H, LI Y F, LIANG Y L, et al. A magnesium-sodium hybrid battery with high operating voltage[J]. Chemical Communications,2016, 52(53):8263-8266.
[60] WANG Y R, WANG C X, YI X, et al. Hybrid Mg/Li-ion batteries enabled by Mg2+/Li+ co-intercalation in VS4 nanodendrites[J]. Energy Storage Materials,2019, 23:741-748.
[61] ZENG J, CAO Z L, YANG Y, et al. A long cycle-life Na-Mg hybrid battery with a chlorine-free electrolyte based on Mg(TFSI)2[J]. Electrochimica Acta,2018, 284:1-9.
[1] 侯小鹏, 曾浩, 杜邵文, 李娜, 朱怡雯, 傅小珂, 李秀涛. 基于工业化碳材料的锂氟化碳电池正极材料制备及性能[J]. 材料工程, 2022, 50(3): 107-114.
[2] 朱陈杰, 陈海权, 于有海. 静电喷雾法/原位洗脱法结合制备电致变色薄膜[J]. 材料工程, 2022, 50(1): 109-116.
[3] 杨夕馨, 常增花, 邵泽超, 吴帅锦, 王仁念, 王建涛, 卢世刚. 富锂锰基正极材料在不同温度下的极化行为[J]. 材料工程, 2021, 49(9): 69-78.
[4] 白银, 刘正东, 包汉生, 何西扣, 陈正宗. 锅炉用马氏体钢蒸汽氧化行为研究进展[J]. 材料工程, 2021, 49(6): 77-84.
[5] 杨鑫, 王犇, 谷文萍, 张兆洋, 刘世锋, 武涛. 金属激光3D打印过程数值模拟应用及研究现状[J]. 材料工程, 2021, 49(4): 52-62.
[6] 张盼盼, 黄惠, 何亚鹏, 李宵波, 郭忠诚. 锂离子电池富锂锰正极材料的最新进展[J]. 材料工程, 2021, 49(3): 48-58.
[7] 虞兮凡, 赵伶玲. 热电材料β-Cu2-xSe热传导性能模拟研究[J]. 材料工程, 2021, 49(2): 121-126.
[8] 胡秀英, 毛冲冲, 贺畅, 曹志翔, 丁一鸣, 鲍克燕. 聚席夫碱/碳纳米管复合材料的制备及储锂性能[J]. 材料工程, 2021, 49(12): 139-146.
[9] 冯昊, 符殿宝, 程佳乐, 唐寅林, 陈俊锋, 王晨, 邹林池. 压缩预变形对7050铝合金非等温时效析出行为的影响[J]. 材料工程, 2020, 48(9): 107-114.
[10] 张成林, 董抒华, 李丽君, 田龙雨, 谭洪生. E-玻纤/环氧树脂预浸料固化动力学及其动态热力学性能[J]. 材料工程, 2020, 48(9): 152-157.
[11] 杨泽南, 李赛, 于俊杰, 谢强, 王祯, 张明达, 董浩凯, 张强, 杨志刚. 合金元素配分对珠光体相变热动力学及其奥氏体化影响的研究进展[J]. 材料工程, 2020, 48(7): 61-71.
[12] 张淑娴, 邓凌峰, 连晓辉, 谭洁慧, 李金磊. 微量CNTs包覆对LiNi0.8Co0.1Mn0.1O2正极材料电化学性能的影响[J]. 材料工程, 2020, 48(5): 68-74.
[13] 李亚, 邓运来, 张劲, 田爱琴, 张勇. 7050铝合金第二相溶解行为[J]. 材料工程, 2020, 48(4): 116-122.
[14] 许剑轶, 张国芳, 胡峰, 王瑞芬, 寇勇, 张胤. La-Mg-Ni系A5B19超晶格负极材料相结构及电化学性能[J]. 材料工程, 2020, 48(2): 46-52.
[15] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn