Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (5): 82-88    DOI: 10.11868/j.issn.1001-4381.2020.000509
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
三维结构石墨烯气凝胶/环氧树脂复合材料的制备和电磁屏蔽性能
陈宇1,2, 张代军1,2,*(), 李军1,2, 温嘉轩1,2, 陈祥宝1,2,*()
1 中国航发北京航空材料研究院 软材料技术研究中心, 北京 100095
2 中国航发北京航空材料研究院 先进复合材料国防科技重点实验室, 北京 100095
Preparation and electromagnetic interference shielding performance of epoxy composites modified with three-dimensional graphene aerogels
Yu CHEN1,2, Dai-jun ZHANG1,2,*(), Jun LI1,2, Jia-xuan WEN1,2, Xiang-bao CHEN1,2,*()
1 Soft Materials Technology Center, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
2 National Key Laboratory of Advanced Composites, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(6686 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

以三维结构的石墨烯气凝胶为填料,通过真空浸渍的方法,将环氧树脂浸入并固化,制备石墨烯气凝胶/环氧树脂复合材料。利用FT-IR,XPS和XRD等测试手段,研究制备过程和炭化处理中石墨烯气凝胶的化学结构变化。实验结果表明:氧化石墨烯和聚酰胺酸,通过物理吸附的方式,形成石墨烯气凝胶。300℃热处理使得聚酰胺酸亚胺化成聚酰亚胺,氧化石墨烯得到部分还原。随着炭化温度的提高,石墨烯气凝胶中的石墨烯片层还原程度越高,聚酰亚胺炭化程度越高。与此同时,扫描电镜和光学显微镜结果表明,炭化处理和真空浸渍后,石墨烯气凝胶仍然可以保持良好的三维网络结构。在此基础上,石墨烯气凝胶作为导电填料,利用其三维网络结构,使得对应的复合材料具有良好的导电性能和电磁屏蔽性能。在石墨烯气凝胶含量仅为6.23%(质量分数)时,复合材料的电导率就可以达到252 S·m-1,电磁屏蔽效能高达75 dB。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈宇
张代军
李军
温嘉轩
陈祥宝
关键词 石墨烯气凝胶环氧树脂复合材料电磁屏蔽性能    
Abstract

Graphene aerogels/epoxy composites were prepared by vacuum-impregnated process with graphene aerogels as the functional filler and epoxy resin as polymer matrix. The changes in chemical structure of graphene aerogels during the preparation process and carbonization treatment were investigated by FT-IR, XPS and XRD. The results show that GO@PAA aerogel is prepared by the physical interaction between graphene oxide (GO) and polyamide acid (PAA). PAA will be transformed to polyimide by imidization and graphene oxide is partially reduced during the 300 ℃ thermal treatment. With the carbonation temperature increases, reduction degree of graphene sheets and the carbonation degree of polyimide are increased gradually. Meanwhile, SEM images and OM images show that graphene aerogels can also maintain the good three-dimensional network structure after carbonation treatment and vacuum impregnation. On this basis, graphene aerogels, which serve as the functional filler, taking advantage of the good three-dimensional network structure, can improve the corresponding composites with good electrical property and electromagnetic interference shielding performance. With only 6.23%(mass fraction) graphene aerogels (G@C-1100), the corresponding composites exhibit high electrical conductivity of 252 S·m-1 and an excellent electromagnetic interference shielding effectiveness of 70 dB.

Key wordsgraphene aerogel    epoxy resin    composites    electromagnetic interference shielding performance
收稿日期: 2020-06-05      出版日期: 2021-05-21
中图分类号:  TB332  
基金资助:国家青年科学基金资助项目(51803200)
通讯作者: 张代军,陈祥宝     E-mail: 15810534483@139.com;xiangbao.chen@biam.ac.cn
作者简介: 陈祥宝(1956-), 男, 研究员, 博士, 主要从事复合材料树脂基体、成型工艺和低成本技术的研究, 联系地址: 北京市81信箱3分箱(100095), xiangbao.chen@biam.ac.cn
张代军(1985-), 男, 高级工程师, 博士, 主要从事树脂基复合材料高性能化、先进复合材料低成本成型工艺的研究, 联系地址: 北京市81信箱3分箱(100095), E-mail: 15810534483@139.com
引用本文:   
陈宇, 张代军, 李军, 温嘉轩, 陈祥宝. 三维结构石墨烯气凝胶/环氧树脂复合材料的制备和电磁屏蔽性能[J]. 材料工程, 2021, 49(5): 82-88.
Yu CHEN, Dai-jun ZHANG, Jun LI, Jia-xuan WEN, Xiang-bao CHEN. Preparation and electromagnetic interference shielding performance of epoxy composites modified with three-dimensional graphene aerogels. Journal of Materials Engineering, 2021, 49(5): 82-88.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000509      或      http://jme.biam.ac.cn/CN/Y2021/V49/I5/82
Sample Density/(g·cm-3) Filler content/%
RGO@PI 0.08193 6.62
G@C-600 0.07830 6.33
G@C-800 0.07522 6.09
G@C-1100 0.07697 6.23
Table 1  石墨烯气凝胶的密度及其在对应的复合材料中的含量
Fig.1  原材料和不同阶段石墨烯气凝胶的红外光谱图
(a)GO, PAA, GO@PAA气凝胶和RGO@PI气凝胶;(b)RGO@PI气凝胶和经不同温度处理后的G@C气凝胶
Fig.2  RGO@PI气凝胶和经不同温度处理的G@C气凝胶的XPS谱图(a)和XRD谱图(b)
Sample C/% O/% N/%
RGO@PI 79.9 15.4 4.7
G@C-600 87.3 10.2 2.5
G@C-800 90.2 8.1 1.7
G@C-1100 92.6 6.4 1.0
Table 2  RGO@PI气凝胶和经不同温度炭化处理的G@C气凝胶的元素原子分数
Fig.3  石墨烯气凝胶的扫描电镜图
(a)RGO@PI气凝胶;(b)G@C-1100气凝胶
Fig.4  石墨烯气凝胶/环氧树脂复合材料的微观组织
(a)RGO@PI气凝胶/环氧树脂复合材料;(b)G@C-1100气凝胶/环氧树脂复合材料
Sample Filler content/% Electrical conductivity/(S·m-1)
RGO@PI/epoxy 6.62
G@C-600/epoxy 6.33
G@C-800/epoxy 6.09 43
G@C-1100/epoxy 6.23 252
Table 3  石墨烯气凝胶的导电性能
Fig.5  复合材料的电磁屏蔽性能
(a)石墨烯气凝胶/环氧树脂复合材料;(b)石墨烯气凝胶粉末/环氧树脂复合材料
Fig.6  复合材料的总电磁屏蔽效能(T)、吸收损耗(A)和反射损耗(R)
(a)石墨烯气凝胶/环氧树脂复合材料;(b)石墨烯气凝胶粉末/环氧树脂复合材料
1 龚春红, 张玉, 阎超, 等. 超细镍纤维复合材料的电磁屏蔽研究[J]. 稀有金属材料与工程, 2010, 39 (7): 1298- 1301.
1 GONG C H , ZHANG Y , YAN C , et al. Electromagnetic shielding behavior of composites containing ultrafine Ni fibers[J]. Rare Metal Materials and Engineering, 2010, 39 (7): 1298- 1301.
2 SACHDEV V K , PATEL K , BHATTACHARYA S , et al. Electromagnetic interference shielding of graphite/acrylonitrile butadiene styrene composites[J]. Journal of Applied Polymer Science, 2011, 120, 1100- 1105.
doi: 10.1002/app.33248
3 ANDERSON R A S , DIPAK K , BLUMA G S . Microwave dielectric properties and EMI shielding effectiveness of poly(styrene-b-styrene-butadiene-styrene) copolymer filled with PAni.Dodecylbenzenesulfonic acid and carbon black[J]. Polymer Engineering and Science, 2012, 52 (9): 2041- 2048.
doi: 10.1002/pen.23090
4 WANG R , YANG H , WANG J L , et al. The electromagnetic interference shielding of silicone rubber filled with nickel coated carbon fiber[J]. Polymer Testing, 2014, 38, 53- 56.
doi: 10.1016/j.polymertesting.2014.06.008
5 XIANG C S , PAN Y B , GUO J K . Electromagnetic interference shielding effectiveness of multiwalled carbon nanotube reinforced fused silica composites[J]. Ceramics International, 2007, 33, 1293- 1297.
doi: 10.1016/j.ceramint.2006.05.001
6 SONG W L , CAO M S , LU M M , et al. Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding[J]. Carbon, 2014, 66, 67- 76.
doi: 10.1016/j.carbon.2013.08.043
7 CHEN Z P , XU C , MA C Q , et al. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding[J]. Advanced Materials, 2013, 25 (9): 1296- 1300.
doi: 10.1002/adma.201204196
8 JIA J J , SUN X Y , LIN X Y , et al. Exceptional electrical conductivity and fracture resistance of 3D interconnected graphene foam/epoxy composites[J]. ACS Nano, 2014, 8 (6): 5774- 5783.
doi: 10.1021/nn500590g
9 GUI X C , WEI J Q , WANG K L , et al. Carbon nanotube sponges[J]. Advanced Materials, 2010, 22, 617- 621.
doi: 10.1002/adma.200902986
10 CHEN Y , ZHANG H B , YANG Y B , et al. High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding[J]. Advanced Functional Materials, 2016, 26, 447- 455.
doi: 10.1002/adfm.201503782
11 CHEN Y , ZHANG H B , WANG M , et al. Phenolic resin-enhanced three-dimensional graphene aerogels and their epoxy nanocomposites with high mechanical and electromagnetic interference shielding performances[J]. Composites Science and Technology, 2017, 152, 254- 262.
doi: 10.1016/j.compscitech.2017.09.022
12 ZHANG Y F , FAN W , HUANG Y P , et al. Graphene/carbon aerogels derived from graphene crosslinked polyimide as electrode materials for supercapacitors[J]. RSC Advances, 2015, 5 (2): 1301- 1308.
doi: 10.1039/C4RA13015D
13 亓淑英, 迟伟东, 沈曾民. 聚酰亚胺(PI)膜碳化过程中结构和性能变化研究[J]. 材料科学与工程学报, 2007, 25 (1): 115- 117.
doi: 10.3969/j.issn.1673-2812.2007.01.029
13 QI S Y , CHI W D , SHEN Z M . Studies of the structural conversion and property change of polyimide (PI) film during the carbonization[J]. Journal of Materials Science & Engineering, 2007, 25 (1): 115- 117.
doi: 10.3969/j.issn.1673-2812.2007.01.029
14 HUANG Y , LI N , MA Y F , et al. The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites[J]. Carbon, 2007, 45, 1614- 1621.
doi: 10.1016/j.carbon.2007.04.016
15 LIANG J , WANG Y , HUANG Y , et al. Electromagnetic interference shielding of graphene/epoxy composites[J]. Carbon, 2009, 47, 922- 925.
doi: 10.1016/j.carbon.2008.12.038
16 ZHANG H B , ZHENG W G , YAN Q , et al. The effect of surface chemistry of graphene on rheological and electrical properties of polymethylmethacrylate composites[J]. Carbon, 2012, 50, 5117- 5125.
doi: 10.1016/j.carbon.2012.06.052
[1] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[2] 孔国强, 安振河, 魏化震, 李莹, 邵蒙, 于秋兵, 纪校君, 李居影, 王康. 碳纤维丝束结构对碳纤维/酚醛复合材料烧蚀性能的影响[J]. 材料工程, 2022, 50(9): 113-119.
[3] 米玉洁, 宋明明, 张存瑞, 张贵恩, 王月祥, 常志敏. 羰基铁室温硫化硅橡胶复合材料的吸波性能[J]. 材料工程, 2022, 50(9): 120-126.
[4] 邢宇, 张代军, 王成博, 倪洪江, 李军, 陈祥宝. PEEK复合材料用碳纤维上浆剂研究进展[J]. 材料工程, 2022, 50(8): 70-81.
[5] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[6] 倪洪江, 邢宇, 戴霄翔, 李军, 张代军, 陈祥宝. 航空发动机用聚酰亚胺树脂基复合材料固化工艺及热稳定性能[J]. 材料工程, 2022, 50(7): 102-109.
[7] 吕双祺, 黄佳, 孙燕涛, 付尧明, 杨晓光, 石多奇. 莫来石纤维增强SiO2气凝胶复合材料压缩回弹性能实验与建模研究[J]. 材料工程, 2022, 50(7): 119-127.
[8] 杨智勇, 臧家俊, 方丹琳, 李翔, 李志强, 李卫京. 城轨列车制动盘SiCp/A356复合材料热疲劳裂纹扩展机理[J]. 材料工程, 2022, 50(7): 165-175.
[9] 彭斌意, 刘洋, 郑晓董, 李治国, 李国平, 胡建波, 王永刚. 激光选区熔化颗粒增强钛基复合材料的抗压性能[J]. 材料工程, 2022, 50(6): 36-48.
[10] 李军, 刘燕峰, 倪洪江, 张代军, 陈祥宝. 航空发动机用树脂基复合材料应用进展与发展趋势[J]. 材料工程, 2022, 50(6): 49-60.
[11] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[12] 于永涛, 刘元军. 原位聚合法制备铁氧体/聚苯胺吸波复合材料的研究进展[J]. 材料工程, 2022, 50(5): 90-99.
[13] 程子敬, 王凯峰, 张连洪. 基于微观尺度X射线断层扫描技术的短切碳纤维SMC复合材料失效分析[J]. 材料工程, 2022, 50(5): 130-138.
[14] 杜宗波, 时双强, 陈宇滨, 褚海荣, 杨程. 介电型石墨烯吸波复合材料研究进展[J]. 材料工程, 2022, 50(4): 74-84.
[15] 任美娟, 王淼, 吴芳辉, 贾虎, 叶明富, 文国强. 氮掺杂多孔碳负载铜钴纳米复合材料的制备及其电催化性能[J]. 材料工程, 2022, 50(4): 104-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn