Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (5): 89-97    DOI: 10.11868/j.issn.1001-4381.2020.000495
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
静电纺CA/PpIX多孔纤维膜的制备及其光动力性能
沈慧颖1, 吕子豪1, 庄粟裕1, 曹秀明2, 王清清1,2
1. 江南大学 生态纺织教育部重点实验室, 江苏 无锡 214122;
2. 江苏阳光股份有限公司, 江苏 无锡 214400
Preparation and photodynamic performance of electrospinning CA/PpIX porous fibrous membrane
SHEN Hui-ying1, LYU Zi-hao1, ZHUANG Su-yu1, CAO Xiu-ming2, WANG Qing-qing1,2
1. Key Laboratory of Eco-Textiles(Ministry of Education), Jiangnan University, Wuxi 214122, Jiangsu, China;
2. Jiangsu Sunshine Co., Ltd., Wuxi 214400, Jiangsu, China
全文: PDF(11674 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 针对耐药性细菌感染问题,利用静电纺丝技术制备一种光动力广谱抗菌的醋酸/原卟啉(CA/PpIX)复合多孔超细纤维膜。利用扫描电子显微镜(SEM)观察纤维膜表面形貌,借助激光共聚焦扫描显微镜(CLSM)观察PpIX在醋酸纤维上的分布,采用傅里叶红外光谱仪(FT-IR)以及拉曼光谱仪(Raman)分析比较添加PpIX前后纤维膜基本化学结构的变化。通过DPBF底物氧化实验及材料对金黄色葡萄球菌和大肠杆菌的抗菌能力,探究材料的光动力性能,并且设计无机盐溶液(KI,NaNO2,MgCl2)梯度实验,以探究其与1O2的相互作用对抗菌性能的影响。结果表明,PpIX的加入并未改变纤维的基本形貌,但赋予了纤维膜良好的底物氧化及抗菌性能(光照30 min,对金黄色葡萄球菌的抗菌效果可达99.537%)。KI,MgCl2,NaNO2溶液对CA/PpIX介导的光动力抗菌均具有一定的增强作用,其中KI溶液的增强作用最明显,其与1O2的相互作用产生了更多的自由基,显著增强了光动力抗菌效果,100 mmol/L的KI溶液可将纤维膜对两种菌的抗菌效率均提升至99.9999%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
沈慧颖
吕子豪
庄粟裕
曹秀明
王清清
关键词 原卟啉静电纺丝醋酸纤维单线态氧光动力抗菌无机盐    
Abstract:To address the problem of drug-resistant bacterial infections, a photodynamic broad-spectrum antibacterial cellulose acetate/protoporphyrin (CA/PpIX) porous microfibre membrane was prepared by electrospinning. The surface morphology of the fibrous membrane was observed by scanning electron microscope (SEM) and the distribution of PpIX on CA membrane was observed by laser confocal scanning microscope (CLSM). The change of the basic chemical structure of membrane before and after loading PpIX was analyzed by Fourier infrared spectroscopy (FT-IR) and Raman spectrometer. Through the DPBF substrate oxidation experiment and the antibacterial ability against S. aureus and E. coli, the photodynamic performance of the material was explored, and the gradient experiment of inorganic salt solution (KI, NaNO2, MgCl2) was designed to explore the effect of its interaction with 1O2 on the antibacterial performance. The results show that the loading of PpIX does not change the basic morphology of the fibrous membrane, but it gives the membrane good substrate oxidation and antibacterial properties (illumination 30 min, the antibacterial efficiency against S. aureus achieves 99.537%). KI, MgCl2and NaNO2solutions all have certain enhancement effects on photodynamic antibacterial mediated by CA/PpIX, among which KI solution has the most obvious enhancement effect. The interaction between the inorganic salt KI and 1O2 produces more free radicals, which can significantly potentiate the photodynamic antibacterial effect. The 100 mmol/L KI solution can potentiate the antibacterial efficiency of the composite fibrous membrane against S. aureus and E. coli to 99.9999%.
Key wordsprotoporphyrin    electrospinning    cellulose acetate    singlet oxygen    photodynamic antibacterial    inorganic salt
收稿日期: 2020-06-01      出版日期: 2021-05-21
中图分类号:  TQ341+.2  
基金资助:国家自然科学基金青年基金(51603090);中国博士后科学基金(2018M630516);2018年省政策引导类计划(国际科技合作)(BZ2018032);中央高校基本科研业务费专项资金(JUSRP52007A)
通讯作者: 王清清(1987-),女,副教授,博士,主要研究方向为功能纳米纤维材料,联系地址:江苏省无锡市江南大学生态纺织教育部重点实验室(214122),qqwang@jiangnan.edu.cn     E-mail: qqwang@jiangnan.edu.cn
引用本文:   
沈慧颖, 吕子豪, 庄粟裕, 曹秀明, 王清清. 静电纺CA/PpIX多孔纤维膜的制备及其光动力性能[J]. 材料工程, 2021, 49(5): 89-97.
SHEN Hui-ying, LYU Zi-hao, ZHUANG Su-yu, CAO Xiu-ming, WANG Qing-qing. Preparation and photodynamic performance of electrospinning CA/PpIX porous fibrous membrane. Journal of Materials Engineering, 2021, 49(5): 89-97.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000495      或      http://jme.biam.ac.cn/CN/Y2021/V49/I5/89
[1] LAXMINARAYAN R, MATSOSO P, PANT S, et al.Access to effective antimicrobials:a worldwide challenge[J].The Lancet, 2015, 387(10014):168-175.
[2] RENWICK M J, SIMPKIN V, MOSSIALOS E.Targeting innovation in antibiotic drug discovery and development:the need for a one health-one europe-one world framework[M].Copenhagen:European Observatory on Health Systems and Policies, 2016.
[3] JORI G.Photodynamic inactivation of microbial pathogens medical and environmental applications:light strikes back microorganisms in the new millennium[J].Photochemistry and Photobiology, 2011, 87(6):1479-1479.
[4] 董建成, 葛孝栋, 王清清, 等.阳离子光敏抗菌型水凝胶的制备及性能表征[J].材料工程, 2019, 47(2):56-61. DONG J C, GE X D, WANG Q Q, et al. Preparation and property characterization of cationic photoantimicrobial hydrogel[J]. Journal of Materials and Engineering, 2019, 47(2):56-61.
[5] ABRAHAMSE H, HAMBLIN M R.New photosensitizers for photodynamic therapy[J].Biochemical Journal, 2016, 473(4):347-364.
[6] 丁慧颖.光动力治疗基本原理及其应用[M].北京:化学工业出版社, 2014. DING H Y. Photodynamic therapy:basic principles and applications[M].Beijing:Chemical Industry Press, 2014.
[7] 周盼, 谢小燕, 熊力, 等.抗菌光敏剂的分类及研究进展[J].激光生物学报, 2017, 26(3):193-197. ZHOU P, XIE X Y, XIONG L, et al. The classification of antibacterial photosensitizer and its research progress[J].Acta Laser Biology Sinica, 2017, 26(3):193-197.
[8] HARRIS F, PIERPOINT L.Photodynamic therapy based on 5-aminolevulinic acid and its use as an antimicrobial agent[J].Med Res Rev, 2012, 32(6):1292-1327.
[9] 于宾, 焦晓宁, 王忠忠. 静电纺醋酸纳米纤维及其应用研究现状[J].产业用纺织品, 2013(3):1-5. YU B, JIAO X N, WANG Z Z. The research of electrospun cellulose acetate nanofiber and its application[J]. Technical Textiles, 2013(3):1-5.
[10] 刘照伟, 汤玉斐, 赵康.静电纺丝制备多孔纳米纤维的研究进展[J].中国材料进展, 2018, 37(6):410-418. LIU Z W, TANG Y F, ZHAO K. Progress of electrospun nano-fibers with porous structure[J].Materials China, 2018, 37(6):410-418.
[11] OGILBY P R.Singlet oxygen:there is still something new under the sun, and it is better than ever[J].Photochemical and Photobiological Sciences, 2010, 9(12):1543-1560.
[12] MALIK Z, LADAN H, NITZAN Y, et al.Photodynamic inactivation of gram-negative bacteria:problems and possible solutions[J].Journal of Photochemistry and Photobiology B, 1992, 14(3):262-266.
[13] NIR U, LADAN H, MALIK Z, et al.In vivo effects of porphyrins on bacterial DNA[J].Journal of Photochemistry & Photobiology B, 1992, 11(3/4):295-306.
[14] GIULIO B, FRANCESCA R, GIULIANA V, et al.Photosensitizing activity of water-souble and lipid-soluble phthalocyanines on Escherichia coli[J].Fems Microbiology Letters, 1990, 71(1/2):149-155.
[15] Vecchio D, Gupta A, Huang L, et al.Bacterial photodynamic inactivation mediated by methylene blue and red light is enhanced by synergistic effect of potassium iodide[J].Antimicrobial Agents and Chemotherapy, 2015, 59(9):5203-5212.
[16] HUANG Y, CHOI H, KUSHIDA Y, et al.Broad-spectrum antimicrobial effects of photocatalysis using titanium dioxide nanoparticles are strongly potentiated by addition of potassium iodide[J].Antimicrobial Agents and Chemotherapy, 2016, 60(9):5445-5453.
[17] HUANG L, DENIS T G, XUAN Y, et al.Paradoxical potentiation of methylene blue-mediated antimicrobial photodynamic inactivation by sodium azide:role of ambient oxygen and azide radicals[J].Free Radical Biology and Medicine, 2012, 53(11):2062-2071.
[18] 李琪, 魏取福, 汪莹莹, 等.锦纶6/有机蒙脱土复合纳米纤维的制备与表征[J].纺织学报, 2007, 28(11):1-4. LI Q, WEI Q F, WANG Y Y, et al. Preparation and characterization of PA 6/organic montmorillonite composite nanofibers[J].Journal of Textile Research, 2007, 28(11):1-4.
[19] 陈亚君, 汪帝, 李大伟, 等.梯度孔隙结构二醋酸纤维复合滤料的制备及过滤性能[J].现代化工, 2019, 39(2):136-139. CHEN Y J, WANG D, LI D W, et al. Fabrication of cellulose diacetate composite filter material with pore diameter gradient structure and filtration performance[J].Modern Chemical Industry, 2019, 39(2):136-139.
[20] 巫晓华.静电纺丝制备醋酸纤维素纳米纤维及其抗菌改性[D].杭州:浙江理工大学, 2015. WU X H.The preparation of CA nanofiber by electrospinning and the modification of antibacterial properties[D].Hangzhou:Zhejiang Sci-Tech University, 2015.
[21] RICCHELLI F.Photophysical properties of porphyrins in biological membranes[J].Journal of Photochemistry and Photobiology B-biology, 1995, 29(2/3):109-118.
[22] DONG J, GHILADI R A, WANG Q, et al.Protoporphyrin Ⅸ conjugated bacterial cellulose via diamide spacer arms with specific antibacterial photodynamic inactivation against Escherichia coli[J].Cellulose, 2018, 25(3):1673-1686.
[23] 殷耀兵, 谢辉, 马建华, 等.原卟啉Ⅸ锌-聚乳酸的合成及表征[J].化工新型材料, 2012, 40(3):97-99. YIN Y B, XIE H, MA J H, et al. Synthesis and characterization of zinc protoporphyrin Ⅸ bearing polylactic acid[J]. New Chemical Materials, 2012, 40(3):97-99.
[24] FELGENTRAGER A, MAISCH T, SPATH A, et al.Singlet oxygen generation in porphyrin-doped polymeric surface coating enables antimicrobial effects on Staphylococcus aureus[J].Physical Chemistry Chemical Physics, 2014, 16(38):20598-20607.
[25] FENG Z, LIU X, TAN L, et al.Electrophoretic deposited stable chitosan@MoS2 coating with rapid in situ bacteria-killing ability under dual-light irradiation[J].Small, 2017, 14(21):1-16.
[26] MAISCH T, SZEIMIES R M, JORI G et al.Antibacterial photodynamic therapy in dermatology[J].Photochemical & Photobiological Sciences, 2004, 3(10):907-917.
[27] HAMBLIN M, ABRAHAMSE H.Inorganic salts and antimicrobial photodynamic therapy:mechanistic conundrums?[J].Molecules, 2018, 23(12):1-18.
[28] HUANG L, SZEWCZYK G, SARNA T, et al.Potassium iodide potentiates broad-spectrum antimicrobial photodynamic inactivation using photofrin[J].ACS Infectious Diseases, 2017, 3(4):320-328.
[29] FONTANA M, BLARZINO C, PECCI L, et al.Formation of 3-nitrotyrosine by riboflavin photosensitized oxidation of tyrosine in the presence of nitrite[J].Amino Acids, 2012, 42(5):1857-1865.
[1] 向小倩, 夏强, 廖小刚, 郑林, 李纲, 胡学步. 多孔α-Mn2O3的制备及其催化过一硫酸盐降解亚甲基蓝溶液的性能[J]. 材料工程, 2022, 50(2): 164-172.
[2] 谢超, 邢健, 丁玉梅, 王循, 杨卫民, 李好义. 熔体微分电纺回收PP无纺布纳米纤维膜制备及吸油性能[J]. 材料工程, 2020, 48(6): 125-131.
[3] 巩桂芬, 徐阿文, 邹明贵, 邢韵, 辛浩. EVOH-SO3Li/P(VDF-HFP)/HAP锂离子电池隔膜的制备及电化学性能[J]. 材料工程, 2020, 48(5): 75-82.
[4] 王循, 丁玉梅, 余韶阳, 杜琳, 杨卫民, 李好义, 陈明军. 熔体微分电纺PLA/OMMT可降解纳米纤维膜制备及污染处理[J]. 材料工程, 2019, 47(7): 99-105.
[5] 龚文正, 常保宁, 阮诗伦, 申长雨. 静电纺丝聚芳醚砜酮纤维膜穿刺强度研究[J]. 材料工程, 2019, 47(4): 32-38.
[6] 张飒, 王建江, 赵芳, 刘嘉玮. 电纺Co掺杂碳纳米纤维的制备及其吸波性能[J]. 材料工程, 2019, 47(12): 118-123.
[7] 舒华金, 吴春萱, 杨康, 刘廷武, 李晨, 曹传亮. 快速膨胀海藻酸钠/二氧化硅纤维复合支架的制备及其快速止血功能的应用[J]. 材料工程, 2019, 47(12): 124-129.
[8] 龚文正, 周晶晶, 阮诗伦, 申长雨. 静电纺丝与静电喷雾技术共纺制备PPESK/PVDF复合锂电池隔膜[J]. 材料工程, 2018, 46(3): 1-6.
[9] 巩桂芬, 王磊, 兰健. EVOH-SO3Li/PET电纺锂离子电池隔膜电化学性能[J]. 材料工程, 2018, 46(3): 7-12.
[10] 陈俊, 张代军, 张天骄, 包建文, 钟翔屿, 张朋, 刘巍. 溶液静电纺丝制备热塑性聚酰亚胺超细纤维无纺布[J]. 材料工程, 2018, 46(2): 41-49.
[11] 余煜玺, 马锐. SiC微/纳米纤维毡增强SiO2气凝胶复合材料的制备和表征[J]. 材料工程, 2018, 46(11): 45-50.
[12] 李甫, 康卫民, 程博闻, 费鹏飞, 董永春. 负载银中空纳米碳纤维的制备及电化学性能[J]. 材料工程, 2016, 44(11): 56-60.
[13] 侯桂香, 谢建强, 姚少巍, 张翠云. PAN/插层高岭石复合材料制备及静电纺丝性能[J]. 材料工程, 2015, 43(10): 49-54.
[14] 王曙东, 尹桂波, 张幼珠, 王红卫, 蒋新建, 董智慧. 静电纺PLA管状支架的结构及其生物力学性能[J]. 材料工程, 2008, 0(10): 316-320.
[15] 王文俊, 李胤, 门爽, 邵自强. 三醋酸纤维素的结构与性能研究[J]. 材料工程, 2007, 0(8): 49-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn