Abstract:The rapid development of photocatalytic technology has attracted attention in the field of decontamination of chemical agents (CWAs). Owing to high-efficiency, broad-spectrum, and environmentally friendly features, photocatalytic technology can overcome many problems encountered by traditional decontamination technology, such as the problem of soil corrosion, and is suitable for the degradation of CWAs. Researchers have conducted a lot of researches on this, and there are also related reviews to discuss in detail the mechanism and application of photocatalytic degradation of CWAs. However, there are many pieces of literature on traditional photocatalytic materials, and few have summarized the mechanism and application of new photocatalytic materials in the degradation of CWAs. Therefore, in this paper, the mechanism of photocatalytic degradation of CWAs, species of photocatalytic materials, the application of photocatalytic degradation of CWAs, especially the researches of new photocatalytic materials, such as metal-organic frameworks, degradation agents were summarized in detail. Photocatalytic technology has advantages over other technologies in the treatment of low-concentration, refractory CWAs. However, the research is still in the laboratory stage and is mostly simulated agent experiments. There are still obstacles when applied to the degradation of real CWAs. In the future, wearable photocatalytic protective materials may be worthy of further research. At the same time, photocatalytic technology has proved to have certain potential in the large-scale destruction of poisons.
[1] LI Z, JI S, LIU Y, et al. Well-defined materials for heterogeneous catalysis:from nanoparticles to isolated single-atom sites[J]. Chemical Reviews, 2019, 120(2):623-682.
[2] GUO Q, MA Z, ZHOU C, et al. Single molecule photocatalysis on TiO2 surfaces:focus review[J]. Chemical Reviews, 2019, 119(20):11020-11041.
[3] FRANK S N, BARD A J. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders[J]. The Journal of Physical Chemistry, 1977, 81(15):1484-1488.
[4] 王志成,习海玲,孔令策. NTf2中Fe2+催化氧化芥子气模拟剂CEES研究[J]. 分子催化, 2016, 30(4):354-362. WANG Z C, XI H L, KONG L C. Iron(Ⅱ)-catalyzed oxidation of HD simulant CEES in ionic liquids NTf2[J]. Journal of Molecular Catalysis, 2016, 30(4):354-362.
[5] BISHENG T, RUFANG P, XIAOMING C. Evaluation of chemical and biological warfare agents destruction[J]. Journal of Chongqing University, 2006, 29:127-131.
[6] McLINTOCK I S, RITCHIE M. Reactions on titanium dioxide; photo-adsorption and oxidation of ethylene and propylene[J]. Transactions of the Faraday Society, 1965, 61:1007-1016.
[7] CAREY J H, LAWRENCE J, TOSINE H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions[J]. Bulletin of Environmental Contamination and Toxicology, 1976, 16(6):697-701.
[8] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358):37-38.
[9] OLLIS D. Contaminant degradation in water[J]. Environmental Science & Technology, 1985, 19(6):480-484.
[10] 韩世同,习海玲,史瑞雪,等.半导体光催化研究进展与展望[J].化学物理学报, 2003, 16(5):339-349. HAN S T, XI H L, SHI R X, et al. Prospect and progress in the semiconductor photocatalysis[J]. Chinese Journal of Chemical Physics, 2003, 16(5):339-349.
[11] HAN Z H, ZHAO H Q. Progress in applied research of the heterogeneous photocatalysis on semiconductors[J]. Progress in Chemistry, 1999, 11(1):1-10.
[12] ROMERO M, BLANCO J, SANCHEZ B, et al. Solar photocatalytic degradation of water and air pollutants:challenges and perspectives[J]. Solar Energy, 1999, 66(2):169-182.
[13] WAGNER G W, BARTRAM P W, KOPER O, et al. Reactions of VX, GD, and HD with nanosize MgO[J]. The Journal of Physical Chemistry B, 1999, 103(16):3225-3228.
[14] WAGNER G W, PROCELL L R, O'CONNOR R J, et al. Reactions of VX, GB, GD, and HD with nanosize Al2O3. Formation of aluminophosphonates[J]. Journal of the American Chemical Society, 2001, 123(8):1636-1644.
[15] 蔺伟,韩微莉. 金属有机框架在催化中的研究进展[J]. 杭州化工, 2018, 48(1):4-8. LIN W, HAN W L. Research progress of metal organic frameworks in catalysis[J]. Hangzhou Chemical Industry, 2018, 48(1):4-8.
[16] WANG X, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8(1):76-80.
[17] 韩丽珍,杨艺欣,张婧,等. 石墨相氮化碳材料在样品前处理中的研究进展[J]. 色谱, 2020, 38(1):28-35. HAN L Z, YANG Y X, ZHANG J, et al. Research progress of graphite carbon nitride materials for sample pretreatment[J]. Chinese Journal of Chromatography, 2020, 38(1):28-35.
[18] GIANNAKOUDAKIS D A, SEREDYCH M, RODRÍGUEZ-CASTELLÓN E, et al. Mesoporous graphitic carbon nitride-based nanospheres as visible-light active chemical warfare agents decontaminant[J]. Chem Nano Mat, 2016, 2(4):268-272.
[19] 周锋,任向红,刘建友,等. 光催化降解水体有机污染物的研究进展[J]. 材料工程, 2018, 46(10):9-19. ZHOU F, REN X H, LIU J Y, et al. Decelopment of photocatalytic degradation of organic pollutants in water[J]. Journal of Materials Engineering, 2018, 46(10):9-19.
[20] WANG H, MAHLE J J, TOVAR T M, et al. Solid-phase detoxification of chemical warfare agents using zirconium-based metal organic frameworks and the moisture effects:analyze via digestion[J]. ACS Applied Materials & Interfaces, 2019, 11(23):21109-21116.
[21] PLATERO-PRATS A E, MAVRANDONAKIS A, GALLINGTON L C, et al. Structural transitions of the metal-oxide nodes within metal-organic frameworks:on the local structures of NU-1000 and UiO-66[J]. Journal of the American Chemical Society, 2016, 138(12):4178-4185.
[22] RUFFLEY J P, GOODENOUGH I, LUO T-Y, et al. Design, synthesis, and characterization of metal-organic frameworks for enhanced sorption of chemical warfare agent simulants[J]. The Journal of Physical Chemistry C, 2019, 123(32):19748-19758.
[23] WU X Q, WEN G X, WU Y P, et al. A novel 3D Ag (I)-MOF:surfactant-directed syntheses and catalytic degradation of o/m/p-nitrophenol[J]. Journal of Solid State Chemistry, 2016, 242:243-247.
[24] 刘晓慧. 功能化多孔有机聚合物(POPs)催化剂的制备及其催化性能的研究[D]. 南昌:南昌大学, 2018. LIU X H. Preparation of functionalized porous organic polymer (POPs) catalysts and their catalytic performance[D]. Nanchang:Nanchang University, 2018.
[25] 支永峰,马思,刘晓明. 多孔有机聚合物非均相光催化研究进展[J]. 高分子通报, 2018(6):160-171. ZHI Y F, MA S, LIU X M. Progress of porous organic polymers in heterogeneous photocatalysis[J]. Polymer Bulletin, 2018(6):160-171.
[26] TOTTEN R K, WESTON M H, PARK J K, et al. Catalytic solvolytic and hydrolytic degradation of toxic methyl paraoxon with La (catecholate)-functionalized porous organic polymers[J]. ACS Catalysis, 2013, 3(7):1454-1459.
[27] TOTTEN R K, KIM Y-S, WESTON M H, et al. Enhanced catalytic activity through the tuning of micropore environment and supercritical CO2 processing:Al (Porphyrin)-based porous organic polymers for the degradation of a nerve agent simulant[J]. Journal of the American Chemical Society, 2013, 135(32):11720-11723.
[28] LIU Q, TANG Z, WU M, et al. Design, preparation and application of conjugated microporous polymers:design, preparation and application of conjugated[J]. Polymer International, 2014, 63(3):381-392.
[29] LIRAS M, IGLESIAS M, SÁNCHEZ F. Conjugated microporous polymers incorporating BODIPY moieties as light-emitting materials and recyclable visible-light photocatalysts[J]. Macromolecules, 2016, 49(5):1666-1673.
[30] MA L, LIU Y, LIU Y, et al. Ferrocene-linkage-facilitated charge separation in conjugated microporous polymers[J]. Angewandte Chemie (International Edition), 2019, 58(13):4221-4226.
[31] CAO M, PANG R, WANG Q Y, et al. Porphyrinic silver cluster assembled material for simultaneous capture and photocatalysis of mustard-gas simulant[J]. Journal of the American Chemical Society, 2019, 141(37):14505-14509.
[32] 齐菲,孙迎雪,常学明,等. 石墨相氮化碳光催化灭活水中多重耐药菌研究[J]. 中国环境科学, 2018, 38(10):3767-3774. QI F, SUN Y X, CHANG X M, et al. Graphite carbon nitride(g-C3N4)photocatalytic disinfection on a multidrug resistant E.coli strain from secondary effluent[J]. China Environmental Science, 2018, 38(10):3767-3774.
[33] 陈芳艳,倪建玲,唐玉斌. 光助Fenton法在废水处理中的应用研究进展[J]. 工业用水与废水, 2008, 39(3):12-16. CHEN F Y, NI J L, TANG Y B. Research progress of application of photo-Fenton oxidation in wastewater treatment[J]. Industrial Water & Wastewater, 2008, 39(3):12-16.
[34] 雷乐成. 水处理高级氧化技术[M]. 哈尔滨:哈尔滨工业大学出版社, 2007. LEI L C. Advanced oxidation technology for water treatment[M]. Harbin:Harbin Institute of Technology Press, 2007.
[35] 张乃东,黄君礼. 强化UV/Fenton法降解水中苯酚的研究[J]. 环境污染治理技术与设备, 2002, 3(2):20-22. ZHANG N D, HUANG J L. Treatment of phenols-containing wastewater by photo-Fenton process[J]. Techniques and Equipment for Environmental Pollution Control, 2002, 3(2):20-22.
[36] MA L P, WU Z S, LI J, et al. Hydrogen adsorption behavior of graphene above critical temperature[J]. International Journal of Hydrogen Energy, 2009, 34(5):2329-2332.
[37] 相欣奕,郑怀礼,甄卓廉,等. 光助Fenton反应降解水溶性染料曙红Y脱色研究[J]. 能源环境保护, 2006(1):27-30. XIANG X Y, ZHENG H L, ZHEN Z L, et al. Study of photocatalysis decolorization of eosin Y by Fenton's reagent[J]. Environmental Protection, 2006(1):27-30.
[38] 张德莉,黄应平,罗光富,等. Fenton及Photo-Fenton反应研究进展[J]. 环境化学, 2006, 25(2):121-127. ZHANG D L, HUANG Y P, LUO G F, et al. Research progress of Fenton and Photo-Fenton reaction[J]. Environmental Chemistry, 2006, 25(2):121-127.
[39] 谢银德,陈锋,何建军,等. Photo-Fenton反应研究进展[J]. 影像科学与光化学, 2000, 18(4):357-365. XIE Y D, CHEN F, HE J J, et al.Recent advance in Photo-Fenton reaction[J]. Photographic Science and Photochemistry, 2000, 18(4):357-365.
[40] YURANOVA T, ENEA O, MIELCZARSKI E, et al. Fenton immobilized photo-assisted catalysis through a Fe/C structured fabric[J]. Applied Catalysis B:Environmental, 2004, 49(1):39-50.
[41] 王伟忠,柳丽芬,杨凤林,等. UV/Fenton氧化苯酚反应与磁场作用的耦合研究[J]. 环境污染与防治, 2005, 27(1):79-79. WANG W Z, LIU L F, YANG F L, et al. Research on the coupling of UV/Fenton oxidation reaction of phenol and magnetic field[J]. Environmental Pollution & Control, 2005, 27(1):79-79.
[42] 刘金库,王健,鲁红升,等.光助Fenton氧化-混凝法联合处理含聚合物油田污水技术[J]. 精细石油化工进展,2005, 6(4):4-7. LIU J K, WANG J, LU H S, et al.Technique combining photo-Fenton oxidation and flocculation to treat oilfield sewage containing polymer[J]. Advances in Fine Petrochemicals, 2005, 6(4):4-7.
[43] NOSAKA Y, NOSAKA A Y. Generation and detection of reactive oxygen species in photocatalysis[J]. Chemical Reviews, 2017, 117(17):11302-11336.
[44] HOFFMANN M R, MARTIN S T, CHOI W, et al. Environmental applications of semiconductor photocatalysis[J]. Chemical Reviews, 1995, 95(1):69-96.
[45] MILLS A, LE HUNTE S. An overview of semiconductor photocatalysis[J]. Journal of Photochemistry and Photobiology A:Chemistry, 1997, 108(1):1-35.
[46] VORONTSOV A V, SAVINOV E V, DAVYDOV L, et al. Photocatalytic destruction of gaseous diethyl sulfide over TiO2[J]. Applied Catalysis B:Environmental, 2001, 32(1):11-24.
[47] 管臣,习海玲,赵进才,等.联吡啶铁/H2O2体系在可见光下降解芥子气模拟剂2-CEES[J]. 分子催化, 2007,21(2):162-167. GUAN C, XI H L, ZHAO J C,et al. Degradation of 2-CEES (a simulate agent of mustard) with iron(Ⅱ) bipyridine/H2O2 system under visible irradiation[J]. Journal of Molecular Catalysis, 2007,21(2):162-167.
[48] VORONTSOV A V, PANCHENKO A A, SAVINOV E N, et al. Photocatalytic degradation of 2-phenethyl-2-chloroethyl sulfide in liquid and gas phases[J]. Environmental Science & Technology, 2002, 36(23):5261-5269.
[49] 姚傲男. 金属-有机框架/聚多巴胺复合纤维膜的制备及其光热增强解毒化学战剂模拟物的性能研究[D]. 济南:山东大学, 2019. YAO A N. Preparation of metal-organic framework/polydopamine composite fibrous membranes for photothermal enhanced detoxification of chemical warfare agent stimulants[D]. Jinan:Shandong University, 2019.
[50] VORONTSOV A V, LION C, SAVINOV E N, et al. Pathways of photocatalytic gas phase destruction of HD simulant 2-chloroethyl ethyl sulfide[J]. Journal of Catalysis, 2003, 220(2):414-423.
[51] MARTYANOV I N, KLABUNDE K J. Photocatalytic oxidation of gaseous 2-chloroethyl ethyl sulfide over TiO2[J]. Environmental Science & Technology, 2003, 37(15):3448-3453.
[52] O'SHEA K E, BEIGHTOL S, GARCIA I, et al. Photocatalytic decomposition of organophosphonates in irradiated TiO2 suspensions[J]. Journal of Photochemistry and Photobiology A:Chemistry, 1997, 107(1/3):221-226.
[53] OBEE T N, SATYAPAL S. Photocatalytic decomposition of DMMP on titania[J]. Journal of Photochemistry and Photobiology A:Chemistry, 1998, 118(1):45-51.
[54] RUSU C N, YATES J T. Photooxidation of dimethyl methylphosphonate on TiO2 powder[J]. The Journal of Physical Chemistry B, 2000, 104(51):12299-12305.
[55] RUSU C N, YATES J T. Adsorption and decomposition of dimethyl methylphosphonate on TiO2[J]. The Journal of Physical Chemistry B, 2000, 104(51):12292-12298.
[56] PANAYOTOV D A, MORRIS J R. Uptake of a chemical warfare agent simulant (DMMP) on TiO2:reactive adsorption and active site poisoning[J]. Langmuir, 2009, 25(6):3652-3658.
[57] VORONTSOV A V, DAVYDOV L, REDDY E P, et al. Routes of photocatalytic destruction of chemical warfare agent simulants[J]. New Journal of Chemistry, 2002, 26(6):732-744.
[58] VORONTSOV A V, CHEN Y C, SMIRNIOTIS P G. Photocatalytic oxidation of VX simulant 2-(butylamino) ethanethiol[J]. Journal of Hazardous Materials, 2004, 113(1/3):89-95.
[59] 习海玲,张建宏,孙春翌. 半导体光催化降解芥子气的研究[C]//第六届特种化学会议论文集.三亚:中国化学会, 1997:58-59. XI H L, ZHANG J H, SUN C Y. Research on semi-conductor photocatalytic degradation of HD[C]//The Sixth Special Chemical Conference Proceedings. Sanya:Chinese Chemical Society, 1997:58-59.
[60] 沈忠,钟近艺,郑禾. 光催化技术在化学毒剂洗消领域的研究进展[J]. 环境科学与技术, 2015, 38(11):14-20. SHEN Z, ZHONG J Y, ZHENG H. Recent progress of the photocatalytic technology in the field of chemical warfare agents decontamination[J]. Environmental Science & Technology, 2015, 38(11):14-20.
[61] NISHIKAWA H, TAKAHARA Y. Adsorption and photocatalytic decomposition of odor compounds containing sulfur using TiO2/SiO2 bead[J]. Journal of Molecular Catalysis A:Chemical, 2001, 172(1):247-251.
[62] PANAYOTOV D A, PAUL D K, YATES J T. Photocatalytic oxidation of 2-chloroethyl ethyl sulfide on TiO2-SiO2 powders[J]. The Journal of Physical Chemistry B, 2003, 107(38):10571-10575.
[63] 丁俊,张建宏. 2-CEES在TiO2上的光催化反应机理研究[C]//第十三届全国太阳能光化学与光催化学术会议. 武汉:中国化学会, 2013:437-437. DING J, ZHANG J H. Research on the photocatalytic reaction mechanism of 2-CEES on TiO2[C]//The 13th National Conference on Solar Photochemistry and Photocatalysis. Wuhan:Chinese Chemical Society, 2013:437-437.
[64] 韩世同,习海玲,王绪绪,等.气相中芥子气模拟剂2-CEES在SO42-/TiO2上的光催化消除[J].环境科学, 2005,26(3):130-134. HAN S T, XI H L, WANG X X, et al. Photocatalytic removing of a mustard gas analogue 2-CEES vapor over SO42-/TiO2[J]. Chinese Journal of Environmental Science, 2005,26(3):130-134.
[65] 习海玲,张建宏. 芥子气在锐钛型TiO2悬浮液中的光催化降解[J]. 防化学报, 1998, 8(2):1-7. XI H L, ZHANG J H. Photocatalytic degradation of mustard gas in anatase TiO2 suspension[J]. Chinese Journal of Anti-Chemistry, 1998, 8(2):1-7.
[66] KOMANO A, HIRAKAWA T, SATO K, et al. Titanium dioxide photocatalytic decomposition of ethyl-S-dimethylaminoethyl methylphosphonothiolate (VX) in aqueous phase[J]. Applied Catalysis B:Environmental, 2013, 134:19-25.
[67] HIRAKAWA T, MERA N, SANO T, et al. Decontamination of chemical warfare agents by photocatalysis[J]. Yakugaku zasshi:Journal of the Pharmaceutical Society of Japan, 2009, 129(1):71-92.
[68] PRASAD G K, RAMACHARYULU P, KUMAR J P, et al. Photocatalytic degradation of paraoxon-ethyl in aqueous solution using titania nanoparticulate film[J]. Thin Solid Films, 2012, 520(17):5597-5601.
[69] NASERI M T, SARABADANI M, ASHRAFI D, et al. Photoassisted and photocatalytic degradation of sulfur mustard using TiO2 nanoparticles and polyoxometalates[J]. Environmental Science and Pollution Research, 2013, 20(2):907-916.
[70] WANG A N, TENG Y, HU X, et al. Diphenylarsinic acid contaminated soil remediation by titanium dioxide (P25) photocatalysis:degradation pathway, optimization of operating parameters and effects of soil properties[J]. Science of the Total Environment, 2016, 541:348-355.
[71] 王阿楠,滕应,骆永明. 二氧化钛(P25)光催化降解二苯砷酸的研究[J]. 环境科学, 2014,35(10):3800-3806. WANG A N, TENG Y, LUO Y M. Photocatalytic degradation of diphenylarsenic acid by TiO2 (P25)[J]. Environmental Science, 2014,35(10):3800-3806.
[72] HOWARTH A J, LIU Y, LI P, et al. Chemical, thermal and mechanical stabilities of metal-organic frameworks[J]. Nature Reviews Materials, 2016, 1(3):1-15.
[73] YAN S, LUO W, LI Z, et al. Progress in research of novel photocatalytic materials[J]. Materials China, 2010(1):1-9.
[74] HAN S, ZHANG G, XI H, et al. Sulfated TiO2 decontaminate 2-CEES and DMMP in vapor phase[J]. Catalysis Letters, 2008, 122(1/2):106-110.
[75] SENGELE A, ROBERT D, KELLER N, et al. Sn-doped and porogen-modified TiO2 photocatalyst for solar light elimination of sulfure diethyle as a model for chemical warfare agent[J]. Applied Catalysis B:Environmental, 2019, 245:279-289.
[76] ALVARO M, COJOCARU B, ISMAIL A A, et al. Visible-light photocatalytic activity of gold nanoparticles supported on template-synthesized mesoporous titania for the decontamination of the chemical warfare agent Soman[J]. Applied Catalysis B:Environmental, 2010, 99(1/2):191-197.
[77] SENGELE A, ROBERT D, KELLER N, et al. Ta-doped TiO2 as photocatalyst for UV-A activated elimination of chemical warfare agent simulant[J]. Journal of Catalysis, 2016, 334:129-141.
[78] RAMACHARYULU P, PRASAD G K. Enhanced photocatalytic activity of mesoporous nano titania decorated with zinc phthalocyanine[J]. Indian Journal of Shemisrey Section A-Inorganic Bio-inorganic Physical Theoretical & Analytical Chemistry, 2018,57(1):18-25.
[79] 沈忠,钟近艺,赵渊中,等. 模拟太阳光下锗掺杂纳米TiO2对化学毒剂的降解性能[J]. 无机材料学报, 2016, 31(4):427-433. SHEN Z, ZHONG J Y, ZHAO Y Z, et al. Degradation of chemical warfare agents by germanium-doped nanosized TiO2 under simulated sunlight irradiation[J]. Journal of Inorganic Materials, 2016, 31(4):427-433.
[80] BOUFI S, ABID M, BOUATTOUR S, et al. Cotton functionalized with nanostructured TiO2-Ag-AgBr layer for solar photocatalytic degradation of dyes and toxic organophosphates[J]. International Journal of Biological Macromolecules, 2019, 128:902-910.
[81] BOUFI S, BOUATTOUR S, FERRARIA A M, et al. Cotton fibres functionalized with plasmonic nanoparticles to promote the destruction of harmful molecules:an overview[J]. Nanotechnology Reviews, 2019, 8(1):671-680.
[82] CI Y, WANG S, ZHANG X, et al. Chemical warfare agents' degradation on Fe-Cu codoped TiO2 nanoparticles[J]. Applied Physics A, 2018, 124(11):786-787.
[83] KAR P, MAJI T K, NANDI R, et al. In-situ hydrothermal synthesis of bi-Bi2O2CO3 heterojunction photocatalyst with enhanced visible light photocatalytic activity[J]. Nano-micro Letters, 2017, 9(2):18-26.
[84] LIU C, WANG F, ZHANG J, et al. Efficient photoelectrochemical water splitting by g-C3N4/TiO2 nanotube array heterostructures[J]. Nano-micro Letters, 2018, 10(2):37-43.
[85] XIONG K, WANG K, CHEN L, et al. Heterostructured ZnFe2O4/Fe2TiO5/TiO2 composite nanotube arrays with an improved photocatalysis degradation efficiency under simulated sunlight irradiation[J].Nano-micro Letters,2018,10(1):17-28.
[86] PRASAD G K. Silver ion exchanged titania nanotubes for decontamination of 2 chloro ethyl phenyl sulphide and dimethyl methyl phosphonate[J]. Journal of Scientific & Industrial Research, 2009,68(5):379-384.
[87] PRASAD G K, SINGH B, GANESAN K, et al. Modified titania nanotubes for decontamination of sulphur mustard[J]. Journal of Hazardous Materials, 2009, 167(1):1192-1197.
[88] RAMACHARYULU P, KUMAR J P, PRASAD G K, et al. Photoassisted remediation of toxic chemical warfare agents using titania nanomaterials[J]. Journal of Scientific & Industrial Research, 2014,73(5):308-312.
[89] CHRISTOFORIDIS K C, SENGELE A, KELLER V, et al. Single-step synthesis of SnS2 nanosheet-decorated TiO2 anatase nanofibers as efficient photocatalysts for the degradation of gas-phase diethylsulfide[J]. ACS Applied Materials & Interfaces, 2015, 7(34):19324-19334.
[90] 郑禾,钟近艺,韩世同,等. LaVO4/TiO2光催化复合材料对芥子气模拟剂2-氯乙基乙基硫醚的降解性能[J]. 环境化学, 2014, 33(6):999-1002. ZHENG H, ZHONG J Y, HAN S T, et al. Photocatalytic degradation of sulfur mustard mimicking agent(2-CEES) on LaVO4/TiO2[J]. Environmental Chemistry, 2014, 33(6):999-1002.
[91] HENYCH J, STEHLÍK Š, MAZANEC K, et al. Reactive adsorption and photodegradation of soman and dimethyl methylphosphonate on TiO2/nanodiamond composites[J]. Applied Catalysis B:Environmental, 2019, 259:118097.
[92] ERICKSON L E, KOODALI R T, RICHARDS R M. Nanoscale materials in chemistry:environmental applications[M]. Manhattan:John Wiley & Sons, 2009.
[93] 李君臣,毕晓静,王红梅,等. 金属-有机框架材料降解化学战剂及其模拟剂反应[C]//中国化学会第30届学术年会摘要集-第三十四分会:公共安全化学.大连:中国化学会, 2016:14-15. LI J C, BI X J, WANG H M, et al. Metal-organic frameworks mediated decontamination of chemical agents and their stimulants[C]//Dalian, Liaoning:Abstracts of the 30th Academic Annual Meeting of the Chinese Chemical Society-34th Session:Public Safety Chemistry. 2016:14-15.
[94] LIU Y, MOON S Y, HUPP J T, et al. Dual-function metal-organic framework as a versatile catalyst for detoxifying chemical warfare agent simulants[J]. ACS Nano, 2015, 9(12):12358-12364.
[95] MONDLOCH J E, KATZ M J, ISLEY III W C, et al. Destruction of chemical warfare agents using metal-organic frameworks[J]. Nature Materials, 2015, 14(5):512-516.
[96] LIU Y, BURU C T, HOWARTH A J, et al. Efficient and selective oxidation of sulfur mustard using singlet oxygen generated by a pyrene-based metal-organic framework[J]. Journal of Materials Chemistry A, 2016, 4(36):13809-13813.
[97] GOSWAMI S, MILLER C E, LOGSDON J L, et al. Atomistic approach toward selective photocatalytic oxidation of a mustard-gas simulant:a case study with heavy-chalcogen-containing PCN-57 analogues[J]. ACS Applied Materials & Interfaces, 2017, 9(23):19535-19540.
[98] LIU Y, HOWARTH A J, HUPP J T, et al. Selective Photooxidation of a mustard-gas simulant catalyzed by a porphyrinic metal-organic framework[J]. Angewandte Chemie International Edition, 2015, 54(31):9001-9005.
[99] GIANNAKOUDAKIS D A, HU Y, FLORENT M, et al. Smart textiles of MOF/g-C3N4 nanospheres for the rapid detection/detoxification of chemical warfare agents[J]. Nanoscale Horizons, 2017, 2(6):356-364.
[100] BURU C T, MAJEWSKI M B, HOWARTH A J, et al. Improving the efficiency of mustard gas simulant detoxification by tuning the singlet oxygen quantum yield in metal-organic frameworks and their corresponding thin films[J]. ACS Applied Materials & Interfaces, 2018, 10(28):23802-23806.
[101] LEE D T, JAMIR J D, PETERSON G W, et al. Protective fabrics:metal-organic framework textiles for rapid photocatalytic sulfur mustard simulant detoxification[J]. Matter, 2020, 2(2):404-415.
[102] ZHANG C, HUA H, LIU J, et al. Enhanced photocatalytic activity of nanoparticle-aggregated Ag-Ag<i>x(x=Cl, Br)@TiO2 microspheres under visible light[J]. Nano-micro Letters, 2017, 9(4):49.
[103] LI Q, WANG F, SUN L, et al. Design and synthesis of Cu@CuS yolk-shell structures with enhanced photocatalytic activity[J]. Nano-micro Letters, 2017, 9(3):35-36.
[104] GOGOI S, KARAK N. Solar-driven hydrogen peroxide production using polymer-supported carbon dots as heterogeneous catalyst[J]. Nano-micro Letters, 2017, 9(4):40-47.
[105] LI M, TU X, WANG Y, et al. Highly enhanced visible-light-driven photoelectrochemical performance of ZnO-modified In2S3 nanosheet arrays by atomic layer deposition[J]. Nano-micro Letters, 2018, 10(3):45-52.
[106] DWYER D B, LEE D T, BOYER S, et al. Toxic organophosphate hydrolysis using nanofiber-templated UiO-66-NH2 metal-organic framework polycrystalline cylinders[J]. ACS Applied Materials & Interfaces, 2018, 10(30):25794-25803.
[107] LI J, SINGH V V, SATTAYASAMITSATHIT S, et al. Water-driven micromotors for rapid photocatalytic degradation of biological and chemical warfare agents[J]. ACS Nano, 2014, 8(11):11118-11125.
[108] GRANDCOLAS M, LOUVET A, KELLER N, et al. Layer-by-layer deposited titanate-based nanotubes for solar photocatalytic removal of chemical warfare agents from textiles[J]. Angewandte Chemie International Edition, 2009, 48(1):161-164.
[109] WANG H, WAGNER G W, LU A X, et al. Photocatalytic oxidation of sulfur mustard and its simulant on BODIPY-incorporated polymer coatings and fabrics[J]. ACS Applied Materials & Interfaces, 2018, 10(22):18771-18777.
[110] ATILGAN A, ISLAMOGLU T, HOWARTH A J, et al. Detoxification of a Sulfur mustard simulant using a bodipy-functionalized zirconium-based metal-organic framework[J]. ACS Applied Materials & Interfaces, 2017, 9(29):24555-24560.
[111] 陈建炜,石建稳,王旭,等. 半导体/石墨烯复合光催化剂的制备及应用[J]. 催化学报, 2013, 34(4):621-640. CHEN J W, SHI J W, WANG X, et al. Recent progress in the preparation and application of semiconductor/graphene composite photocatalysts Chinese[J]. Journal of Catalysis, 2013, 34(4):621-640.
[112] HENYCH J, ŠTENGL V, MATTSSON A, et al. Chemical warfare agent simulant DMMP reactive adsorption on TiO2/graphene oxide composites prepared via titanium peroxo-complex or urea precipitation[J]. Journal of Hazardous Materials, 2018, 359:482-490.
[113] GANJI M D, DALIRANDEH Z, KHOSRAVI A, et al. Aluminum nitride graphene for DMMP nerve agent adsorption and detection[J]. Materials Chemistry and Physics, 2014, 145(1/2):260-267.
[114] ŠTENGL V, GRYGAR T M, OPLUŠTIL F, et al. Decontamination of sulfur mustard from printed circuit board using Zr-doped titania suspension[J]. Industrial & Engineering Chemistry Research, 2013, 52(9):3436-3440.
[115] 习海玲,左言军,韩世同,等. 多相光催化降解化学毒剂研究进展[C]//全国太阳能光化学与光催化学术会议.兰州:中国科学院兰州化学物理研究所,2004:125-126. XI H L, ZUO Y J, HAN S T, et al. Research progress in heterogeneous photocatalytic degradation of chemical poisons[C]//National Conference on Solar Photochemistry and Photocatalysis.Lanzhou:Lanzhou Institute of Chemical Physics,2004:125-126.
[116] 李俊杰,丁灯,季东,等. TiO2气溶胶快速去除空气中的芥子气模拟剂[J]. 化工环保, 2019, 39(4):413-420. LI J J, DING D, JI D, et al. Quick removal of mustard gas simulant from air by TiO2 aerosol[J]. Environmental Protection of Chemical Industry, 2019, 39(4):413-420.
[117] 周川,原博,张守鑫,等. 锆基金属有机骨架UiO-66的合成及在化学防护领域中的研究进展[J]. 化工进展, 2019(10):4614-4622. ZHOU C, YUAN B, ZHANG S X, et al. Progress in synthesis and chemical defense of UiO-66 Zr-based metalorganic framework[J]. Chemical Industry and Engineering Progress, 2019(10):4614-4622.