Please wait a minute...
材料工程  2020, Vol. 48 Issue (10): 48-59    DOI: 10.11868/j.issn.1001-4381.2020.000440
  综述 本期目录 | 过刊浏览 | 高级检索 |
马绪强, 苏正涛
中国航发北京航空材料研究院 减振降噪材料及应用航空科技重点实验室, 北京 100095
Application progress of polymer matrix composites in civil turbofan aeroengine
MA Xu-qiang, SU Zheng-tao
Aviation Key Laboratory of Science and Technology on Materials and Application Research for Vibration and Noise Reduction, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(6255 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 树脂基复合材料因其比强度比刚度高、可设计性好、阻尼减振性能优异、易于整体化成型等优点已成为新型航空发动机重要的结构材料。本文选取风扇叶片、包容机匣、声衬和衬套等典型航空发动机部件,介绍了树脂基复合材料在国外民用航空发动机的应用状况。之后论述了树脂基复合材料在航空发动机结构优化、经济性、环保性等方面的优势。基于微纳材料混杂技术、3D打印技术和超材料技术分析了航空发动机树脂基复合材料发展的新趋势。最后从"设计-材料-工艺-评价"角度就未来树脂基复合材料在我国民用航空发动机应用发展提出了一些思考。
E-mail Alert
关键词 树脂基复合材料航空发动机风扇叶片韧性3D打印超材料    
Abstract:Polymer matrix composites (PMCs) have become one of the most important structure materials in the new generation of civil turbofan aeroengine due to their advantages of high specific strength, high specific stiffness, good designability, excellent vibration damping performance and feasible integrity fabrication. The PMCs application in aeroengine abroad based on fan blade, fan casing, acoustic liner and bushing was introduced firstly in this paper. The advantages of PMCs in structure optimization, economy and environmental friendliness were also illustrated. Moreover, new progress of PMCs including micro/nano material hybridization, 3D printing process and metamaterials in aeroengine was analyzed in details. Finally, some suggestions about PMCs application based on the relationship of "design-material-process-evaluation" were proposed for further development of civil turbofan aero engine in China.
Key wordspolymer matrix composite    aeroengine    fan blade    toughness    3D printing    metamaterial
收稿日期: 2020-06-08      出版日期: 2020-10-17
中图分类号:  TB332  
通讯作者: 马绪强(1986-),男,高级工程师,博士,研究方向为树脂基复合材料制备及应用,联系地址:北京81信箱70分箱(100095),     E-mail:
马绪强, 苏正涛. 民用航空发动机树脂基复合材料应用进展[J]. 材料工程, 2020, 48(10): 48-59.
MA Xu-qiang, SU Zheng-tao. Application progress of polymer matrix composites in civil turbofan aeroengine. Journal of Materials Engineering, 2020, 48(10): 48-59.
链接本文:      或
[1] IRVING P E,SOUTIS C.Polymer composites in the aerospace industry[M].Duxford:Woodhead Publishing,2019.
[2] YI X S,DU S,ZHANG L.Composite materials engineering,volume 2 different types of composite materials[M].Singapore:Springer,2018:154-156.
[3] ARJUNAN R.Vibroacoustic parametric analysis of honeycomb composite fuselage for improved transmission loss[D].Wichita:Wichita State University,2007.
[4] MARSH G.Composites get in deep with new-generation engine[J].Reinforced Plastics,2006,50(11):26-29.
[5] CORMAN G,UPADHYAY R,SINHA S,et al.Materials research for manufacturing:Chapter 3 General electric company:Selected applications of ceramics and composite materials[M].Cham:Springer,2016:59-91.
[6] MARSH G.Aero engines lose weight thanks to composites[J].Reinforced Plastics,2012,56(6):32-35.
[7] NJUGUNA J.Lightweight composite structures in transport:design,Manufacturing,analysis and performance[M].Duxford:Woodhead Publishing,2016.
[8] ALBANY ENGINEERED COMPOSITES.Next-generation composites in aircraft engines:approach to development and production implementation[C]//Aircraft Builders Council Conference.San Diego:[s.n.],2013.
[9] GIALANELLA S,MALANDRUCCOLO A.Aerospace alloys[M].Cham:Springer,2020:17-39.
[10] LITTELL J.The experimental and analytical characterization of the macromechanical response for triaxial braided composite materials[D].Akron:University of Akron,2008.
[11] RUGGERI C R.High strain rate data acquisition of 2D braided composite substructures[D].Akron:University of Akron,2009.
[12] MA X Q,SU Z T.Development of acoustic liner in aero engine:a review[J].Science China Technological Sciences,2020,doi:org/10.1007/s11431-019-1501-3.
[13] AYLE E.Acoustic honeycomb with perforated septum caps:US 8413761[P].2013-04-09.
[14] KEMPTON A.Acoustic liners for modern aero-engines[C]//15th CEAS-ASC Workshop and 1st Scientific Workshop of X-Noise EV.Lausanne[s.n.],2011.
[15] HOLMES M.Aerospace looks to composites for solutions[J].Reinforced Plastics,2017,61(4):237-241.
[16] LIAW D J,WANG K L,HUANG Y C,et al.Advanced polyimide materials:syntheses,physical properties and applications[J].Progress in Polymer Science,2012,37(7):907-974.
[17] HERGENROTHER P M.The use,design,synthesis,and properties of high performance/high temperature polymers:an overview[J].High Performance Polymers,2003,15(1):3-45.
[18] FRIEDRICH K.Polymer composites for tribological applications[J].Advanced Industrial and Engineering Polymer Research,2018,1(1):3-39.
[19] SCHMECKPEPER M,HOFFMAN J M.Polyimide composites challenge metals[J].Machine Design,2001,73(4):64-68.
[20] DEZEUSTRE N,KERBLER O,HURLIN H,et al.Thrust reverser for an aircraft jet engine:US 9458793[P].2016-10-04.
[21] KOZACZUK K.Engine nacelles design-Problems and challenges[J].Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2017,231(12):2259-2265.
[22] LAURET S.Safran and'Green Engines’-the future of civil aviation[J].Vayu Aerospace and Defence Review,2015,1:120.
[23] PARKER R,LATHOUD M.Green aero-engines:technology to mitigate aviation impact on environment[J].Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2010,224(3):529-538.
[24] ZOU Z,WANG S,LIU H,et al.Axial turbine aerodynamics for aero-engines:flow analysis and aerodynamics design[M].Shanghai:Springer,2018.118.
[25] YOUNG T M.Performance of the Jet Transport airplane:analysis methods,flight operations,and regulations[M].Chichester:John Wiley & Sons,2017.
[26] SULTANIAN B.Gas turbines:internal flow systems modeling[M].Cambridge:Cambridge University Press,2018.
[27] ZAPOROZHETS O,TOKAREV V, ATTENBOROUGH K.Aircraft noise propagation,exposure & reduction[M].Abingdon:Spon Press,2011:48-53.
[28] VAN ZANTE D,NARK D,FERNANDEZ H.Propulsion noise reduction research in the NASA advanced air transport technology Project[C]//23rd International Society of Air Breathing Engines.Manchester:[s.n.],2017.
[29] BHANUPRAKASH L,ALI A,MOKKOTH R,et al.Mode Ⅰ and Mode Ⅱ interlaminar fracture behavior of E-glass fiber reinforced epoxy composites modified with reduced exfoliated graphite oxide[J].Polymer Composites,2018,39(Suppl 4):2506-2518.
[30] ADAK N C,CHHETRI S,KUILA T,et al.Effects of hydrazine reduced graphene oxide on the inter-laminar fracture toughness of woven carbon fiber/epoxy composite[J].Composites Part B,2018,149:22-30.
[31] SRIVASTAVA V K,GRIES T,VEIT D,et al.Effect of nanomaterial on mode Ⅰ and mode Ⅱ interlaminar fracture toughness of woven carbon fabric reinforced polymer composites[J].Engineering Fracture Mechanics,2017,180:73-86.
[32] SHIN Y C,LEE W I,KIM H S.Mode Ⅱ interlaminar fracture toughness of carbon nanotubes/epoxy film-interleaved carbon fiber composites[J].Composite Structures,2020,236:111808.
[33] ABIDIN M S Z,HERCEG T,GREENHALGH E S,et al.Enhanced fracture toughness of hierarchical carbon nanotube reinforced carbon fibre epoxy composites with engineered matrix microstructure[J].Composites Science and Technology,2019,170:85-92.
[34] OU Y,GONZÁLEZ C,VILATELA J J.Interlaminar toughening in structural carbon fiber/epoxy composites interleaved with carbon nanotube veils[J].Composites Part A,2019,124:105477.
[35] ZHENG N,HUANG Y,LIU H Y,et al.Improvement of interlaminar fracture toughness in carbon fiber/epoxy composites with carbon nanotubes/polysulfone interleaves[J].Composites Science and Technology,2017,140:8-15.
[36] NGUYEN D D,VU C M,CHOI H J.Improvement of the mode Ⅰ interlaminar fracture toughness of glass fiber/epoxy composites using polystyrene electrospun nanofibres[J].Polymer Bulletin,2018,75(11):5089-5102.
[37] BEYLERGIL B,TANO?LU M,AKTA? E.Enhancement of interlaminar fracture toughness of carbon fiber-epoxy composites using polyamide-6, 6 electrospun nanofibers[J].Journal of Applied Polymer Science,2017,134(35):45244.
[38] RAZAVI S M J,NEISIANY R E,KHORASANI S N,et al.Effect of neat and reinforced polyacrylonitrile nanofibers incorporation on interlaminar fracture toughness of carbon/epoxy composite[J].Theoretical and Applied Mechanics Letters,2018,8(2):126-131.
[39] ESKIZEYBEK V,YAR A,AVCI A.CNT-PAN hybrid nanofibrous mat interleaved carbon/epoxy laminates with improved Mode Ⅰ interlaminar fracture toughness[J].Composites Science and Technology,2018,157:30-39.
[40] IPACKCHI H, REZADOUST A M, ESFANDEH M, et al.Improvement of interlaminar fracture toughness of phenolic laminates interleaved with electrospun polyvinyl butyral nanofibers[J].Theoretical and Applied Fracture Mechanics,2020,105:102406.
[41] HANDSCHUH K M,MILLER S G,SINNOTT M J,et al.Materials,manufacturing and test development of a composite fan blade leading edge subcomponent for improved impact resistance[R].NASA/TM.Springfield:National Technical Information service,2015.
[42] BHANUPRAKASH L,PARASURAM S,VARGHESE S.Experimental investigation on graphene oxides coated carbon fibre/epoxy hybrid composites: mechanical and electrical properties[J].Composites Science and Technology,2019,179:134-144.
[43] POZEGIC T R,HAMERTON I,ANGUITA J V,et al.Low temperature growth of carbon nanotubes on carbon fibre to create a highly networked fuzzy fibre reinforced composite with superior electrical conductivity[J]. Carbon,2014,74:319-328.
[44] LIN Y,GIGLIOTTI M,LAFARIE-FRENOT M C,et al.Experimental study to assess the effect of carbon nanotube addition on the through-thickness electrical conductivity of CFRP laminates for aircraft applications[J].Composites Part B,2015,76:31-37.
[45] DUONGTHIPTHEWA A,SU Y,ZHOU L.Electrical conductivity and mechanical property improvement by low-temperature carbon nanotube growth on carbon fiber fabric with nanofiller incorporation[J].Composites Part B,2020,182:107581.
[46] RUSSELLO M,DIAMANTI E K,CATALANOTTI G,et al.Enhancing the electrical conductivity of carbon fibre thin-ply laminates with directly grown aligned carbon nanotubes[J].Composite Structures,2018,206:272-278.
[47] GOH G D,YAP Y L,AGARWALA S,et al.Recent progress in additive manufacturing of fiber reinforced polymer composite[J].Advanced Materials Technologies,2019,4(1):1800271.
[48] SINGAMNENI S,YIFAN L V,HEWITT A,et al.Additive manufacturing for the aircraft industry:a review[J].Journal Aeronautics & Aerospace Engineering,2019,8(214):1-13.
[49] HAN P.Additive design and manufacturing of jet engine parts[J].Engineering,2017,3(5):648-652.
[50] GUO N,LEU M C.Additive manufacturing:technology,applications and research needs[J].Frontiers of Mechanical Engineering,2013,8(3):215-243.
[51] JONES M G,WATSON W R,NARK D M,et al.Evaluation of a variable-impedance ceramic matrix composite acoustic liner[C]//20th AIAA/CEAS Aeroacoustics Conference.Atlanta:[s.n.],2014: 3352.
[52] JONES M G,WATSON W R,NARK D M,et al.Evaluation of variable-depth liner configurations for increased broadband noise reduction[C]//21st AIAA/CEAS Aeroacoustics Conference.Dallas:[s.n.],2015:2697.
[53] CHUANG K C,GRADY J E,DRAPER R D,et al.Additive manufacturing and characterization of Ultem polymers and composites[C]//CAMX Conference Proceedings.Dallas:[s.n.],2015.
[54] GRADY J E,HALLER W J,POINSATTE P E,et al.A fully non-metallic gas turbine engine enabled by additive manufacturing part Ⅰ:system analysis, component identification,additive manufacturing,and testing of polymer composites[R].NASA/TM.Spring field:National Technical,2015.
[55] CHUANG K C,GRADY J E,ARNOLD S M,et al.A fully nonmetallic gas turbine engine enabled by additive manufacturing,part Ⅱ:additive manufacturing and characterization of polymer composites[R].NASA/TM.Information Service,2015.
[56] WANG X,JIANG M,ZHOU Z,et al.3D printing of polymer matrix composites:a review and prospective[J].Composites Part B,2017,110:442-458.
[57] CUI T J,SMITH D R,LIU R P.Metamaterials:theory,design and applications[M].New York:Springer,2000.
[58] LI Y,ASSOUAR B M.Acoustic metasurface-based perfect absorber with deep subwavelength thickness[J].Applied Physics Letters,2016,108(6):063502.
[59] CHEN C,DU Z,HU G,et al.A low-frequency sound absorbing material with subwavelength thickness[J].Applied Physics Letters,2017,110(22):221903.
[60] YANG M,CHEN S,FU C,et al.Optimal sound-absorbing structures[J].Materials Horizons,2017,4(4):673-680.
[61] TANG Y,REN S,MENG H,et al.Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound[J].Scientific Reports,2017,7:43340.
[62] JIANG X,LIANG B,ZOU X,et al.Acoustic one-way metasurfaces:asymmetric phase modulation of sound by subwavelength layer[J].Scientific Reports,2016,6:28023.
[63] LI Y,LIANG B,GU Z,et al.Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces[J].Scientific Reports,2013,3:2546.
[64] LI Y,JIANG X,LI R,et al.Experimental realization of full control of reflected waves with subwavelength acoustic metasurfaces[J].Physical Review Applied,2014,2(6):064002.
[65] DIKSHIT V,NAGALINGAM A P,GOH G D,et al.Quasi-static indentation analysis on three-dimensional printed continuous-fiber sandwich composites[J].Journal of Sandwich Structures & Materials,2019,doi:org/10.1177/1099636219836058.
[1] 刘雨, 陈张伟. 陶瓷光固化3D打印技术研究进展[J]. 材料工程, 2020, 48(9): 1-12.
[2] 栾建泽, 那景新, 谭伟, 慕文龙, 申浩, 秦国锋. 铝合金-BFRP粘接接头的服役高温老化力学性能及失效预测[J]. 材料工程, 2020, 48(9): 166-172.
[3] 包建文, 钟翔屿, 张代军, 彭公秋, 李伟东, 石峰晖, 李晔, 姚锋, 常海峰. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8): 33-48.
[4] 曲丽丹, 韩斌慧, 吕云卓, 白钰枝. 激光3D打印非晶合金晶化体积分数的理论预测[J]. 材料工程, 2020, 48(7): 133-138.
[5] 高禹, 刘京, 王进, 王柏臣, 崔旭, 包建文. 真空热循环对碳/双马来酰亚胺复合材料低速冲击性能的影响[J]. 材料工程, 2020, 48(7): 154-161.
[6] 刘晓明, 任志宇, 陈陆平, 李国建, 王强, 周济. 红外隐身超材料[J]. 材料工程, 2020, 48(6): 1-11.
[7] 傅晓建, 石磊, 崔铁军. 太赫兹超材料及其成像应用研究进展[J]. 材料工程, 2020, 48(6): 12-22.
[8] 吴红亚, 杨云, 张光磊, 白洋, 周济. 双曲超材料及其传感器研究进展[J]. 材料工程, 2020, 48(6): 34-42.
[9] 郑镭, 孙维连, 孙铂, 张雪静, 纪宏超. 挤出方式对黏弹性浆料3D打印出料可控性的影响[J]. 材料工程, 2020, 48(3): 134-141.
[10] 高亮, 霍红宇, 周典瑞, 张宝艳, 胡君. 基于动态共价化学树脂及复合材料的研究进展[J]. 材料工程, 2020, 48(11): 68-75.
[11] 何代华, 朱威, 刘翔, 刘平. 硅酸钙及硅酸钠浓度对钛合金表面生物活性涂层的影响[J]. 材料工程, 2020, 48(10): 148-156.
[12] 刘帅, 郭广平, 郝文峰, 杨洋, 张悦, 陈子木. 基于数字体相关方法的3D打印材料内部变形测量[J]. 材料工程, 2020, 48(10): 176-183.
[13] 丰涵, 王宝顺, 吴晓涵, 王曼, 佴启亮, 宋志刚. 022Cr25Ni7Mo4N双相不锈钢等温处理中的组织演变[J]. 材料工程, 2020, 48(1): 70-76.
[14] 苏继龙, 吴金东, 刘远力. 蜂窝结构力学超材料弹性及抗冲击性能的研究进展[J]. 材料工程, 2019, 47(8): 49-58.
[15] 赵枢明, 薛铠华, 杨通, 张雪, 姚山. 烧结颈分布对3D打印覆膜Al2O3零件强度的影响[J]. 材料工程, 2019, 47(8): 132-140.
Full text



版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持