Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (5): 82-88    DOI: 10.11868/j.issn.1001-4381.2020.000509
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
三维结构石墨烯气凝胶/环氧树脂复合材料的制备和电磁屏蔽性能
陈宇1,2, 张代军1,2, 李军1,2, 温嘉轩1,2, 陈祥宝1,2
1. 中国航发北京航空材料研究院 软材料技术研究中心, 北京 100095;
2. 中国航发北京航空材料研究院 先进复合材料国防科技重点实验室, 北京 100095
Preparation and electromagnetic interference shielding performance of epoxy composites modified with three-dimensional graphene aerogels
CHEN Yu1,2, ZHANG Dai-jun1,2, LI Jun1,2, WEN Jia-xuan1,2, CHEN Xiang-bao1,2
1. Soft Materials Technology Center, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China;
2. National Key Laboratory of Advanced Composites, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(6686 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 以三维结构的石墨烯气凝胶为填料,通过真空浸渍的方法,将环氧树脂浸入并固化,制备石墨烯气凝胶/环氧树脂复合材料。利用FT-IR,XPS和XRD等测试手段,研究制备过程和炭化处理中石墨烯气凝胶的化学结构变化。实验结果表明:氧化石墨烯和聚酰胺酸,通过物理吸附的方式,形成石墨烯气凝胶。300℃热处理使得聚酰胺酸亚胺化成聚酰亚胺,氧化石墨烯得到部分还原。随着炭化温度的提高,石墨烯气凝胶中的石墨烯片层还原程度越高,聚酰亚胺炭化程度越高。与此同时,扫描电镜和光学显微镜结果表明,炭化处理和真空浸渍后,石墨烯气凝胶仍然可以保持良好的三维网络结构。在此基础上,石墨烯气凝胶作为导电填料,利用其三维网络结构,使得对应的复合材料具有良好的导电性能和电磁屏蔽性能。在石墨烯气凝胶含量仅为6.23%(质量分数)时,复合材料的电导率就可以达到252 S·m-1,电磁屏蔽效能高达75 dB。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈宇
张代军
李军
温嘉轩
陈祥宝
关键词 石墨烯气凝胶环氧树脂复合材料电磁屏蔽性能    
Abstract:Graphene aerogels/epoxy composites were prepared by vacuum-impregnated process with graphene aerogels as the functional filler and epoxy resin as polymer matrix. The changes in chemical structure of graphene aerogels during the preparation process and carbonization treatment were investigated by FT-IR, XPS and XRD. The results show that GO@PAA aerogel is prepared by the physical interaction between graphene oxide (GO) and polyamide acid (PAA). PAA will be transformed to polyimide by imidization and graphene oxide is partially reduced during the 300 ℃ thermal treatment. With the carbonation temperature increases, reduction degree of graphene sheets and the carbonation degree of polyimide are increased gradually. Meanwhile, SEM images and OM images show that graphene aerogels can also maintain the good three-dimensional network structure after carbonation treatment and vacuum impregnation. On this basis, graphene aerogels, which serve as the functional filler, taking advantage of the good three-dimensional network structure,can improve the corresponding composites with good electrical property and electromagnetic interference shielding performance. With only 6.23%(mass fraction) graphene aerogels (G@C-1100), the corresponding composites exhibit high electrical conductivity of 252 S·m-1 and an excellent electromagnetic interference shielding effectiveness of 70 dB.
Key wordsgraphene aerogel    epoxy resin    composites    electromagnetic interference shielding performance
收稿日期: 2020-06-05      出版日期: 2021-05-21
中图分类号:  TB332  
基金资助:国家青年科学基金资助项目(51803200)
通讯作者: 陈祥宝(1956-),男,研究员,博士,主要从事复合材料树脂基体、成型工艺和低成本技术的研究,联系地址:北京市81信箱3分箱(100095),xiangbao.chen@biam.ac.cn;张代军(1985-),男,高级工程师,博士,主要从事树脂基复合材料高性能化、先进复合材料低成本成型工艺的研究,联系地址:北京市81信箱3分箱(100095),E-mail:15810534483@139.com     E-mail: xiangbao.chen@biam.ac.cn;张代军(1985-),男,高级工程师,博士,主要从事树脂基复合材料高性能化、先进复合材料低成本成型工艺的研究,联系地址:北京市81信箱3分箱(100095),E-mail:15810534483@139.com
引用本文:   
陈宇, 张代军, 李军, 温嘉轩, 陈祥宝. 三维结构石墨烯气凝胶/环氧树脂复合材料的制备和电磁屏蔽性能[J]. 材料工程, 2021, 49(5): 82-88.
CHEN Yu, ZHANG Dai-jun, LI Jun, WEN Jia-xuan, CHEN Xiang-bao. Preparation and electromagnetic interference shielding performance of epoxy composites modified with three-dimensional graphene aerogels. Journal of Materials Engineering, 2021, 49(5): 82-88.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000509      或      http://jme.biam.ac.cn/CN/Y2021/V49/I5/82
[1] 龚春红, 张玉, 阎超, 等.超细镍纤维复合材料的电磁屏蔽研究[J].稀有金属材料与工程, 2010, 39(7):1298-1301. GONG C H, ZHANG Y, YAN C, et al.Electromagnetic shielding behavior of composites containing ultrafine Ni fibers[J].Rare Metal Materials and Engineering, 2010, 39(7):1298-1301.
[2] SACHDEV V K, PATEL K, BHATTACHARYA S, et al.Electromagnetic interference shielding of graphite/acrylonitrile butadiene styrene composites[J].Journal of Applied Polymer Science, 2011, 120:1100-1105.
[3] ANDERSON R A S, DIPAK K, BLUMA G S.Microwave dielectric properties and EMI shielding effectiveness of poly(styrene-b-styrene-butadiene-styrene) copolymer filled with PAni.Dodecylbenzenesulfonic acid and carbon black[J].Polymer Engineering and Science, 2012, 52(9):2041-2048.
[4] WANG R, YANG H, WANG J L, et al.The electromagnetic interference shielding of silicone rubber filled with nickel coated carbon fiber[J].Polymer Testing, 2014, 38:53-56.
[5] XIANG C S, PAN Y B, GUO J K.Electromagnetic interference shielding effectiveness of multiwalled carbon nanotube reinforced fused silica composites[J].Ceramics International, 2007, 33:1293-1297.
[6] SONG W L, CAO M S, LU M M, et al.Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding[J].Carbon, 2014, 66:67-76.
[7] CHEN Z P, XU C, MA C Q, et al.Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding[J].Advanced Materials, 2013, 25(9):1296-1300.
[8] JIA J J, SUN X Y, LIN X Y, et al.Exceptional electrical conductivity and fracture resistance of 3D interconnected graphene foam/epoxy composites[J].ACS Nano, 2014, 8(6):5774-5783.
[9] GUI X C, WEI J Q, WANG K L, et al.Carbon nanotube sponges[J].Advanced Materials, 2010, 22:617-621.
[10] CHEN Y, ZHANG H B, YANG Y B, et al.High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding[J].Advanced Functional Materials, 2016, 26:447-455.
[11] CHEN Y, ZHANG H B, WANG M, et al.Phenolic resin-enhanced three-dimensional graphene aerogels and their epoxy nanocomposites with high mechanical and electromagnetic interference shielding performances[J].Composites Science and Technology, 2017, 152:254-262.
[12] ZHANG Y F, FAN W, HUANG Y P, et al.Graphene/carbon aerogels derived from graphene crosslinked polyimide as electrode materials for supercapacitors[J].RSC Advances, 2015, 5(2):1301-1308.
[13] 亓淑英, 迟伟东, 沈曾民.聚酰亚胺(PI)膜碳化过程中结构和性能变化研究[J].材料科学与工程学报, 2007, 25(1):115-117. QI S Y, CHI W D, SHEN Z M.Studies of the structural conversion and property change of polyimide (PI) film during the carbonization[J].Journal of Materials Science & Engineering, 2007, 25(1):115-117.
[14] HUANG Y, LI N, MA Y F, et al.The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites[J].Carbon, 2007, 45:1614-1621.
[15] LIANG J, WANG Y, HUANG Y, et al.Electromagnetic interference shielding of graphene/epoxy composites[J].Carbon, 2009, 47:922-925.
[16] ZHANG H B, ZHENG W G, YAN Q, et al.The effect of surface chemistry of graphene on rheological and electrical properties of polymethylmethacrylate composites[J].Carbon, 2012, 50:5117-5125.
[1] 杜宗波, 时双强, 陈宇滨, 褚海荣, 杨程. 介电型石墨烯吸波复合材料研究进展[J]. 材料工程, 2022, 50(4): 74-84.
[2] 任美娟, 王淼, 吴芳辉, 贾虎, 叶明富, 文国强. 氮掺杂多孔碳负载铜钴纳米复合材料的制备及其电催化性能[J]. 材料工程, 2022, 50(4): 104-111.
[3] 惠阳, 刘贵民, 兰海, 杜建华. 连续制动条件下泡沫陶瓷/金属双连续相复合材料的摩擦磨损性能[J]. 材料工程, 2022, 50(4): 112-122.
[4] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[5] 高晔, 姜卓钰, 周怡然, 吕晓旭, 宋伟, 焦健. 正交铺层PIP-SiCf/SiC复合材料的水淬失效行为[J]. 材料工程, 2022, 50(3): 166-172.
[6] 白龙腾, 成来飞, 杨晓辉, 曹晶, 王毅. 双组元液体动力环境下3D C/SiC复合材料喷管烧蚀性能[J]. 材料工程, 2022, 50(2): 118-126.
[7] 金启豪, 陈娟, 彭立明, 李子言, 阎熙, 李春曦, 侯城成, 袁铭扬. 碳纤维增强树脂基复合材料与铝/镁合金连接研究进展[J]. 材料工程, 2022, 50(1): 15-24.
[8] 王牧, 曾夏茂, 苗霞, 魏浩光, 周仕明, 冯岸超. 三维石墨烯-吡咯气凝胶/环氧树脂复合材料的制备及其性能[J]. 材料工程, 2022, 50(1): 117-124.
[9] 徐学宏, 郑义珠, 陈吉平, 宁博, 刘晓忱. 缝合参数对泡沫夹层结构复合材料力学性能的影响[J]. 材料工程, 2022, 50(1): 132-137.
[10] 于长清, 余悠然, 赵英民, 谢宁. 石墨热压还原Cu/Cu2O金属陶瓷电导逾渗行为与微观结构分形表征[J]. 材料工程, 2022, 50(1): 154-160.
[11] 乔俊宇, 李秀涛. 基于MOFs的碳纳米管复合材料的制备和应用进展[J]. 材料工程, 2021, 49(9): 27-40.
[12] 阮家苗, 李红, 姚彧敏, 杨敏, 任慕苏, 孙晋良. 热处理温度对高导热3D C/C复合材料性能的影响[J]. 材料工程, 2021, 49(9): 128-134.
[13] 唐闻远, 许英杰, 孙勇毅, 张卫红, 惠新育. 基于温度曲线优化的复合材料热压罐固化时间与固化质量协同控制[J]. 材料工程, 2021, 49(9): 142-150.
[14] 李华鹏, 董旭晟, 孙彬, 周国伟. TiO2/MXene纳米复合材料的可控制备及在光催化和电化学中的应用研究进展[J]. 材料工程, 2021, 49(8): 54-62.
[15] 姜卓钰, 束小文, 吕晓旭, 高晔, 周怡然, 董禹飞, 焦健. SiC晶须增强SiCf/SiC复合材料的力学性能[J]. 材料工程, 2021, 49(8): 89-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn