Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (5): 114-121    DOI: 10.11868/j.issn.1001-4381.2020.000426
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
热氧老化作用对丁腈橡胶力学性能和摩擦学行为的影响
李波1, 李圣鑫1, 张执南2, 张坚1, 熊光耀1, 沈明学1,2,*()
1 华东交通大学 材料科学与工程学院, 南昌 330013
2 上海交通大学 机械与动力工程学院, 上海 200240
Effect of thermo-oxidative aging on mechanical properties and tribological behaviors of acrylonitrile-butadiene rubber
Bo LI1, Sheng-xin LI1, Zhi-nan ZHANG2, Jian ZHANG1, Guang-yao XIONG1, Ming-xue SHEN1,2,*()
1 School of Material Science and Engineering, East China Jiaotong University, Nanchang 330013, China
2 School of Mechanical and Power Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
全文: PDF(16496 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

对丁腈橡胶在热氧环境下进行了加速老化及老化状态下的摩擦学性能实验,在不同温度和时间的老化实验基础上,利用静态拉伸试验机、SEM、EDS和3D光学轮廓等方法考察了老化前后及程度对橡胶力学性能、摩擦学性能随老化温度和时间的变化情况,探讨了丁腈橡胶热氧老化后的性能衰退、磨损表面微观形貌变化和磨损机制演变行为。结果表明:老化温度和时间对橡胶力学性能有重要影响;橡胶伸长率以及断裂应力随老化时间的延长逐渐降低,且随老化温度的提高,温度小幅增加会导致力学性能显著下降;橡胶硬度对温度的变化更敏感,邵氏硬度演变曲线随温度的增加由低速线性变更为先快后慢式增长;因老化程度的不同,将橡胶老化的演变规律划分为A,B,C 3个区域,区域间的损伤机制呈现差异化,磨损机制由黏着磨损逐渐转变为磨粒磨损或疲劳、磨粒共存的损伤机制。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李波
李圣鑫
张执南
张坚
熊光耀
沈明学
关键词 丁腈橡胶热氧老化老化机理力学性能磨损机制转变    
Abstract

Acrylonitrile-butadiene rubber (NBR) was conducted with accelerated aging under the thermo-oxidative environment, a test on the tribological performance of aged NBR was carried out using UMT-3 tribo-tester. Based on an aging test at the various aging time and different aging temperatures. The static tensile tester, SEM, EDS, and 3D optical profilometer were used to investigate the changes of rubber mechanical properties and tribological properties with aging temperature and time before and after aging. The performance degradation of the NBR after thermo-oxidative aging, the microscopic morphology of the worn surface, and the evolution of the wear mechanism were discussed. Results demonstrate that the aging temperature and aging time have a substantial influence on the mechanical properties of the rubber. The elongation at break and fracture stress are gradually decreased with the extension of aging time. With an increase in the aging temperature, a small increase in temperature will cause a significant decrease in mechanical properties. Shore hardness of the rubber is more sensitive to the aging temperature changes. With the increasing temperature, the growth rate of shore hardness is changed from low to first fast and then slow. The evolution trends of rubber aging are dividing into three areas: A, B, and C because of different aging degrees, and there are different damage mechanisms between various areas. The wear mechanism gradually changes from adhesive wear to abrasive wear, or fatigue and abrasive wear exist together.

Key wordsacrylonitrile-butadiene rubber    thermo-oxidative aging    aging mechanism    mechanical property    transformation of wear mechanism
收稿日期: 2020-05-12      出版日期: 2021-05-21
中图分类号:  TB34  
基金资助:国家自然科学基金(51965019);国家自然科学基金(51775503);江西省自然科学基金(20192BAB206026);中国博士后科学基金(2017M620152);中国博士后科学基金(2018T110392);江西省研究生创新专项资金(YC2019-S253)
通讯作者: 沈明学     E-mail: shenmingxue@126.com; shenmingxue@zjut.edu.cn
作者简介: 沈明学(1982-), 男, 教授, 博士, 研究方向为橡塑摩擦学及轮轨表面工程, 联系地址: 江西省南昌市昌北经开区双港东大街808号华东交通大学材料科学与工程学院(330013), shenmingxue@126.com; shenmingxue@zjut.edu.cn
引用本文:   
李波, 李圣鑫, 张执南, 张坚, 熊光耀, 沈明学. 热氧老化作用对丁腈橡胶力学性能和摩擦学行为的影响[J]. 材料工程, 2021, 49(5): 114-121.
Bo LI, Sheng-xin LI, Zhi-nan ZHANG, Jian ZHANG, Guang-yao XIONG, Ming-xue SHEN. Effect of thermo-oxidative aging on mechanical properties and tribological behaviors of acrylonitrile-butadiene rubber. Journal of Materials Engineering, 2021, 49(5): 114-121.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000426      或      http://jme.biam.ac.cn/CN/Y2021/V49/I5/114
Materials Yield strength σs/MPa Tensile strength σb/MPa Elastic modulus E/GPa Density ρ/(g·cm-3) Hardness Elongation δ/%
316L 310 580 205 7.98 178 HV
NBR 16.8 0.0116 1.32 72(Shore A) ≥450
Table 1  摩擦副材料的主要物理性能
Fig.1  摩擦磨损测试仪及原理图
Fig.2  丁腈橡胶不同老化时间(a)和老化温度(b)的应力-应变曲线
Fig.3  不同老化时间和温度条件下老化丁腈橡胶的平均硬度和平均摩擦因数的变化趋势
(a)平均硬度;(b)平均摩擦因数
Fig.4  干滑动条件下丁腈橡胶摩擦因数随时间变化趋势以及磨损表面形貌(A区域)
(a)摩擦因数时变曲线;(b)未老化;(c)90 ℃-3 d;(d)120 ℃-1 d
Fig.5  干滑动条件下丁腈橡胶的摩擦因数随时间变化趋势、磨损表面形貌及元素分布(B区域)
(a)摩擦因数时变曲线;(b)90 ℃-14 d;(c)105 ℃-28 d;(d)90 ℃-14 d对应的EDX图谱
Fig.6  干滑动条件下丁腈橡胶摩擦因数随时间变化趋势、磨损表面形貌以及磨痕边缘的磨屑分布(C区域)
(a)摩擦因数时变曲线;(b)120 ℃-28 d;(c), (d)135 ℃-14 d
Fig.7  不同老化区域典型的橡胶磨损表面三维形貌
(a)90 ℃-7 d,A区域;(b)105 ℃-28 d,B区域;(c)135 ℃-14 d,C区域
Fig.8  摩擦实验后丁腈橡胶平均磨损表面粗糙度的变化趋势
1 毛剑, 林微超, 宫宁宁, 等. 铝合金-丁腈橡胶复合密封件的界面结合性能[J]. 机械工程学报, 2020, 56 (10): 95- 101.
1 MAO J , LIN W C , GONG N N , et al. Interface properties of aluminum alloy-nitrile butadiene rubber composite sealing part[J]. Journal of Mechanical Engineering, 2020, 56 (10): 95- 101.
2 刘丽萍, 冯志力, 刘嘉. 航空橡胶密封材料发展及应用[J]. 军民两用技术与产品, 2013, (6): 13- 16.
doi: 10.3969/j.issn.1009-8119.2013.06.003
2 LIU L P , FENG Z L , LIU J . Development and application of aviation rubber sealing materials[J]. Dual Use Technologies and Products, 2013, (6): 13- 16.
doi: 10.3969/j.issn.1009-8119.2013.06.003
3 代军, 晏华, 郭骏骏, 等. 结晶度对高密度聚乙烯热氧老化特性的影响[J]. 高分子材料科学与工程, 2016, 32 (9): 65- 71.
3 DAI J , YAN H , GUO J J , et al. Degradation properties of high density polyethylene by thermo-oxidation aging as a function of crystallinity[J]. Polymeric Materials Science and Engineering, 2013, 32 (9): 65- 71.
4 FU Y , YANG C , LVOV Y M , et al. Antioxidant sustained release from carbon nanotubes for preparation of highly aging resistant rubber[J]. Chemical Engineering Journal, 2017, 328, 536- 545.
doi: 10.1016/j.cej.2017.06.142
5 RODRIGUEZ N , DOROGIN L , CHEW K T , et al. Adhesion, friction and viscoelastic properties for non-aged and aged styrene butadiene rubber[J]. Tribology International, 2018, 121, 78- 83.
doi: 10.1016/j.triboint.2018.01.037
6 彭旭东, 阙刚, 沈明学, 等. 橡胶材料耐液体介质老化与摩擦学特性研究进展[J]. 润滑与密封, 2018, 43 (3): 1- 10.
doi: 10.3969/j.issn.0254-0150.2018.03.001
6 PENG X D , QUE G , SHEN M X , et al. State-of-the-arts on aging and tribological properties of rubber-like materials in liquid medium[J]. Lubrication Engineering, 2018, 43 (3): 1- 10.
doi: 10.3969/j.issn.0254-0150.2018.03.001
7 梁梨花, 钟建永, 丁玲, 等. 顺丁橡胶的热氧老化及其机理[J]. 高分子材料科学与工程, 2019, 35 (2): 107- 111.
7 LIANG L H , ZHONG J Y , DING L , et al. Mechanism of thermal oxidative aging of butadiene rubber[J]. Polymeric Materials Science and Engineering, 2019, 35 (2): 107- 111.
8 刘巧斌, 史文库, 刘鹤龙, 等. 基于步进应力加速老化和改进Arrhenius模型的橡胶贮存寿命预测[J]. 国防科技大学学报, 2019, 41 (5): 56- 61.
8 LIU Q B , SHI W K , LIU H L , et al. Rubber storage life prediction based on step stress accelerated test and a modified Arrhenius model[J]. Journal of National University of Defense Technology, 2019, 41 (5): 56- 61.
9 刘荣, 马玉宏, 赵桂峰, 等. 老化-海蚀循环作用下高阻尼橡胶隔震支座橡胶材料性能劣化规律[J]. 材料导报, 2020, 34 (4): 4166- 4173.
9 LIU R , MA Y H , ZHAO G F , et al. Trend of property deterioration for rubber material used in high damping rubber isolation bearing under aging-marine erosion cycle[J]. Materials Reports, 2020, 34 (4): 4166- 4173.
10 ZHENG W , ZHAO X , LI Q , et al. Compressive stress relaxation modeling of butadiene rubber under thermo-oxidative aging[J]. Journal of Applied Polymer Science, 2017, 134 (12): 44630.
11 MOON B , LEE J , PARK S , et al. Study on the aging behavior of natural rubber/butadiene rubber (NR/BR) blends using a parallel spring model[J]. Polymers, 2018, 10 (6): 658.
doi: 10.3390/polym10060658
12 CELINA M , WISE J , OTTESEN D K , et al. Oxidation profiles of thermally aged nitrile rubber[J]. Polymer Degradation and Stability, 1998, 60 (2): 493- 504.
13 BOUGUEDAA D , MEKHALDI A , JBARA O , et al. Physico-chemical study of thermally aged EPDM used in power cables insulation[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22 (6): 3207- 3215.
doi: 10.1109/TDEI.2015.005227
14 JIANG B , JIA X , WANG Z , et al. Influence of thermal aging in oil on the friction and wear properties of nitrile butadiene rubber[J]. Tribology Letters, 2019, 67 (3): 86.
doi: 10.1007/s11249-019-1201-8
15 BEN H M , NAIT A M , ZAIERI F , et al. Time to failure prediction in rubber components subjected to thermal ageing: a combined approach based upon the intrinsic defect concept and the fracture mechanics[J]. Mechanics of Materials, 2014, 79, 15- 24.
doi: 10.1016/j.mechmat.2014.07.015
16 DONG L , LI K , ZHU X , et al. Study on high temperature sealing behavior of packer rubber tube based on thermal aging experiments[J]. Engineering Failure Analysis, 2020, 108, 104321.
doi: 10.1016/j.engfailanal.2019.104321
17 GRASLAND F , CHAZEAU L , CHENAL J , et al. About thermo-oxidative ageing at moderate temperature of conventionally vulcanized natural rubber[J]. Polymer Degradation and Stability, 2019, 161, 74- 84.
doi: 10.1016/j.polymdegradstab.2018.12.029
18 LI C , DING Y , YANG Z , et al. Compressive stress-thermo oxidative ageing behaviour and mechanism of EPDM rubber gaskets for sealing resilience assessment[J]. Polymer Testing, 2020, 84, 106366.
doi: 10.1016/j.polymertesting.2020.106366
19 WAN S , LI T , CHEN S , et al. Effect of multi-modified layered double hydroxide on aging resistance of nitrile-butadiene rubber[J]. Composites Science and Technology, 2020, 195, 108193.
doi: 10.1016/j.compscitech.2020.108193
20 CELINA M C . Review of polymer oxidation and its relationship with materials performance and lifetime prediction[J]. Polymer Degradation and Stability, 2013, 98 (12): 2419- 2429.
doi: 10.1016/j.polymdegradstab.2013.06.024
21 阙刚, 彭旭东, 沈明学, 等. 丁腈橡胶热空气老化力学性能分析及贮存寿命预测[J]. 润滑与密封, 2018, 43 (2): 18- 25.
doi: 10.3969/j.issn.0254-0150.2018.02.004
21 QUE G , PENG X D , SHEN M X . Mechanical properties analysis and storage life prediction of hot air aging of NBR[J]. Lubrication Engineering, 2018, 43 (2): 18- 25.
doi: 10.3969/j.issn.0254-0150.2018.02.004
22 DONG C L , YUAN C Q , BAI X Q , et al. Tribological properties of aged nitrile butadiene rubber under dry sliding conditions[J]. Wear, 2015, 322/323, 226- 237.
doi: 10.1016/j.wear.2014.11.010
23 HE Q , WANG G , ZHANG Y , et al. Thermo-oxidative ageing behavior of cerium oxide/silicone rubber[J]. Journal of Rare Earths, 2020, 38 (4): 436- 444.
doi: 10.1016/j.jre.2019.05.002
24 HAN R , QUAN X , SHAO Y , et al. Tribological properties of phenyl-silicone rubber composites with nano-CeO2 and graphene under thermal-oxidative aging[J]. Applied Nanoscience, 2020, 10, 2129- 2138.
doi: 10.1007/s13204-020-01379-x
25 ROCHE N , HEUILLET P , JANIN C , et al. Mechanical and tribological behavior of HNBR modified by ion implantation, influence of aging[J]. Surface and Coatings Technology, 2012, 209, 58- 63.
doi: 10.1016/j.surfcoat.2012.08.029
26 鲁相, 陈循, 汪亚顺, 等. 气体在无定型聚异戊二烯中扩散的分子动力学模拟[J]. 物理化学学报, 2016, 32 (10): 2523- 2530.
doi: 10.3866/PKU.WHXB201606292
26 LU X , CHEN X , WANG Y S , et al. Molecular dynamics simulation of gas transport in amorphous polyisoprene[J]. Acta Phys-Chim Sin, 2016, 32 (10): 2523- 2530.
doi: 10.3866/PKU.WHXB201606292
27 ZHAO J , YANG R , IERVOLINO R , et al. Investigation of crosslinking in the thermo oxidative aging of nitrile-butadiene rubber[J]. Journal of Applied Polymer Science, 2015, 132 (3): 41319.
28 WANG Z , GRAHN M , ANTZUTKIN O , et al. Temperature-dependent changes of physicochemical and tribological properties of acrylonitrile-butadiene rubber elastomer upon ageing in hexadecane and diethylene glycol dibutyl ether[J]. Proceedings of the Institution of Mechanical Engineers: Part J, 2013, 227 (8): 826- 836.
doi: 10.1177/1350650113489612
29 王玲, 魏小琴, 佘祖新, 等. 丁腈橡胶密封圈热氧老化及性能的关联性[J]. 弹性体, 2019, 29 (4): 35- 38.
doi: 10.3969/j.issn.1005-3174.2019.04.007
29 WANG L , WEI X Q , SHE Z X , et al. Thermo oxygen ageing and performance correlation of nitrile rubber sealing ring[J]. China Elastomerics, 2019, 29 (4): 35- 38.
doi: 10.3969/j.issn.1005-3174.2019.04.007
30 BEST B , MEIJERS P , SAVKOOR A R . The formation of Schallamach waves[J]. Wear, 1981, 65 (3): 385- 396.
doi: 10.1016/0043-1648(81)90064-8
31 MAEGAWA S , NAKANO K . Mechanism of stick-slip associated with Schallamach waves[J]. Wear, 2010, 268 (7/8): 924- 930.
32 MOFIDI M , KASSFELDT E , PRAKASH B . Tribological behaviour of an elastomer aged in different oils[J]. Tribology International, 2008, 41 (9/10): 860- 866.
33 MOSTAFA A , ABOUEL K A , BAYOUMI M R , et al. The influence of CB loading on thermal aging resistance of SBR and NBR rubber compounds under different aging temperature[J]. Materials & Design, 2009, 30 (3): 791- 795.
34 MOLNAR W , NEVOSAA A , ROJACZ H , et al. Two and three-body abrasion resistance of rubbers at elevated temperatures[J]. Wear, 2018, 414/415, 174- 181.
doi: 10.1016/j.wear.2018.08.015
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[3] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[4] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[5] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[6] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[7] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[8] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[9] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[10] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[11] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[12] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[13] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[14] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
[15] 陈帅, 陶凤和, 贾长治, 孙河洋. 成形角度对选区激光熔化4Cr5MoSiV1钢组织和性能的影响[J]. 材料工程, 2022, 50(3): 122-130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn