Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (4): 135-141    DOI: 10.11868/j.issn.1001-4381.2020.000390
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
聚乳酸/聚乙二醇/羟基磷灰石多孔骨支架的3D打印制备及其生物相容性
范泽文1, 赵新宇1, 邱帅1, 王艳1,*(), 郭静1, 权慧欣2, 徐兰娟3
1 大连工业大学 纺织与材料工程学院, 辽宁 大连 116034
2 大连医科大学附属第一医院, 辽宁 大连 116011
3 郑州大学附属郑州中心医院, 郑州 450007
3D printing of polylactic acid/poly ethylene glycol/hydroxyapatite porous bone scaffolds and their biocompatibility
Ze-wen FAN1, Xin-yu ZHAO1, Shuai QIU1, Yan WANG1,*(), Jing GUO1, Hui-xin QUAN2, Lan-juan XU3
1 School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
2 First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
3 Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
全文: PDF(7456 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

聚乳酸(PLA)是一种应用广泛的生物高分子材料,但在应用过程中存在韧性、亲水性、生物活性差等缺点。用聚乙二醇(PEG)和羟基磷灰石(HA)对PLA进行改性。通过熔融共混制备不同质量比的PLA/PEG/HA复合3D打印线材,并通过分析PLA/PEG/HA线材的力学性能、结晶性能、热性能、流变性能等,筛选更适合熔融沉积成型(FDM)的3D打印成型线材,进而利用3D打印制备精度高的力学性能试样及生物相容性好、细胞可增殖和分化的生物多孔支架。结果表明:PEG的添加提高了PLA的韧性,降低了PLA的熔点。HA的添加则提高PLA/PEG/HA复合材料的弹性模量和冷结晶温度,同时HA也可以改善复合材料的加工性能。SEM与荧光标记结果表明多孔支架与细胞具有良好的生物相容性。生物支架对体外细胞的成功培养,为进一步发掘生物多孔支架在动物体内、生物医学及定制化应用方面提供了潜在可能。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
范泽文
赵新宇
邱帅
王艳
郭静
权慧欣
徐兰娟
关键词 聚乳酸3D打印多孔支架生物相容性    
Abstract

Polylactic acid (PLA) is a widely used biopolymer material. However, there are disadvantages such as poor toughness, poor hydrophilicity, and poor biological activity in the application process. It was modified with polyethylene glycol (PEG) and hydroxyapatite (HA).3D printing filaments of PLA/PEG/HA with different mass ratios were prepared by melt blending. And by analyzing the mechanical properties, crystallization properties, thermal properties, rheological properties of PLA/PEG/HA filaments, the more suitable filaments for fused deposition modeling of 3D printing (FDM) were screened, and then the high precision mechanical samples and bioporous scaffolds with good biocompatibility, cell value-added and differentiation were 3D printed. The results show that the addition of PEG improves the toughness of PLA and lowers the melting point of PLA. The addition of HA increases the elastic modulus and cold crystallization temperature of PLA/PEG/HA composites, and HA can also improve the flowability of PLA/PEG/HA composites. SEM and fluorescent labeling results show that the porous scaffold has good biocompatibility. The successful cultivation of bioscaffolds in vitro cells provides potential for further exploration of bioporous scaffolds in animals, biomedicine, and customized applications.

Key wordspolylactic acid    3D printing    porous scaffold    biocompatibility
收稿日期: 2020-04-30      出版日期: 2021-04-21
中图分类号:  TQ321.2  
基金资助:国家自然科学基金(51503023);辽宁省自然科学基金重点项目(20170520305)
通讯作者: 王艳     E-mail: wyan@163.com
作者简介: 王艳(1983-), 女, 讲师, 博士, 从事半结晶聚合物及其复合材料加工过程中形态结构控制及性能、面向3D打印的高分子材料开发及其加工新方法等研究, 联系地址: 辽宁省大连市甘井子区轻工苑一号大连工业大学纺织与材料工程学院三楼305室(116034), E-mail: wyan@163.com
引用本文:   
范泽文, 赵新宇, 邱帅, 王艳, 郭静, 权慧欣, 徐兰娟. 聚乳酸/聚乙二醇/羟基磷灰石多孔骨支架的3D打印制备及其生物相容性[J]. 材料工程, 2021, 49(4): 135-141.
Ze-wen FAN, Xin-yu ZHAO, Shuai QIU, Yan WANG, Jing GUO, Hui-xin QUAN, Lan-juan XU. 3D printing of polylactic acid/poly ethylene glycol/hydroxyapatite porous bone scaffolds and their biocompatibility. Journal of Materials Engineering, 2021, 49(4): 135-141.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000390      或      http://jme.biam.ac.cn/CN/Y2021/V49/I4/135
Fig.1  3D打印拉伸、冲击试样模型(a)和多孔支架模型(b)
Fig.2  PLA/PEG/HA线材的拉伸性能曲线
Sample Tensile strength/MPa Elongation at
break/%
Elastic modulus/
GPa
PLA 67.10 9.56 5.44
HA0 63.16 17.75 3.11
HA2 60.25 7.65 5.81
HA4 56.07 6.89 6.23
HA6 55.67 8.33 6.51
HA8 39.22 8.37 5.94
Table 1  PLA/PEG/HA线材的拉伸性能
Fig.3  PLA/PEG/HA复合材料的DCS曲线
Sample Tg/℃ Tcc/℃ ΔHcc/
(J·g -1)
Tm/℃ ΔHm/
(J·g -1)
PLA 61.39 106.64 28.42 167.72 38.63
HA0 88.89 7.22 167.39 40.93
HA2 85.96 5.07 166.30 32.37
HA4 87.42 16.40 164.99 38.21
HA6 88.67 14.91 164.32 37.65
HA8 91.32 18.96 160.46 36.18
Table 2  PLA/PEG/HA复合材料的结晶参数
Fig.4  PLA/PEG/HA复合材料的表观黏度(η*)与剪切速率(ω)曲线
Fig.5  3D打印拉伸和冲击试样的光学图片
Fig.6  3D打印试样的拉伸性能曲线
Sample Impact strength/(kJ·m-2)
PLA 1.744
HA0 2.495
HA4 2.225
HA6 2.131
Table 3  3D打印PLA/PEG/HA复合材料的冲击性能
Fig.7  PLA/PEG/HA复合材料多孔支架的SEM照片
(a),(b)表面;(c),(d)截面;(e),(f)表面放大图像
Fig.8  大鼠间充质干细胞在多孔支架上的生物相容性测试
(a),(b)细胞在生物支架表面的黏附;(c)荧光标记的细胞骨架;(d)荧光标记的细胞核
1 张平生, 辛勇, 曹传亮, 等. 壳聚糖/羟基磷灰石表面修饰聚己内酯多孔骨支架的制备及性能[J]. 材料工程, 2019, 47 (7): 64- 70.
1 ZHANG P S , XIN Y , CAO C L , et al. Preparation and properties of polycaprolactone porous bone scaffold modified with chitosan/hydroxyapatite on the surface[J]. Journal of Materials Engineering, 2019, 47 (7): 64- 70.
2 谌斯. 聚乳酸基纳米纤维仿生骨组织工程支架的构建与成骨性能研究[D]. 广州: 华南理工大学, 2018.
2 SHEN S. Construction and osteogenesis capacity study of biomimetic poly(L-lactic acid) nanofiber bone tissue engineering scaffolds[D]. Guangzhou: South China University of Technology, 2018.
3 舒华金, 吴春萱, 杨康, 等. 快速膨胀海藻酸钠/二氧化硅纤维复合支架的制备及其快速止血功能的应用[J]. 材料工程, 2019, 47 (12): 124- 129.
3 SHU H J , WU C X , YANG K , et al. Preparation of rapid expansion alginate/silica fiber composite scaffold and application of rapid hemostatic function[J]. Journal of Materials Engineering, 2019, 47 (12): 124- 129.
4 SINGH O P , AHMED S M , ABHILASH M . Modern 3D printing technologies: future trends and developments[J]. Recent Patents on Engineering, 2015, 9 (2): 91- 103.
doi: 10.2174/1872212109666150213000747
5 魏泽昌, 蔡晨阳, 王兴, 等. 生物可降解高分子增韧聚乳酸的研究进展[J]. 材料工程, 2019, 47 (5): 34- 42.
5 WEI Z C , CAI C Y , WANG X , et al. Research progress on toughening polylactic acid by renewable and biodegradable polymers[J]. Journal of Materials Engineering, 2019, 47 (5): 34- 42.
6 BHASKAR B , OWEN R , BAHMAEE H , et al. Composite porous scaffold of polyethylene glycol (PEG)/polylactic acid (PLA) support improved bone matrix deposition in vitro compared to PLA -only scaffolds[J]. Journal of Biomedical Materials Research: Part A, 2018, 106 (5): 1- 23.
7 ROSENZEWIG H R , CARELLI E , STEFFEN T , et al. 3D-printed ABS and PLA scaffolds for cartilage and nucleus pulposus tissue regeneration[J]. International Journal of Molecular Sciences, 2015, 16 (7): 15119- 15135.
8 TIZIANO S , MONICA O H , ELISABETH E , et al. Relevance of PEG in PLA-based blends for tissue engineering 3D-printed scaffolds[J]. Materials Science Engineering C, 2014, 38 (1): 55- 62.
9 MEUNIER M , GOUPIL A , LIENARD P . Predicting drug loading in PLA-PEG nanoparticles[J]. International Journal of Pharmaceutics, 2017, 526 (1): 157- 166.
10 WANG F , HU Y , HE D , et al. Scaffold-free cartilage cell sheet combined with bone-phase BMSCs-scaffold regenerate osteochondral construct in mini-pig model[J]. American Journal of Translational Research, 2018, 10 (10): 2997- 3010.
11 吴景梅, 丁厚远. 聚乙二醇改性聚乳酸的合成与表征[J]. 塑料工业, 2016, 44 (11): 34- 36.
11 WU J M , DING H Y . Characterization and synthesis of polyethylene glycol modified PLA[J]. Plastics Industry, 2016, 44 (11): 34- 36.
12 YAO Q , SONG Z , LI J , et al. Micromorphology, mechanical, crystallization and permeability properties analysis of HA/PBAT/PLA degradability packaging films[J]. Polymer International, 2019, 69 (3): 5953- 5959.
13 梁多平, 智慧, 孙智慧, 等. 改性纳米HA对PLA-PBAT共混体系结晶与流变性能的影响[J]. 复合材料学报, 2014, 31 (3): 569- 577.
13 LIANG D P , ZHI H , SUN Z H , et al. Effects of modified nano HA on crystallization and rheological properties of PLA-PBAT blends[J]. Acta Materiae Compositae Sinica, 2014, 31 (3): 569- 577.
14 WANG N , ZANG Y J , REN G Z , et al. Fabrication and properties of porous scaffolds of PLA-PEG biocomposite for bone tissue engineering[J]. Materials Science Forum, 2014, 789 (1): 130- 135.
15 JIA S , YU D , WANG Z , et al. Morphologies, crystallization, and mechanical properties of PLA-based nanocomposites: synergistic effects of PEG/HNTs[J]. Journal of Applied Polymer Science, 2019, 1 (1): 47385- 47395.
16 郭姝, 邹涛, 赵瑾, 等. PEG、PPG改性PLA材料的性能研究[J]. 中国塑料, 2018, 32 (3): 44- 50.
16 GUO S , ZOU T , ZHAO J , et al. Study on properties of poly (lactic acid)/polyethylene glycolor polypropylene glycol blends[J]. China Plastics, 2018, 32 (3): 44- 50.
17 金日光, 华幼卿. 高分子物理[M]. 4版 北京: 北京工业出版社, 2013: 263- 267.
17 JIN R G , HUA Y Q . Polymer physics[M]. 4th ed Beijing: Beijing Industry Press, 2013: 263- 267.
18 谢燕, 包睿莹, 杨鸣波, 等. 聚多巴胺包覆对立构复合聚乳酸支架性能的影响[J]. 高分子材料科学与工程, 2018, 34 (8): 43- 47.
18 XIE Y , BAO R Y , YANG M B , et al. Effect of poly(dopamine) coating on the performance of stereocomplex polylactide scaffolds[J]. Polymer Materials Science and Engineering, 2018, 34 (8): 43- 47.
[1] 李守佳, 罗春燕, 陈卫星, 方铭港, 孙健鑫. 氧化石墨烯接枝聚乙二醇对左旋聚乳酸结晶行为和热稳定性的影响[J]. 材料工程, 2022, 50(8): 99-106.
[2] 李文利, 周宏志, 刘卫卫, 于海宁, 王晶, 巩磊, 邢占文. 光固化3D打印陶瓷浆料及流变性研究进展[J]. 材料工程, 2022, 50(7): 40-50.
[3] 吴晓芳, 陈凯, 张德坤. 可降解水凝胶作为关节软骨修复材料的研究进展[J]. 材料工程, 2022, 50(2): 12-22.
[4] 万李, 王海蟒, 蔡谞, 胡刻铭, 岳文, 张洪玉. 骨软骨组织工程仿生梯度支架研究进展[J]. 材料工程, 2022, 50(2): 38-49.
[5] 陈倩, 赵雪阳, 尤德强, 曾戎, 于振涛, 李卫, 王小健. 3D打印纯钛骨支架表面掺银介孔生物活性玻璃涂层的性能研究[J]. 材料工程, 2022, 50(11): 34-45.
[6] 刘宸希, 康红军, 吴金珠, 曹宁宁, 吴晓宏. 3D打印技术及其在医疗领域的应用[J]. 材料工程, 2021, 49(6): 66-76.
[7] 汤桂平, 严倩, 刘洁, 宋波, 文世峰, 史玉升. 3D打印琼脂糖和海藻酸钠复合水凝胶组织与性能研究[J]. 材料工程, 2021, 49(5): 66-74.
[8] 王海博, 李春燕, 李金玲, 王顺平, 寇生中. Fe基非晶合金粉末的研究进展[J]. 材料工程, 2021, 49(4): 34-51.
[9] 孙文昕, 樊丽君, 郑钟印, 邹玉红, 田景睿, 曾荣昌. 医用金属表面含锶涂层耐蚀性和生物相容性研究进展[J]. 材料工程, 2021, 49(12): 72-82.
[10] 李梦娟, 韩荣, 张静雅, 许永正, 黄梦媛, 贡浩天, 吴采芩. 海水可降解Fe3O4@PVA/PLGA复合膜的制备及性能[J]. 材料工程, 2021, 49(12): 130-138.
[11] 刘雨, 陈张伟. 陶瓷光固化3D打印技术研究进展[J]. 材料工程, 2020, 48(9): 1-12.
[12] 曲丽丹, 韩斌慧, 吕云卓, 白钰枝. 激光3D打印非晶合金晶化体积分数的理论预测[J]. 材料工程, 2020, 48(7): 133-138.
[13] 郑镭, 孙维连, 孙铂, 张雪静, 纪宏超. 挤出方式对黏弹性浆料3D打印出料可控性的影响[J]. 材料工程, 2020, 48(3): 134-141.
[14] 刘继涛, 钏定泽, 杨泽斌, 陈希亮, 颜廷亭, 陈庆华. 氨基酸/羟基磷灰石复合材料的制备与表征及其在酸蚀牛牙釉质体外再矿化中的应用[J]. 材料工程, 2020, 48(2): 100-107.
[15] 马绪强, 苏正涛. 民用航空发动机树脂基复合材料应用进展[J]. 材料工程, 2020, 48(10): 48-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn