Abstract:To address the problem of drug-resistant bacterial infections, a photodynamic broad-spectrum antibacterial cellulose acetate/protoporphyrin (CA/PpIX) porous microfibre membrane was prepared by electrospinning. The surface morphology of the fibrous membrane was observed by scanning electron microscope (SEM) and the distribution of PpIX on CA membrane was observed by laser confocal scanning microscope (CLSM). The change of the basic chemical structure of membrane before and after loading PpIX was analyzed by Fourier infrared spectroscopy (FT-IR) and Raman spectrometer. Through the DPBF substrate oxidation experiment and the antibacterial ability against S. aureus and E. coli, the photodynamic performance of the material was explored, and the gradient experiment of inorganic salt solution (KI, NaNO2, MgCl2) was designed to explore the effect of its interaction with 1O2 on the antibacterial performance. The results show that the loading of PpIX does not change the basic morphology of the fibrous membrane, but it gives the membrane good substrate oxidation and antibacterial properties (illumination 30 min, the antibacterial efficiency against S. aureus achieves 99.537%). KI, MgCl2and NaNO2solutions all have certain enhancement effects on photodynamic antibacterial mediated by CA/PpIX, among which KI solution has the most obvious enhancement effect. The interaction between the inorganic salt KI and 1O2 produces more free radicals, which can significantly potentiate the photodynamic antibacterial effect. The 100 mmol/L KI solution can potentiate the antibacterial efficiency of the composite fibrous membrane against S. aureus and E. coli to 99.9999%.
[1] LAXMINARAYAN R, MATSOSO P, PANT S, et al.Access to effective antimicrobials:a worldwide challenge[J].The Lancet, 2015, 387(10014):168-175. [2] RENWICK M J, SIMPKIN V, MOSSIALOS E.Targeting innovation in antibiotic drug discovery and development:the need for a one health-one europe-one world framework[M].Copenhagen:European Observatory on Health Systems and Policies, 2016. [3] JORI G.Photodynamic inactivation of microbial pathogens medical and environmental applications:light strikes back microorganisms in the new millennium[J].Photochemistry and Photobiology, 2011, 87(6):1479-1479. [4] 董建成, 葛孝栋, 王清清, 等.阳离子光敏抗菌型水凝胶的制备及性能表征[J].材料工程, 2019, 47(2):56-61. DONG J C, GE X D, WANG Q Q, et al. Preparation and property characterization of cationic photoantimicrobial hydrogel[J]. Journal of Materials and Engineering, 2019, 47(2):56-61. [5] ABRAHAMSE H, HAMBLIN M R.New photosensitizers for photodynamic therapy[J].Biochemical Journal, 2016, 473(4):347-364. [6] 丁慧颖.光动力治疗基本原理及其应用[M].北京:化学工业出版社, 2014. DING H Y. Photodynamic therapy:basic principles and applications[M].Beijing:Chemical Industry Press, 2014. [7] 周盼, 谢小燕, 熊力, 等.抗菌光敏剂的分类及研究进展[J].激光生物学报, 2017, 26(3):193-197. ZHOU P, XIE X Y, XIONG L, et al. The classification of antibacterial photosensitizer and its research progress[J].Acta Laser Biology Sinica, 2017, 26(3):193-197. [8] HARRIS F, PIERPOINT L.Photodynamic therapy based on 5-aminolevulinic acid and its use as an antimicrobial agent[J].Med Res Rev, 2012, 32(6):1292-1327. [9] 于宾, 焦晓宁, 王忠忠. 静电纺醋酸纳米纤维及其应用研究现状[J].产业用纺织品, 2013(3):1-5. YU B, JIAO X N, WANG Z Z. The research of electrospun cellulose acetate nanofiber and its application[J]. Technical Textiles, 2013(3):1-5. [10] 刘照伟, 汤玉斐, 赵康.静电纺丝制备多孔纳米纤维的研究进展[J].中国材料进展, 2018, 37(6):410-418. LIU Z W, TANG Y F, ZHAO K. Progress of electrospun nano-fibers with porous structure[J].Materials China, 2018, 37(6):410-418. [11] OGILBY P R.Singlet oxygen:there is still something new under the sun, and it is better than ever[J].Photochemical and Photobiological Sciences, 2010, 9(12):1543-1560. [12] MALIK Z, LADAN H, NITZAN Y, et al.Photodynamic inactivation of gram-negative bacteria:problems and possible solutions[J].Journal of Photochemistry and Photobiology B, 1992, 14(3):262-266. [13] NIR U, LADAN H, MALIK Z, et al.In vivo effects of porphyrins on bacterial DNA[J].Journal of Photochemistry & Photobiology B, 1992, 11(3/4):295-306. [14] GIULIO B, FRANCESCA R, GIULIANA V, et al.Photosensitizing activity of water-souble and lipid-soluble phthalocyanines on Escherichia coli[J].Fems Microbiology Letters, 1990, 71(1/2):149-155. [15] Vecchio D, Gupta A, Huang L, et al.Bacterial photodynamic inactivation mediated by methylene blue and red light is enhanced by synergistic effect of potassium iodide[J].Antimicrobial Agents and Chemotherapy, 2015, 59(9):5203-5212. [16] HUANG Y, CHOI H, KUSHIDA Y, et al.Broad-spectrum antimicrobial effects of photocatalysis using titanium dioxide nanoparticles are strongly potentiated by addition of potassium iodide[J].Antimicrobial Agents and Chemotherapy, 2016, 60(9):5445-5453. [17] HUANG L, DENIS T G, XUAN Y, et al.Paradoxical potentiation of methylene blue-mediated antimicrobial photodynamic inactivation by sodium azide:role of ambient oxygen and azide radicals[J].Free Radical Biology and Medicine, 2012, 53(11):2062-2071. [18] 李琪, 魏取福, 汪莹莹, 等.锦纶6/有机蒙脱土复合纳米纤维的制备与表征[J].纺织学报, 2007, 28(11):1-4. LI Q, WEI Q F, WANG Y Y, et al. Preparation and characterization of PA 6/organic montmorillonite composite nanofibers[J].Journal of Textile Research, 2007, 28(11):1-4. [19] 陈亚君, 汪帝, 李大伟, 等.梯度孔隙结构二醋酸纤维复合滤料的制备及过滤性能[J].现代化工, 2019, 39(2):136-139. CHEN Y J, WANG D, LI D W, et al. Fabrication of cellulose diacetate composite filter material with pore diameter gradient structure and filtration performance[J].Modern Chemical Industry, 2019, 39(2):136-139. [20] 巫晓华.静电纺丝制备醋酸纤维素纳米纤维及其抗菌改性[D].杭州:浙江理工大学, 2015. WU X H.The preparation of CA nanofiber by electrospinning and the modification of antibacterial properties[D].Hangzhou:Zhejiang Sci-Tech University, 2015. [21] RICCHELLI F.Photophysical properties of porphyrins in biological membranes[J].Journal of Photochemistry and Photobiology B-biology, 1995, 29(2/3):109-118. [22] DONG J, GHILADI R A, WANG Q, et al.Protoporphyrin Ⅸ conjugated bacterial cellulose via diamide spacer arms with specific antibacterial photodynamic inactivation against Escherichia coli[J].Cellulose, 2018, 25(3):1673-1686. [23] 殷耀兵, 谢辉, 马建华, 等.原卟啉Ⅸ锌-聚乳酸的合成及表征[J].化工新型材料, 2012, 40(3):97-99. YIN Y B, XIE H, MA J H, et al. Synthesis and characterization of zinc protoporphyrin Ⅸ bearing polylactic acid[J]. New Chemical Materials, 2012, 40(3):97-99. [24] FELGENTRAGER A, MAISCH T, SPATH A, et al.Singlet oxygen generation in porphyrin-doped polymeric surface coating enables antimicrobial effects on Staphylococcus aureus[J].Physical Chemistry Chemical Physics, 2014, 16(38):20598-20607. [25] FENG Z, LIU X, TAN L, et al.Electrophoretic deposited stable chitosan@MoS2 coating with rapid in situ bacteria-killing ability under dual-light irradiation[J].Small, 2017, 14(21):1-16. [26] MAISCH T, SZEIMIES R M, JORI G et al.Antibacterial photodynamic therapy in dermatology[J].Photochemical & Photobiological Sciences, 2004, 3(10):907-917. [27] HAMBLIN M, ABRAHAMSE H.Inorganic salts and antimicrobial photodynamic therapy:mechanistic conundrums?[J].Molecules, 2018, 23(12):1-18. [28] HUANG L, SZEWCZYK G, SARNA T, et al.Potassium iodide potentiates broad-spectrum antimicrobial photodynamic inactivation using photofrin[J].ACS Infectious Diseases, 2017, 3(4):320-328. [29] FONTANA M, BLARZINO C, PECCI L, et al.Formation of 3-nitrotyrosine by riboflavin photosensitized oxidation of tyrosine in the presence of nitrite[J].Amino Acids, 2012, 42(5):1857-1865.