Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (9): 69-78    DOI: 10.11868/j.issn.1001-4381.2020.000376
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
富锂锰基正极材料在不同温度下的极化行为
杨夕馨1,2,3, 常增花1,2, 邵泽超1,2, 吴帅锦1,2, 王仁念1,2, 王建涛1,2,3, 卢世刚1,2,3
1. 有研科技集团有限公司 国家动力电池创新中心, 北京 100088;
2. 国联汽车动力电池研究院有限责任公司, 北京 100088;
3. 北京有色金属研究总院, 北京 100088
Polarization behavior of lithium-rich manganese-based cathode materials at different temperatures
YANG Xi-xin1,2,3, CHANG Zeng-hua1,2, SHAO Ze-chao1,2, WU Shuai-jin1,2, WANG Ren-nian1,2, WANG Jian-tao1,2,3, LU Shi-gang1,2,3
1. National Power Battery Innovation Center, GRINM Group Corporation Limited, Beijing 100088, China;
2. China Automotive Battery Research Institute Co., Ltd., Beijing 100088, China;
3. General Research Institute for Nonferrous Metals, Beijing 100088, China
全文: PDF(8054 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 富锂锰基正极材料作为极具潜力的下一代锂离子动力电池正极材料,在不同温度下电化学性能表现出很大差异,严重限制了其在实际环境中的应用。采用多种电化学测试表征了富锂锰基材料在5~45℃温度范围内电化学性能的差异,从极化的角度分析了材料性能与温度依赖关系的影响因素。结果表明:富锂锰基材料的充放电容量随着温度的降低而降低,主要源于高电压和低电压区间内氧/锰离子反应随温度降低极化显著增大,造成其贡献的容量显著降低。这主要是因为氧/锰离子本征动力学性能差使电荷转移过程具有较高的表观活化能。此外,氧/锰离子参与电荷补偿反应使材料结构发生较大变化,一方面诱发界面膜成分发生变化,增加了低电压区间界面锂离子传输表观活化能,另一方面造成充放电末期锂离子固相扩散具有较高的表观活化能。因此,改善富锂锰基材料氧/锰离子反应动力学是提高其环境适应性的主要措施。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨夕馨
常增花
邵泽超
吴帅锦
王仁念
王建涛
卢世刚
关键词 锂离子电池富锂锰基正极材料电化学性能极化温度依赖性    
Abstract:Lithium-rich manganese-based cathode material is a promising next-generation lithium-ion battery cathode material, however, it exhibits significant differences in electrochemical performance at different temperatures, which severely limits the application in practical environments. A variety of electrochemical measures were used to characterize the difference in electrochemical performance of lithium-rich material within the temperature range of 5-45℃. The influencing factors of material properties and temperature dependence were analyzed from the perspective of polarization. The results show that the charge/discharge capacity of lithium-rich material decreases with decreasing temperature, which is mainly due to the significant increase in the polarization of the oxygen/manganese ion reaction in the high-voltage and low-voltage ranges with decreasing temperature, resulting in a severe decrease in its capacity contribution.The significantly increased polarization is mainly caused by the poor intrinsic kinetic performance of oxygen/manganese ions, which leading to high apparent activation energy of the charge transfer process. In addition, the participation of oxygen and manganese ions in the charge compensation reaction changes the structure of the material seriously.It induces changes in the composition of the interface film, which increases the apparent activation energy of lithium ion transmission at the interface in the low voltage interval. Moreover, it causes bulk diffusion of lithium ions at the end of the charge and discharge process having higher apparent activation energy. Therefore, improving the oxygen/manganese ion reaction kinetics of lithium-rich material is the main method to enhance its environmental adaptability.
Key wordslithium ion battery    lithium-rich manganese-based cathode material    electrochemical performance    polarization characteristic    temperature dependence
收稿日期: 2020-04-26      出版日期: 2021-09-17
中图分类号:  TM911  
基金资助:国家重点研发计划项目(2016YFB0301305,2018YFB0104400);国家自然科学基金项目(U1764255,21903067);有研科技集团有限公司青年基金资助项目(QGL20190062)
通讯作者: 卢世刚(1966-),男,教授,博士,主要从事电化学及其应用的研究,包括锂离子电池及其材料、燃料电池材料和熔盐电解等,联系地址:北京市怀柔区雁栖经济开发区兴科东大街11号北京有色金属研究总院(101400),E-mail:lusg8867@163.com     E-mail: lusg8867@163.com
引用本文:   
杨夕馨, 常增花, 邵泽超, 吴帅锦, 王仁念, 王建涛, 卢世刚. 富锂锰基正极材料在不同温度下的极化行为[J]. 材料工程, 2021, 49(9): 69-78.
YANG Xi-xin, CHANG Zeng-hua, SHAO Ze-chao, WU Shuai-jin, WANG Ren-nian, WANG Jian-tao, LU Shi-gang. Polarization behavior of lithium-rich manganese-based cathode materials at different temperatures. Journal of Materials Engineering, 2021, 49(9): 69-78.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000376      或      http://jme.biam.ac.cn/CN/Y2021/V49/I9/69
[1] DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: a battery of choices[J]. Science, 2011, 334(6058): 928-935.
[2] YANG Z, ZHANG J, KINTNER-MEYER M C W, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 111(5): 3577-3613.
[3] ZHAO T, JI R, MENG Y. The role of precipitant in the preparation of lithium-rich manganese-based cathode materials[J]. Chemical Physics Letters, 2019, 730: 354-360.
[4] DENG B, CHEN Y, WU P, et al. Lithium-rich layered oxide nanowires bearing porous structures and spinel domains as cathode materials for lithium-ion batteries[J]. Journal of Power Sources, 2019, 418: 122-129.
[5] HU S, LI Y, CHEN Y, et al. Insight of a phase compatible surface coating for long-durable Li-rich layered oxide cathode[J]. Advanced Energy Materials, 2019, 9(34): 1901795.
[6] 蔺佳明, 赵桃林, 王育华, 等. Li2ZrO3包覆锂离子电池正极材料Li[Li0.2Ni0.2Mn0.6]O2的制备及其电化学性能[J]. 材料工程, 2020, 48(3): 112-120. LIN J M, ZHAO T L, WANG Y H, et al. Fabrication and electrochemical performance of Li[Li0.2Ni0.2Mn0.6]O2 coated with Li2ZrO3 as cathode material for lithium-ion batteries[J]. Journal of Materials Engineering, 2020, 48(3): 112-120.
[7] WANG M J, YU F D, SUN G, et al. Co-regulating the surface and bulk structure of Li-rich layered oxides by a phosphor doping strategy for high-energy Li-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(14): 8302-8314.
[8] BAO L, YANG Z, CHEN L, et al. The effects of trace Yb doping on the electrochemical performance of Li-rich layered oxides[J]. ChemSusChem, 2019, 12(10): 2294-2301.
[9] WU Z L, XIE H, LI Y, et al. Li1.2Ni0.25Mn0.55O2: a high-capacity cathode material with a homogeneous monoclinic Li2MnO3-like superstructure[J]. Journal of Alloys and Compounds, 2020, 827: 154202.
[10] JIANG X, WANG Z, ROONEY D, et al. A design strategy of large grain lithium-rich layered oxides for lithium-ion batteries cathode[J]. Electrochimica Acta, 2015, 160: 131-138.
[11] 黄贤凯, 邵泽超, 常增花, 等.导电炭黑对富锂锰基层状氧化物电极性能的影响[J]. 材料工程, 2019, 47(8): 13-21. HUANG X K, SHAO Z C, CHANG Z H, et al. Effect of conductive carbon black on electrochemical performance of Li- and Mn-rich layered oxide electrode[J]. Journal of Materials Engineering, 2019, 47(8): 13-21.
[12] YU C, WANG H, GUAN X, et al. Conductivity and electrochemical performance of cathode xLi2MnO3·(1-x) LiMn1/3Ni1/3Co1/3O2 (x=0.1, 0.2, 0.3, 0.4) at different temperatures[J]. Journal of Alloys and Compounds, 2013, 546: 239-245.
[13] VIVEKANANTHA M, SENTHIL C, KESAVAN T, et al. Reactive template synthesis of Li1.2Mn0.54Ni0.13Co0.13O2 nanorod cathode for Li-ion batteries: influence of temperature over structural and electrochemical properties[J]. Electrochimica Acta, 2019, 317: 398-407.
[14] KOU J, CHEN L, SU Y, et al. The role of cobalt content in improving low temperature performance of layered lithium-rich cathode materials for Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(32): 17910-17918.
[15] YU H, WANG Y, ASAKURA D, et al. Electrochemical kinetics of the 0.5Li2MnO3·0.5LiMn0.42Ni0.42Co0.16O2 ‘composite’ layered cathode material for lithium-ion batteries[J]. RSC Advances, 2012, 2(23): 8797-8807.
[16] YANG S, YAN B, WU J, et al. Temperature-dependent lithium-ion diffusion and activation energy of Li1.2Co0.13Ni0.13Mn0.54O2thin-film cathode at nanoscale by using electrochemical strain microscopy[J]. ACS Applied Materials & Interfaces, 2017, 9(16): 13999-14005.
[17] CUI S, WEI Y, LIU T, et al. Optimized temperature effect of Li-ion diffusion with layer distance in Li(NixMnyCoz)O2 cathode materials for high performance Li-ion battery[J]. Advanced Energy Materials, 2016, 6(4): 1501309.
[18] YABUUCHI N, YOSHII K, MYUNG S T, et al. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo1/3Ni1/3Mn1/3O2[J]. Journal of the American Chemical Society, 2011, 133(12): 4404-4419.
[19] THACKERAY M M, KANG S H, JOHNSON C S, et al. Comments on the structural complexity of lithium-rich Li1+xM1-xO2 electrodes (M=Mn, Ni, Co) for lithium batteries[J]. Electrochemistry Communications, 2006, 8(9): 1531-1538.
[20] SATHIYA M, ROUSSE G, RAMESHA K, et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes[J]. Nature Materials, 2013, 12(9): 827-835.
[21] HONG J, LIM H D, LEE M, et al. Critical role of oxygen evolved from layered Li-excess metal oxides in lithium rechargeable batteries[J]. Chemistry of Materials, 2012, 24(14): 2692-2697.
[22] ZHU G, WEN K, LV W, et al. Materials insights into low-temperature performances of lithium-ion batteries[J]. Journal of Power Sources, 2015, 300: 29-40.
[23] WANG M, LUO M, CHEN Y, et al. Electrochemical deintercalation kinetics of 0.5Li2MnO3·0.5LiNi1/3Mn1/3Co1/3O2 studied by EIS and PITT[J]. Journal of Alloys and Compounds, 2017, 696: 907-913.
[24] WEPPNER W, HUGGINS R A. Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb[J]. Journal of the Electrochemical Society, 1977, 124(10): 1569-1578.
[25] YAMADA Y, IRIYAMA Y, ABE T, et al. Kinetics of electrochemical insertion and extraction of lithium ion at SiO[J]. Journal of the Electrochemical Society, 2010, 157(1): A26-A30.
[26] ZHANG J N, LI Q, WANG Y, et al. Dynamic evolution of cathode electrolyte interphase (CEI) on high voltage LiCoO2 cathode and its interaction with Li anode[J]. Energy Storage Materials, 2018, 14: 1-7.
[27] ZHAO E, ZHANG M, WANG X, et al. Local structure adaptability through multi cations for oxygen redox accommodation in Li-rich layered oxides[J]. Energy Storage Materials, 2020, 24: 384-393.
[28] LU P, LI C, SCHNEIDER E W, et al. Chemistry, impedance, and morphology evolution in solid electrolyte interphase films during formation in lithium ion batteries[J]. The Journal of Physical Chemistry C, 2014, 118(2): 896-903.
[29] JOW T R, ALLEN J L, MARX M, et al. Electrolytes, SEI and charge discharge kinetics of Li-ion batteries[J]. ECS Transactions, 2010, 25(36): 3-12.
[30] ASSAT G, FOIX D, DELACOURT C, et al. Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes[J]. Nature Communications, 2017, 8(1): 1-12.
[31] Van der Ven A, CEDER G, ASTA M, et al. First-principles theory of ionic diffusion with nondilute carriers[J]. Physical Review B, 2001, 64(18): 184307-184324.
[32] MOHANTY D, KALNAUS S, MEISNER R A, et al. Structural transformation of a lithium-rich Li1.2Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by in situ X-ray diffraction[J]. Journal of Power Sources, 2013, 229: 239-248.
[33] HUA W, CHEN M, SCHWARZ B, et al. Lithium/oxygen incorporation and microstructural evolution during synthesis of Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 oxides[J]. Advanced Energy Materials, 2019, 9(8): 1803094.
[34] NAYAK P K, GRINBLAT J, LEVI M, et al. Structural and electrochemical evidence of layered to spinel phase transformation of Li and Mn rich layered cathode materials of the formulae xLi[Li1/3Mn2/3]O2·(1-x) LiMn1/3Ni1/3Co1/3O2(x=0.2, 0.4, 0.6) upon cycling[J]. Journal of the Electrochemical Society, 2014, 161(10): A1534-A1547.
[35] JIANG W, YIN C, XIA Y, et al. Understanding the discrepancy of defect kinetics on anionic redox in lithium-rich cathode oxides[J]. ACS Applied Materials & Interfaces, 2019, 11(15): 14023-14034.
[36] SHI J L, XIAO D D, ZHANG X D, et al. Improving the structural stability of Li-rich cathode materials via reservation of cations in the Li-slab for Li-ion batteries[J]. Nano Research, 2017, 10(12): 4201-4209.
[1] 汪晨阳, 张安邦, 常增花, 吴帅锦, 刘智, 庞静. 锂离子电池用多孔电极结构设计及制备技术进展[J]. 材料工程, 2022, 50(1): 67-79.
[2] 朱陈杰, 陈海权, 于有海. 静电喷雾法/原位洗脱法结合制备电致变色薄膜[J]. 材料工程, 2022, 50(1): 109-116.
[3] 肖伟, 杨占旭, 乔庆东. 石墨电极表面聚丙烯腈纳米纤维膜的制备及性能[J]. 材料工程, 2021, 49(9): 60-68.
[4] 欧阳丽霞, 武兆辉, 王建涛. 锂离子电池浆料的制备技术及其影响因素[J]. 材料工程, 2021, 49(7): 21-34.
[5] 张健华, 张伟, 余章龙, 史碧梦, 杨娟玉. 锂离子电池用三维网状水系黏结剂的研究进展[J]. 材料工程, 2021, 49(6): 44-54.
[6] 曾静, 武东政, 庄奕超, 赵金保. 镁电池正极材料性能提升策略的研究进展[J]. 材料工程, 2021, 49(2): 10-20.
[7] 胡秀英, 毛冲冲, 贺畅, 曹志翔, 丁一鸣, 鲍克燕. 聚席夫碱/碳纳米管复合材料的制备及储锂性能[J]. 材料工程, 2021, 49(12): 139-146.
[8] 时志, 李兴佳, 张修丽, 孟祥建, 黄志强, 张丹丹, 徐红霞. 温度和存储周期对聚(偏氟乙烯-三氟乙烯)超薄膜极化性能的影响[J]. 材料工程, 2021, 49(11): 90-97.
[9] 高可心, 余天玮, 权威, 常增花, 李国华, 王建涛. 锂离子电池多层复合电极结构研究进展[J]. 材料工程, 2021, 49(10): 18-30.
[10] 班丽卿, 高敏, 庞国耀, 柏祥涛, 李钊, 庄卫东. 富锂锰基Li1.2[Co0.13Ni0.13Mn0.54]O2锂离子正极材料的磷改性研究[J]. 材料工程, 2020, 48(7): 103-110.
[11] 刘媛媛, 李舒婷, 彭军, 安胜利. Gd2O3掺杂量对Ce1-xGdxO2-δ电解质导电性能的影响[J]. 材料工程, 2020, 48(6): 118-124.
[12] 张淑娴, 邓凌峰, 连晓辉, 谭洁慧, 李金磊. 微量CNTs包覆对LiNi0.8Co0.1Mn0.1O2正极材料电化学性能的影响[J]. 材料工程, 2020, 48(5): 68-74.
[13] 巩桂芬, 徐阿文, 邹明贵, 邢韵, 辛浩. EVOH-SO3Li/P(VDF-HFP)/HAP锂离子电池隔膜的制备及电化学性能[J]. 材料工程, 2020, 48(5): 75-82.
[14] 刘乐浩, 莫金珊, 李美成, 赵廷凯, 李铁虎, 王大为. 纳米颗粒的自组装及其在锂离子电池中的应用[J]. 材料工程, 2020, 48(4): 15-24.
[15] 李旭, 孙晓刚, 王杰, 陈玮, 黄雅盼, 梁国东, 魏成成, 胡浩. 无黏结剂柔性Si/CNT/纤维素复合阳极及其电化学性能[J]. 材料工程, 2020, 48(4): 139-144.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn