Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (5): 171-177    DOI: 10.11868/j.issn.1001-4381.2020.000412
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
完全非晶态Ni-B合金镀层的电沉积制备
韩锡正, 费敬银(), 赵利娜, 燕宝强, 王俊
西北工业大学 理学院, 西安 710129
Electrodeposition of completely amorphous Ni-B alloy coatings
Xi-zheng HAN, Jing-yin FEI(), Li-na ZHAO, Bao-qiang YAN, Jun WANG
College of Science, Northwestern Polytechnical University, Xi'an 710129, China
全文: PDF(22049 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

为解决制备Ni-B合金镀层时难以获得高非晶化结构的问题,采用控制变量法探索镀液成分对Ni-B合金镀层非晶化过程的影响规律,电沉积法制备出高B非晶态Ni-B复合镀层。采用X射线衍射技术(XRD)表征沉积层的相结构,利用场发射扫描电镜(FESEM)和能谱分析(EDS)考察沉积层的微观形貌和元素分布组成。结果表明:通过控制溶液组分,沉积层发生从晶态到非晶态的转变。所得沉积层非晶化程度较高,此体系可电沉积获得表面完整、紧密细致、几乎没有金属晶体衍射峰的非晶态Ni-B合金沉积层,沉积层中B含量可提高至10.21%(质量分数)。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩锡正
费敬银
赵利娜
燕宝强
王俊
关键词 Ni-B合金电沉积非晶态材料高B    
Abstract

In order to solve the problem that it is difficult to prepare highly amorphous Ni-B alloy coating, the control variable method was used to explore the influence law of bath composition on the amorphous process of Ni-B alloy coating, and the electrodeposition method was used to prepare high-B amorphous Ni-B composite coating. X-ray diffraction (XRD) was used to characterize the phase structure of the sedimentary layer, and field emission scanning electron microscopy (FESEM) and energy spectrum analysis (EDS) were used to investigate the microscopic morphology and element distribution composition of the sedimentary layer. The results show that the sedimentary layer can be changed from crystalline state to amorphous state by controlling the composition of solution. The resulting sediments are highly amorphous. This system can be electrodeposited to obtain amorphous Ni-B alloy sediments with a complete, close and meticulous surface, and almost no metal crystal diffraction peak. The content of B in the sediments can be increased to 10.21%(mass fraction).

Key wordsNi-B alloy    electrodeposition    amorphous material    high B
收稿日期: 2020-05-07      出版日期: 2021-05-21
中图分类号:  TG174.441  
通讯作者: 费敬银     E-mail: jyfei@nwpu.edu.cn
作者简介: 费敬银(1962-), 男, 副教授, 博士, 主要从事新型功能表面改性技术与应用方面的研究工作, 联系地址: 陕西省西安市西北工业大学长安校区理学院(710129), jyfei@nwpu.edu.cn
引用本文:   
韩锡正, 费敬银, 赵利娜, 燕宝强, 王俊. 完全非晶态Ni-B合金镀层的电沉积制备[J]. 材料工程, 2021, 49(5): 171-177.
Xi-zheng HAN, Jing-yin FEI, Li-na ZHAO, Bao-qiang YAN, Jun WANG. Electrodeposition of completely amorphous Ni-B alloy coatings. Journal of Materials Engineering, 2021, 49(5): 171-177.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000412      或      http://jme.biam.ac.cn/CN/Y2021/V49/I5/171
NiCl2·6H2O C2H8N2 KBH4 NaKC4H4O6·4H2O (CH3COO)2Pb SDS
50 12.62-88.35 0.1-6 20-60 0.4 0.05
Table 1  镀液组成(g·L-1)
Fig.1  不同KBH4浓度所得沉积层的XRD谱图
Fig.2  不同KBH4浓度时沉积层的微观形貌
(a)0.1 g/L;(b)1 g/L;(c)2 g/L;(d)3 g/L;(e)4 g/L;(f)5 g/L;(g)6 g/L
Fig.3  不同乙二胺浓度所得沉积层的XRD谱图
Fig.4  乙二胺浓度对沉积层微观形貌的影响
(a)1∶1;(b)1∶2;(c)1∶3;(d)1∶4;(e)1∶5;(f)1∶6
Fig.5  不同酒石酸钾钠浓度所得沉积层的XRD谱图
Fig.6  不同酒石酸钾钠浓度下沉积层的微观形貌
(a)20 g/L;(b)30 g/L;(c)40 g/L;(d)50 g/L;(e)60 g/L
Fig.7  元素EDS能谱(a)及元素分布面扫描图(b)
1 LITVINENKO Y M . Production of metal powders by the rapid cooling of a melt[J]. Powder Metallurgy & Metal Ceramics, 1998, 37 (9): 460- 463.
doi: 10.1007/BF02675803
2 LV P , WANG H P . Effects of undercooling and cooling rate on peritectic phase crystallization within Ni-Zr alloy melt[J]. Meta-llurgical & Materials Transactions B, 2018, 49 (2): 1- 10.
doi: 10.1007/s11663-018-1189-8
3 ZHANG D , CHEN C , WANG X , et al. Synthesis of PtAu alloy nanocrystals in micelle nanoreactors enabled by flash heating and cooling[J]. Particle & Particle Systems Characterization, 2018, 35 (5): 1700413.
4 GIAMPAOLO A R D , ORDONEZ J G , GUGLIEMACCI J M , et al. Electroless nickel-boron coatings on metal carbides[J]. Surf Coat Tech, 1997, 89 (1): 127- 131.
5 XUE D , DENG J F . Amorphous Ni-B alloy/ceramic composite membrane prepared by an improved electroless plating technique[J]. Materials Letters, 2001, 47 (4/5): 271- 275.
6 WEN M , LI L J , LIU Q , et al. The preparation of well-dispersed Ni-B amorphous alloy nanoparticles at room temperature[J]. Journal of Alloys & Compounds, 2008, 455 (1/2): 510- 515.
7 CORREA E , ZULETA A A , GUERRA L , et al. Coating development during electroless Ni-B plating on magnesium and AZ91D alloy[J]. Surf Coat Tech, 2013, 232, 784- 794.
doi: 10.1016/j.surfcoat.2013.06.100
8 SUN J , ZHANG X W . Preparation and properties of rare earth modified electroless plating coating on titanium alloy surface[J]. Surface Technology, 2018, 47 (4): 196- 200.
9 WU W P , JIANG J J . Effect of plating temperature on electroless amorphous Ni-P film on Si wafers in an alkaline bath solution[J]. Applied Nanotechnology, 2017, 7 (6): 325- 333.
10 HUR K H , JEONG J H , LEE D N . Microstructures and crysta-llization of electroless Ni-P deposits[J]. Journal of Materials Science, 1990, 25 (5): 2573- 2584.
doi: 10.1007/BF00638061
11 DEHGHANIAN , CHANGIZ , MADAH , et al. Investigations on the wear mechanisms of electroless Ni-B coating during dry sli-ding and endurance life of the worn surfaces[J]. Surface & Coa-tings Technology, 2015, 282, 6- 15.
12 CELIK I , KARAKAN M , BULBUL F . Investigation of struc-tural and tribological properties of electroless Ni-B coated pure titanium[J]. Proceedings of the Institution of Mechanical Engineers: Part J, 2016, 230 (1): 57- 63.
doi: 10.1177/1350650115588568
13 VITRY V , KANTA A-F , DELAUNOIS F . Mechanical and wear characterization of electroless nickel-boron coatings[J]. Surface and Coatings Technology, 2011, 206 (7): 1879- 1885.
doi: 10.1016/j.surfcoat.2011.08.008
14 GILLEY K L , NINO J C , RIDDLE Y W , et al. Heat treatments modify the tribological properties of nickel boron coatings[J]. ACS Appl Mater Interfaces, 2012, 4 (6): 3069- 3076.
doi: 10.1021/am3004297
15 MUKHOPADHYAY A , DUARI S , BARMAN T K , et al. Tribological performance optimization of electroless Ni-B coating under lubricated condition using hybrid grey fuzzy logic[J]. Journal of the Institution of Engineers, 2016, 97 (2): 215- 231.
doi: 10.1007/s40033-015-0098-0
16 BAGHBANAN M , ERB U , PALUMBO G . Towards the application of nanocrystalline metals in MEMS[J]. Physica Status Solidi(A) Applications and Materials, 2006, 203 (6): 1259- 1264.
doi: 10.1002/pssa.200566155
17 SHI Z Y , WANG D Q , DING Z M . Surface strengthening pure copper by Ni-B coating[J]. Applied Surface Science, 2004, 221 (1/4): 62- 68.
18 OGIHARA H , UDAGAWA K , SAJI T . Effect of boron content and crystalline structure on hardness in electrodeposited Ni-B alloy films[J]. Surface and Coatings Technology, 2012, 206 (Su-ppl 11/12): 2933- 2940.
19 MOHAMMAD M , ALIREZA A . Microstructural characterization of electrodeposited and heat-treated Ni-B coatings[J]. Surface and Coatings Technology, 2018, 349, 442- 451.
doi: 10.1016/j.surfcoat.2018.06.022
20 SHAKOOR R A , KAHRAMAN R , WAWARE U , et al. Properties of electrodeposited Ni-B-Al2O3 composite coatings[J]. Materials & Design, 2014, 64, 127- 135.
21 MONTEIRO O R , MURUGESAN S , KHABASHESKU V . Electroplated Ni-B films and Ni-B metal matrix diamond nanocomposite coatings[J]. Surface and Coatings Technology, 2015, 272, 291- 297.
doi: 10.1016/j.surfcoat.2015.03.049
22 彭秋艳, 费敬银, 陈居田, 等. 双向脉冲快速电沉积非晶态Ni-P/Al2O3复合镀层[J]. 材料工程, 2018, 46 (3): 81- 90.
22 PENG Q Y , FEI J Y , CHEN J T , et al. Fast electrodeposition of amorphous Ni-P/Al2O3composite coatings deposited by Bi-directional pulse[J]. Journal of Materials Engineering, 2018, 46 (3): 81- 90.
23 WEI S Q , OYANAGI H , LI Z R , et al. X-ray-absorption fine structure study on devitrification of ultrafine amorphous Ni-B alloys[J]. Physical Review B Condensed Matter, 2001, 63 (22): 224201- 1.
doi: 10.1103/PhysRevB.63.224201
[1] 汤洋. 电沉积ZnO纳米柱的光学带隙与非辐射复合[J]. 材料工程, 2022, 50(3): 90-97.
[2] 郭琪琪, 费敬银, 张嫚, 韩锡正, 赵利娜. Fei氏方波对Ni-P合金镀层组成及其非晶化程度的调控作用[J]. 材料工程, 2020, 48(6): 163-169.
[3] 彭秋艳, 费敬银, 陈居田, 赵非凡, 冯旭. 双向脉冲快速电沉积非晶态Ni-P/Al2O3复合镀层[J]. 材料工程, 2018, 46(3): 81-90.
[4] 史艳华, 赵杉林, 王玲, 梁平, 关学雷. 稀土Ce掺杂纳米晶Mn-Mo-Ce氧化物阳极及其选择电催化性能[J]. 材料工程, 2017, 45(9): 72-80.
[5] 魏红阳, 常萌蕾, 陈东初, 王梅丰, 叶秀芳. 太阳能吸收AAO复合氧化膜的制备与性能[J]. 材料工程, 2017, 45(11): 42-48.
[6] 金世伟, 康敏, 邵越, 杜晓霞, 张欣颖. 热处理非晶态Ni-P合金镀层的晶化过程[J]. 材料工程, 2016, 44(9): 115-120.
[7] 史艳华, 赵杉林, 梁平, 王玲, 关学雷. pH值对阳极电沉积Mn-Mo氧化物结构与性能的影响[J]. 材料工程, 2016, 44(12): 7-12.
[8] 张闫, 费敬银, 李倍, 赵非凡, 彭秋艳. 快速电沉积法制备镍基金刚石复合镀层[J]. 材料工程, 2016, 44(10): 24-32.
[9] 贺显聪, 郝菀, 皮锦红, 张传香, 沈鸿烈. 合成Cu2ZnSnS4薄膜四元共电沉积机理与退火相转变[J]. 材料工程, 2015, 43(4): 66-72.
[10] 马云, 沈理达, 田宗军, 刘志东, 朱军. 脉冲摩擦喷射电沉积制备纳米晶镍沉积层[J]. 材料工程, 2014, 0(3): 60-65.
[11] 陈娜, 苏革, 柳伟, 曹立新, 马德文, 戚新颖. 锰掺杂氧化镍薄膜的电沉积及性能[J]. 材料工程, 2014, 0(11): 67-72.
[12] 李运刚, 田薇, 方秀君. 制备工艺参数对Cu表面Cu/Si梯度层断面显微组织的影响[J]. 材料工程, 2013, (2): 65-68,98.
[13] 关永永, 徐瑞东, 黄利平, 孔营, 陈步明. Al/Pb/α-PbO2惰性阳极材料制备及电化学性能[J]. 材料工程, 2013, (2): 87-92.
[14] 张著, 郭忠诚, 龙晋明, 曹梅. 电流密度对甲基磺酸盐电沉积亚光锡的影响[J]. 材料工程, 2012, 0(4): 76-81.
[15] 冯长杰, 杜楠, 王春霞, 何业东. 水平震荡机械研磨对酸性镀铜微观结构的影响[J]. 材料工程, 2011, 0(6): 81-86,98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn