Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (10): 169-175    DOI: 10.11868/j.issn.1001-4381.2020.000455
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
TEMPO功能化锆基MOFs的合成及醇催化氧化性能
庄金亮1, 刘湘粤1,2, 杜嬛3
1. 贵州师范大学 化学与材料科学学院 贵州省功能材料化学重点实验室, 贵阳 550001;
2. 福州大学 化学学院, 福州 350108;
3. 中国科学院过程工程研究所 中国科学院绿色过程与工程重点实验室, 北京 100190
Synthesis and alcohol catalytic properties of TEMPO functionalized Zr-based MOFs
ZHUANG Jin-liang1, LIU Xiang-yue1,2, DU Xuan3
1. Key Laboratory of Functional Materials and Chemistry of Guizhou Province, School of Chemistry and Materials, Guizhou Normal University, Guiyang 550001, China;
2. College of Chemistry, Fuzhou University, Fuzhou 350108, China;
3. Key Laboratory of Green Process and Engineering, CAS, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
全文: PDF(2690 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用有机骨架分子侧链嫁接有机小分子催化基团策略,合成出TEMPO自由基功能化的三联苯二羧酸有机配体H2tpdc-TEMPO。利用醋酸为调节剂,H2tpdc-TEMPO与ZrOCl2溶剂热反应可获得TEMPO功能化的UiO-68-TEMPO纳米晶体。UiO-68-TEMPO为单分散八面体形貌纳米晶体,尺寸在800~1200 nm之间,BET比表面积高达1320 m2/g,固态电子顺磁共振谱(EPR)谱证明UiO-68-TEMPO骨架含有大量TEMPO自由基。UiO-68-TEMPO纳米晶体可将各种芳香一级醇、二级醇和杂原子醇高效、高选择性氧化成相应的醇或者酮。UiO-68-TEMPO纳米晶体可重复使用4次仍保持75%以上的催化效率。最后,提出了UiO-68-TEMPO催化氧化苯甲醇的机理,即TBN作为助催化剂产生NO2/NO氧化还原对,实现了O2将TEMPO自由基氧化为鎓氧正离子,最终实现苯甲醇氧化成苯甲醛。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
庄金亮
刘湘粤
杜嬛
关键词 多孔材料锆基金属-有机骨架化合物有机小分子催化剂自由基醇氧化    
Abstract:A strategy based on grafting organocatalytic units as side-chain on the organic linkers, a TEMPO radical decorated terphenyl-dicarboxylic acid linker was synthesized. By employing acetic acid as modulator, TEMPO radical decorated UiO-68-TEMPO nanocrystals were synthesized by using H2tpdc-TEMPO as organic linker and ZrOCl2 as metal source under solvothermal conditions. UiO-68-TEMPO are monodispersed nanocrystals with side in the range of 800-1200 nm, with high BET areas (up to 1320 m2/g), and contain a large number of TEMPO radicals as evidenced by solid-state EPR spectrum. UiO-68-TEMPO nanocrystals enable selective oxidation of a broad range of alcohols, including primary aromatic alcohols, secondary aromatic alcohols, and heterogeneous atomic alcohols, with high efficiency and selectivity. The catalytic activity of UiO-68-TEMPO nanocrystals remains 75% after catalysis for four cycles. Finally, a plausible catalytic mechanism for the oxidation of benzyl alcohol by UiO-68-TEMPO was proposed, that is the TBN co-catalyst produces NO2/NO redox mediator, which enables the oxidation of TEMPO radicals to oxoammonium cations by O2, and finally oxidize benzyl alcohol to benzaldehyde.
Key wordsporous material    Zr-based metal-organic framework    organocatalyst    radical    alcohol oxida-tion
收稿日期: 2020-05-25      出版日期: 2020-10-17
中图分类号:  O611.4  
  O643.32+2  
通讯作者: 庄金亮(1983-),男,副教授,博士,主要从事功能性多孔材料合成及应用领域研究,联系地址:贵州省贵阳市云岩区宝山北路116号贵州师范大学化学与材料科学学院(550001),E-mail:jlzhuang@xmu.edu.cn     E-mail: jlzhuang@xmu.edu.cn
引用本文:   
庄金亮, 刘湘粤, 杜嬛. TEMPO功能化锆基MOFs的合成及醇催化氧化性能[J]. 材料工程, 2020, 48(10): 169-175.
ZHUANG Jin-liang, LIU Xiang-yue, DU Xuan. Synthesis and alcohol catalytic properties of TEMPO functionalized Zr-based MOFs. Journal of Materials Engineering, 2020, 48(10): 169-175.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000455      或      http://jme.biam.ac.cn/CN/Y2020/V48/I10/169
[1] MILLAN M,DAVID W C.The advent and development of organocatalysis[J].Nature,2008,455(7211):304-308.
[2] SHELDON R A,ARENDS I W C E,BRINK T G J,et al.Green,catalytic oxidations of alcohols[J].Accounts of Chemical Research,2002,35(9):774-781.
[3] WALDEMAR A,CHANTU R,SAHA M,et al.Synthetic applications of nonmetal catalysts for homogeneous oxidations[J].Chemical Reviews,2001,101(11),3499-3548.
[4] PALMISANO G,CIRIMINNA R,PAGLIARO M.Waste-free electrochemical oxidation of alcohols in water[J].Advanced Synthesis & Catalysis,2006,348(15):2033-2037.
[5] 杨贯羽,郭彦春,武光辉,等.氮氧自由基TEMPO:选择氧化醇的高效有机小分子催化剂[J]. 化学进展,2007,19(11):1727-1735. YANG G Y,GUO Y C,WU G H,et al.Nitroxyl raidical TEMPO:an organocatalyst for highly efficient and selective oxidation of alcohol[J].Progress in Chemistry, 2007, 19(11):1727-1735.
[6] LV H,LAISHRAM R D,YANG Y,et al. TEMPO catalyzed oxidative dehydrogenation of hydrazobenzenes to azobenzenes[J].Organic & Biomolecular Chemistry,2020(18):3471-3474.
[7] YAN H,RONG G,LIU D,et al. Stereoselective intermolecular nitroaminoxylation of terminal aromatic alkynes:trapping alkenyl radicals by TEMPO[J]. Organic Letters,2015,46(22):6306-6309.
[8] TEBBEN L,ARMIDO S. Nitroxides:applications in synthesis and in polymer chemistry[J]. Angewandte Chemie International Edition,2011,50(22):5034-5068.
[9] BADALYAN A,STAHL S S.Cooperative electrocatalytic alcohol oxidation with electron-proton-transfer mediators[J]. Nature,2016,535:406-410.
[10] MURARKA S,MOEBUS J,ERKER G,et al.TEMPO-mediated homocoupling of aryl Grignard reagents:mechanistic studies[J].Organic & Biomolecular Chemistry,2015,13(9):2762-2767.
[11] QIAN X Y,LI S Q,SONG J,et al.TEMPO-catalyzed electrochemical C-H thiolation:synthesis of benzothiazoles and thiazolo-pyridines from thioamides[J].ACS Catalysis,2017,7(4):2730-2734.
[12] BEEJAPUR H A,ZHANG Q,HU K,et al.TEMPO in chemical transformations:from homogeneous to heterogeneous[J].ACS Catalysis,2019,9(4):2777-2830.
[13] LIU R,LIANG X,DONG C,et al.Transition metal free A highly efficient catalytic aerobic alcohol oxidation[J].Journal of the American Chemical Society,2004(126):4112-4113.
[14] HE X,SHEN Z,MO W,et al.Hu,TEMPO-tert-butyl nitrite:an efficient catalytic system for aerobic oxidation of alcohols[J].Advanced Synthesis & Catalysis,2009,351(1/2):89-92.
[15] ZHENG Z,WANG J,ZHANG M,et al.Magnetic polystyrene nanosphere immobilized TEMPO:a readily prepared,highly reactive and recyclable polymer catalyst in the selective oxidation of alcohols[J].Chem Cat Chem,2013,5(1):307-312.
[16] KARIMI B,FARHANGI E.A highly recyclable magnetic core-shell nanoparticle-supported TEMPO catalyst for efficient metal-and halogen-free aerobic oxidation of alcohols in water[J].Chemistry-A European Journal,2011,22(22):6056-6060.
[17] ZHAO H,CHEN Q,WEI L,et al.A highly efficient heterogeneous aerobic alcohol oxidation catalyzed by immobilization of bipyridine copper(Ⅰ) complex in MCM-41[J].Tetrahedron,2015,71(46):8725-8731.
[18] ZHU L,LIU X Q,JIANG H L,et al.Metal-organic frameworks for heterogeneous basic catalysis[J].Chemical Reviews,2017,117(12):8129-8176.
[19] WU Z,YUAN X,ZHANG J,et al.Photocatalytic decontamination of wastewater containing organic dyes by metal-organic frameworks and their derivatives[J].Chem Cat Chem,2017,9(1):41-64.
[20] 刘湘粤,张宇,王晨,等.亚铁盐制备高结晶度MIL-100(Fe)纳米材料及其光降解有机染料性能[J].材料工程,2018,46(10):127-134. LIU X Y,ZHANG Y,WANG C,et al.Highly crystalline MIL-100(Fe) nanoparticles prepared from ferrous salts and applications in photodegradation of organic dyes[J].Journal of Materials Engineering, 2018, 46(10):127-134.
[21] 张宇,刘湘粤,毛会玲,等.铁盐对制备MIL-100(Fe)的影响及其光催化性能[J].材料工程,2019,47(3):71-78. ZHANG Y,LIU X Y,MAO H L,et al.Effects of iron salts on synthesis of MIL-100(Fe) and photocatalytic activity[J].Journal of Materials Engineering, 2019, 47(3):71-78.
[22] KUTZSCHER C,NICKERL G,SENKOVSKA I,et al.Proline functionalized UiO-67 and UiO-68 type metal-organic frameworks showing reversed diastereoselectivity in aldol addition reactions[J].Chemistry of Materials,2016,28(8):2573-2580.
[23] MCGUIRK C M,KATZ M J,STERN C L,et al.Turning on catalysis:incorporation of a hydrogen-bond-donating squaramide moiety into a Zr metal-organic framework[J].Journal of the American Chemical Society,2015,137(2):919-925.
[24] ZHUANG J L,LIU X Y,ZHANG Y,et al.Zr-metal-organic frameworks featuring TEMPO radicals:synergistic effect between TEMPO and hydrophilic Zr-node defects boosting aerobic oxidation of alcohols[J].ACS Applied Materials & Interfaces,2019,11(3):3034-3043.
[1] 亓淑艳, 王德朋, 赵亚栋, 胥焕岩. 电气石/ZnO复合材料光催化机制[J]. 材料工程, 2019, 47(9): 145-151.
[2] 刘培生, 杨春艳, 程伟. 多孔材料性能模型研究3:数理推演[J]. 材料工程, 2019, 47(8): 59-81.
[3] 刘培生, 夏凤金, 程伟. 多孔材料性能模型研究2:实验验证[J]. 材料工程, 2019, 47(7): 35-49.
[4] 刘培生, 崔光, 程伟. 多孔材料性能模型研究1:数理关系[J]. 材料工程, 2019, 47(6): 42-62.
[5] 张宇, 刘湘粤, 毛会玲, 王晨, 杜嬛, 程琥, 庄金亮. 铁盐对制备MIL-100(Fe)的影响及其光催化性能[J]. 材料工程, 2019, 47(3): 71-78.
[6] 林广鸿, 尹敬峰, 黄鸿, 黄伟滨, 蔡慕华, 向洪平, 刘晓暄. 混杂光固化3D打印树脂固化动力学性能[J]. 材料工程, 2019, 47(12): 143-150.
[7] 侯桂香, 谢建强, 李婷婷, 高俊刚, 常娇. MAP-POSS/不饱和环氧树脂混杂光固化膜制备与性能[J]. 材料工程, 2017, 45(8): 49-54.
[8] 杨淑敏, 李海涛, 顾建军, 韩伟, 杨巍, 岂云开. 彩色多孔氧化铝薄膜的制备和光学特性[J]. 材料工程, 2015, 43(4): 30-36.
[9] 郝刚领, 韩福生, 王伟国. 镁基多孔材料准静态压缩行为与吸能特性研究[J]. 材料工程, 2013, (2): 29-34.
[10] 袁颂东, 熊坤, 胡昆鹏, 张运华, 罗意, 江国栋. 以氯化铵为添加剂制备高比表面六方氮化硼多孔材料及性能研究[J]. 材料工程, 2013, 0(10): 53-56.
[11] 刘培生, 夏凤金, 罗军. 多孔材料模型分析[J]. 材料工程, 2009, 0(7): 83-87.
[12] 刘培生, 陈一鸣, 丁晓纪. 泡沫金属在弯矩作用下的表征分析[J]. 材料工程, 2009, 0(5): 65-67.
[13] 刘爱红, 李爱民, 孙康宁. 多孔HAp-(β-Ca3(PO4)2)-Si3N4生物复合材料的力学性能与微观结构[J]. 材料工程, 2007, 0(10): 14-17.
[14] 浦玉萍, 吕广庶, 李晓军, 王强. 添加剂对聚酰亚胺基复合材料微孔特性的影响[J]. 材料工程, 2003, 0(6): 7-10.
[15] 王文俊, 董宇平. 通过原子转移自由基聚合对聚氯乙烯进行化学改性[J]. 材料工程, 2002, 0(4): 6-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn