Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (3): 31-40    DOI: 10.11868/j.issn.1001-4381.2020.000531
  记忆合金专栏 本期目录 | 过刊浏览 | 高级检索 |
Ti-Ni-Hf高温形状记忆合金的研究进展
衣晓洋1,2, 孟祥龙1,*(), 蔡伟1, 王海振2
1 哈尔滨工业大学 材料科学与工程学院, 哈尔滨 150001
2 烟台大学 核装备与核工程学院, 山东 烟台 264005
Research progress in Ti-Ni-Hf high temperature shape memory alloys
Xiao-yang YI1,2, Xiang-long MENG1,*(), Wei CAI1, Hai-zhen WANG2
1 School of Materials and Engineering, Harbin University of Technology, Harbin 150001, China
2 College of Nuclear Equipment and Nuclear Engineering, Yantai University, Yantai 264005, Shandong, China
全文: PDF(7225 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

Ti-Ni-Hf记忆合金因具有高相变温度、相对低廉的价格和高输出功等诸多优点而成为最具潜力的高温形状记忆合金之一。然而,Ti-Ni-Hf记忆合金基体强度低,变形过程中易优先发生塑性变形,从而使其可实现的可恢复应变远低于理论值。目前改善应变恢复特性的措施主要包括:热机械处理(冷轧+退火)、合金化、时效处理、制备单晶合金等。研究表明,Ti-Ni-Hf合金的应变恢复特性与微观组织结构密切相关。本文主要阐述了Ti-Ni-Hf记忆合金在近年来的最新研究进展,包含微观组织结构的演化规律、马氏体相变行为以及力学性能和应变恢复特性,并基于前期研究成果建立了微观组织结构-马氏体相变-力学与应变恢复特性的关联特性。当前,Ti-Ni-Hf高温形状记忆合金冷、热加工性能差是其广泛应用的瓶颈。因此,Ti-Ni-Hf高温记忆合金的粉末冶金和增材制造可能是未来研究的热点与重点。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
衣晓洋
孟祥龙
蔡伟
王海振
关键词 Ti-Ni-Hf记忆合金微观组织马氏体相变形状记忆效应超弹性    
Abstract

Ti-Ni-Hf alloy is one of the most potential high temperature shape memory alloys due to the various advantages such as higher phase transformation temperature, relatively lower cost and larger output work. However, the plastic deformation takes place prior to the reorientation of martensitic variants due to the lower matrix strength, which results in the poor shape memory properties. To date, the measures of improving the strain recovery characteristics consist of thermo-mechanical treatment (cold rolling + annealing), alloying, aging treatment and fabrication of single crystal etc. It has been revealed that the strain recovery performances of Ti-Ni-Hf alloys are closely related to the microstructural features. In the present paper, the recent progress in the field of Ti-Ni-Hf high temperature shape memory alloy was presented, mainly consisting of microstructural evolution, martensitic transformation behaviour, mechanical properties and strain recovery features, moreover, the relationship between the microstructure, martensitic transformation as well as the mechanical and strain recovery characteristics was established, based on the previous research results. At present, the poor cold or hot workability of Ti-Ni-Hf high temperature shape memory alloy is the bottleneck which limits its extensive applications. Hence, the future research may focus on the powder metallurgy and additive manufacturing of Ti-Ni-Hf high temperature shape memory alloy.

Key wordsTi-Ni-Hf shape memory alloy    microstructure    martensitic transformation    shape memory effect    superelasticity
收稿日期: 2020-06-12      出版日期: 2021-03-20
中图分类号:  TG139  
基金资助:国家自然科学基金资助项目(51931004);国家自然科学基金资助项目(51871080)
通讯作者: 孟祥龙     E-mail: xlmeng@hit.edu.cn
作者简介: 孟祥龙(1976-), 男, 教授, 博士, 主要研究方向为记忆合金/薄膜和马氏体相变, 联系地址: 黑龙江省哈尔滨市南岗区西大直街92号哈尔滨工业大学10号楼402(150001), E-mail: xlmeng@hit.edu.cn
引用本文:   
衣晓洋, 孟祥龙, 蔡伟, 王海振. Ti-Ni-Hf高温形状记忆合金的研究进展[J]. 材料工程, 2021, 49(3): 31-40.
Xiao-yang YI, Xiang-long MENG, Wei CAI, Hai-zhen WANG. Research progress in Ti-Ni-Hf high temperature shape memory alloys. Journal of Materials Engineering, 2021, 49(3): 31-40.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000531      或      http://jme.biam.ac.cn/CN/Y2021/V49/I3/31
Fig.1  Ti-Ni-Hf-Ta记忆合金的微观组织结构特征[28]
Fig.2  500 ℃/1 h退火处理的Ti-Ni-Hf-Cu合金薄带中典型明场透射像[22]
Fig.3  不同时效温度处理的富Ni的Ni-Ti-Hf-Pd合金的TEM明场像[35] (a)550 ℃/3 h; (b)600 ℃/3 h
Fig.4  Ti-Ni-Hf记忆合金基复合材料的典型的SEM(a)和TEM图(b)[25]
Fig.5  不同粒径尺寸的Ti-Ni-Hf合金粉末的DSC曲线[42]
Fig.6  经不同时效工艺处理的富Ni Ti-Ni-Hf合金中析出相演化模型[44]
Fig.7  固溶处理[111]取向的Ni29.7Ti20Hf5Pd单晶合金不同温度下的超弹性[23]
Fig.8  既含准连续网状结构又含纳米H相的Ti-Ni-Hf记忆合金复合材料不同温度下的超弹性[25]
1 KARACA H E , ACAR E , TOBE H , et al. NiTiHf-based shape memory alloys[J]. Materials Science and Technology, 2014, 30 (13): 530- 544.
2 FIRSTOV G , VAN HUMBEECK J , KOVAL Y N . High temperature shape memory alloys: some recent developments[J]. Materials Science and Engineering: A, 2004, 378 (1/2): 2- 10.
3 FIRSTOV G , VAN HUMBEECK J , KOVAL Y N . High temperature shape memory alloys problems and prospects[J]. Journal of Intelligent Material Systems and Structures, 2016, 17 (12): 1041- 1047.
4 MA J , KARAMAN I , NOEBE R D . High temperature shape memory alloys[J]. International Materials Reviews, 2010, 55 (5): 257- 315.
doi: 10.1179/095066010X12646898728363
5 MENG X L , CAI W , WANG L M , et al. Microstructure of stress-induced martensite in a Ti-Ni-Hf high temperature shape memory alloy[J]. Scripta Materialia, 2001, 45, 1177- 1182.
doi: 10.1016/S1359-6462(01)01147-2
6 WANG Y Q , ZHENG Y F , CAI W , et al. Tensile behavior of Ti36Ni49Hf15 high temperature shape memory alloy[J]. Scripta Materialia, 1999, 40 (12): 1327- 1331.
doi: 10.1016/S1359-6462(99)00085-8
7 OTSUKA K , REN X . Physical metallurgy of Ti-Ni-based shape memory alloys[J]. Progress in Materials Science, 2005, 50 (5): 511- 678.
doi: 10.1016/j.pmatsci.2004.10.001
8 KARACA H E , ACAR E , DED G S , et al. Microstructure and transformation related behaviors of a Ni45.3Ti29.7Hf20Cu5 high temperature shape memory alloy[J]. Materials Science and Engineering: A, 2015, 627 (11): 82- 94.
9 HSU D H D , HORNBUCKLE B C , VALDERRAMA B , et al. The effect of aluminum additions on the thermal, microstructural, and mechanical behavior of NiTiHf shape memory alloys[J]. Journal of Alloys and Compounds, 2015, 638, 67- 76.
doi: 10.1016/j.jallcom.2015.01.071
10 KIM H Y , JINGUU T , NAM T H , et al. Cold workability and shape memory properties of novel Ti-Ni-Hf-Nb high-temperature shape memory alloys[J]. Scripta Materialia, 2011, 65 (9): 846- 849.
doi: 10.1016/j.scriptamat.2011.07.049
11 ACAR E , KARACA H E , TOBE H , et al. Characterization of the shape memory properties of a Ni45.3Ti39.7Hf10Pd5 alloy[J]. Journal of Alloys and Compounds, 2013, 578, 297- 302.
doi: 10.1016/j.jallcom.2013.06.030
12 ACAR E , TOBE H , KAYA I , et al. Compressive response of Ni45.3Ti34.7Hf15Pd5 and Ni45.3Ti29.7Hf20Pd5 shape-memory alloys[J]. Journal of Materials Science, 2015, 50 (4): 1924- 1934.
doi: 10.1007/s10853-014-8757-3
13 YI X Y , GAO W H , MENG X L , et al. Microstructure, transformation behavior and mechanical properties of (Ti36Ni49Hf15)100-xYx high temperature shape memory alloys[J]. Journal of Alloys and Compounds, 2017, 705, 98- 104.
doi: 10.1016/j.jallcom.2017.02.137
14 HONG S H , KIM J T , PARK H J , et al. Influence of Zr content on phase formation, transition and mechanical behavior of Ni-Ti-Hf-Zr high temperature shape memory alloys[J]. Journal of Alloys and Compounds, 2017, 692, 77- 85.
doi: 10.1016/j.jallcom.2016.09.023
15 KOCKAR B , KARAMAN I , KIM J I , et al. A method to enhance cyclic reversibility of NiTiHf high temperature shape memory alloys[J]. Scripta Materialia, 2006, 54 (12): 2203- 2208.
doi: 10.1016/j.scriptamat.2006.02.029
16 BABACAN N , BILAL M , HAYRETTIN C , et al. Effects of cold and warm rolling on the shape memory response of Ni50Ti30Hf20 high-temperature shape memory alloy[J]. Acta Materialia, 2018, 157, 228- 244.
doi: 10.1016/j.actamat.2018.07.009
17 MENG X L , ZHENG Y F , WANG Z , et al. Effect of aging on the phase transformation and mechanical behavior of Ti36Ni49Hf15 high temperature shape memory alloy[J]. Scripta Materialia, 2000, 42 (4): 341- 348.
doi: 10.1016/S1359-6462(99)00347-4
18 MENG X L , ZHENG Y F , WANG Z , et al. Shape memory properties of the Ti36Ni49Hf15 high temperature shape memory alloy[J]. Materials Letters, 2000, 45 (2): 128- 132.
doi: 10.1016/S0167-577X(00)00091-4
19 KARACA H E , SAGHAIAN S M , DED G , et al. Effects of nanoprecipitation on the shape memory and material properties of an Ni-rich NiTiHf high temperature shape memory alloy[J]. Acta Materialia, 2013, 61 (19): 7422- 7431.
doi: 10.1016/j.actamat.2013.08.048
20 EVIRGEN A , KARAMAN I , SANTAMARTA R , et al. Microstructural characterization and shape memory characteristics of the Ni50.3Ti34.7Hf15 shape memory alloy[J]. Acta Materialia, 2015, 83, 48- 60.
doi: 10.1016/j.actamat.2014.09.027
21 MENG X L , CAI W , LAU K T , et al. Phase transformation and microstructure of quaternary TiNiHfCu high temperature shape memory alloy[J]. Intermetallics, 2005, 13 (2): 197- 201.
doi: 10.1016/j.intermet.2004.07.044
22 MENG X L , CAI W , FU Y D , et al. Martensite structure in Ti-Ni-Hf-Cu quaternary alloy ribbons containing(Ti, Hf)2Ni precipitates[J]. Acta Materialia, 2010, 58 (10): 3751- 3763.
doi: 10.1016/j.actamat.2010.03.015
23 KARACA H E , ACAR E , BASARAN B , et al. Superelastic response and damping capacity of ultrahigh-strength [111]-oriented NiTiHfPd single crystals[J]. Scripta Materialia, 2012, 67 (5): 447- 450.
doi: 10.1016/j.scriptamat.2012.05.044
24 YI X Y , WEN G Y , SUN K S , et al. Fabrication, characterization and potential application of larger bulk Ti-Ni-Hf high temperature shape memory alloy composite reinforced by hybrid particles[J]. Journal of Alloys and Compounds, 2018, 764, 347- 358.
doi: 10.1016/j.jallcom.2018.06.084
25 YI X Y , MENG X L , CAI W , et al. Larger strain recovery characteristics of Ti-Ni-Hf shape memory alloy composite under compression[J]. Scripta Materialia, 2018, 153, 90- 93.
doi: 10.1016/j.scriptamat.2018.05.006
26 MENG X L , TONG Y X , LAU K T , et al. Effect of Cu addition on phase transformation of Ti-Ni-Hf high-temperature shape memory alloys[J]. Materials Letters, 2002, 57 (2): 452- 456.
doi: 10.1016/S0167-577X(02)00810-8
27 KIM K M , HONG J K , PARK C H , et al. Comparative study of the thermocyclic behavior of Ti-Ni-Hf and Ti-Ni-Hf-Ta shape memory alloys[J]. Journal of Nanoscience and Nanotechnology, 2016, 16 (11): 11775- 11778.
doi: 10.1166/jnn.2016.13592
28 PRASAD R V S , PARK C H , KIM S W , et al. Microstructure and phase transformation behavior of a new high temperature NiTiHf-Ta shape memory alloy with excellent formability[J]. Journal of Alloys and Compounds, 2016, 697, 55- 61.
29 YI X Y , PANG G B , SUN B , et al. The microstructure and martensitic transformation behaviors in Ti-Ni-Hf-X (Ag, Sn) high temperature shape memory alloys[J]. Journal of Alloys and Compounds, 2018, 756, 19- 25.
doi: 10.1016/j.jallcom.2018.05.043
30 郑玉峰. TiNi基记忆合金马氏体变体的显微组织与界面结构[D]. 哈尔滨: 哈尔滨工业大学, 1998.
30 ZHENG Y F. Microstructure and interface struture of martensite variants in TiNi based shape memory alleys[D]. Harbin: Harbin Institute of Technology, 1998.
31 MENG X L , CAI W , CHEN F , et al. Effect of aging on martensitic transformation and microstructure in Ni-rich TiNiHf shape memory alloy[J]. Scripta Materialia, 2006, 54 (9): 1599- 1604.
doi: 10.1016/j.scriptamat.2006.01.017
32 MENG X L , CAI W , FU Y D , et al. Shape-memory behaviors in an aged Ni-rich TiNiHf high temperature shape-memory alloy[J]. Intermetallics, 2008, 16 (5): 698- 705.
doi: 10.1016/j.intermet.2008.02.005
33 SANTAMARTA R , ARROYAVE R , PONS J , et al. TEM study of structural and microstructural characteristics of a precipitate phase in Ni-rich Ni-Ti-Hf and Ni-Ti-Zr shape memory alloys[J]. Acta Materialia, 2013, 61 (16): 6191- 6206.
doi: 10.1016/j.actamat.2013.06.057
34 YANG F , COUGHLIN D R , PHILLIPS P J , et al. Structure analysis of a precipitate phase in an Ni-rich high-temperature NiTiHf shape memory alloy[J]. Acta Materialia, 2013, 61 (9): 3335- 3346.
doi: 10.1016/j.actamat.2013.02.023
35 KARACA H E , ACAR E , BASARAN B , et al. Effects of aging on [111] oriented NiTiHfPd single crystals under compression[J]. Scripta Materialia, 2012, 67 (7/8): 728- 731.
36 YI X Y , SUN K S , GAO W H , et al. Martensitic transformation and mechanical properties of Ti-Ni-Hf high temperature shape memory alloy with network structure second particles[J]. Journal of Alloys and Compounds, 2018, 735, 1219- 1226.
doi: 10.1016/j.jallcom.2017.11.270
37 YI X Y , SUN K S , GAO W H , et al. Microstructure design of the excellent shape recovery properties in(Ti, Hf)2Ni/Ti-Ni-Hf high temperature shape memory alloy composite[J]. Journal of Alloys and Compounds, 2017, 729, 758- 763.
doi: 10.1016/j.jallcom.2017.09.242
38 YI X Y , SUN B , GAO W H , et al. Microstructure evolution and superelasticity behavior of Ti-Ni-Hf shape memory alloy composite with multi-scale and heterogeneous reinforcements[J]. Journal of Materials Science and Technology, 2020, 42, 113- 121.
doi: 10.1016/j.jmst.2019.09.027
39 TONG Y X , CHEN F , TIAN B , et al. Microstructure and martensitic transformation of Ti49Ni51-xHfx high temperature shape memory alloys[J]. Materials Letters, 2009, 63 (21): 1869- 1871.
doi: 10.1016/j.matlet.2009.05.069
40 MENG X L , FU Y D , CAI W , et al. Microstructure and martensitic transformation behaviors of a Ti-Ni-Hf-Cu high-temperature shape memory alloy ribbon[J]. Philosophical Magazine Letters, 2009, 89 (7): 431- 438.
doi: 10.1080/09500830903019004
41 MENG X L , FU Y D , CAI W , et al. Cu content and annealing temperature dependence of martensitic transformation of Ti36Ni49-xHf15Cux melt spun ribbons[J]. Intermetallics, 2009, 17 (12): 1078- 1084.
doi: 10.1016/j.intermet.2009.05.010
42 YI X Y , MENG X L , CAI W , et al. Multi-stage martensitic transformation behaviors and microstructural characteristics of Ti-Ni-Hf high temperature shape memory alloy powders[J]. Journal of Alloys and Compounds, 2019, 781, 644- 656.
doi: 10.1016/j.jallcom.2018.12.064
43 孟祥龙. 时效NiTiHf合金的相变行为与形状记忆效应[D]. 哈尔滨: 哈尔滨工业大学, 2004.
43 MENG X Y. Phase trasformation behaviors and shape menory effect of aged NiTiHf alloys[D]. Harbin: Harbin Institute of Technology, 2004.
44 MAHDI M J , SEYED H S , MOHAMMAD T S , et al. Age-induced multi-stage transformation in a Ni-rich NiTiHf alloy[J]. Acta Materialia, 2013, 61 (7): 2583- 2594.
doi: 10.1016/j.actamat.2013.01.037
45 ZARINEJAD M , LIU Y . Dependence of transformation temperatures of NiTi-based shape memory alloys on the number and concentration of valence electrons[J]. Advanced Functional Materials, 2008, 18 (18): 2789- 2794.
doi: 10.1002/adfm.200701423
46 ZARINEJAD M , LIU Y , TONG Y X . Transformation temperature changes due to second phase precipitation in NiTi-based shape memory alloys[J]. Intermetallics, 2009, 17 (11): 914- 919.
doi: 10.1016/j.intermet.2009.03.022
47 BIGELOW G S , GARG A , PADULA Ⅱ S A P , et al. Load-biased shape-memory and superelastic properties of a precipitation strengthened high-temperature Ni50.3Ni29.7Hf20 alloy[J]. Scripta Materialia, 2011, 64 (8): 725- 728.
doi: 10.1016/j.scriptamat.2010.12.028
48 ACAR E , KARACA H E , BASARAN B , et al. Role of aging time on the microstructure and shape memory properties of NiTiHfPd single crystals[J]. Materials Science and Engineering: A, 2013, 573, 161- 165.
doi: 10.1016/j.msea.2013.02.016
49 KARAKOC O , HAYRETTIN C , EVIRGEN A , et al. Role of microstructure on the actuation fatigue performance of Ni-Rich NiTiHf high temperature shape memory alloys[J]. Acta Materialia, 2019, 175, 107- 120.
doi: 10.1016/j.actamat.2019.05.051
50 PATRIARCA L , SEHITOGLU H , PANCHENKO E Y , et al. High-temperature functional behavior of single crystal Ni51.2Ti23.4Hf25.4 shape memory alloy[J]. Acta Materialia, 2016, 106, 333- 343.
doi: 10.1016/j.actamat.2016.01.015
51 SAGHAIAN S M , KARACA H E , TOBE H , et al. Effects of aging on the shape memory behavior of Ni-rich Ni50.3Ti29.7Hf20 single crystals[J]. Acta Materialia, 2015, 87 (4): 128- 141.
52 SAGHAIAN S M , KARACA H E , TOBE H , et al. High strength NiTiHf shape memory alloys with tailorable properties[J]. Acta Materialia, 2017, 134, 211- 220.
doi: 10.1016/j.actamat.2017.05.065
53 PATRIARCA L , SEHITOGLU H . High-temperature superelasticity of Ni50.6Ti24.4Hf25.0 shape memory alloy[J]. Scripta Materialia, 2015, 101, 12- 15.
doi: 10.1016/j.scriptamat.2015.01.005
54 PATRIARCA L , WU Y , SEHITOGLU H , CHUMLYAKOV Y I . High temperature shape memory behavior of Ni50.3Ti25Hf24.7 single crystals[J]. Scripta Materialia, 2016, 115, 133- 136.
doi: 10.1016/j.scriptamat.2016.01.015
55 BEHNAM A A , THOMAS G , JOSEPH G , et al. Effect of a pre-aging treatment on the mechanical behaviors of Ni50.3Ti49.7-XHfX (X ≤ 9at.%) shape memory alloys[J]. Scripta Materialia, 2018, 147, 11- 15.
doi: 10.1016/j.scriptamat.2017.12.024
56 ACAR E , KARACA H E , TOBE H , et al. Orientation dependence of the shape memory properties in aged Ni45.3Ti29.7Hf20Pd5 single crystals[J]. Intermetallics, 2014, 54, 60- 68.
doi: 10.1016/j.intermet.2014.04.011
57 SEHITOGLU H , WU Y , PATRIARCA L , et al. Superelasticity and shape memory behavior of NiTiHf alloys[J]. Shape Memory and Superelasticity, 2017, 3 (2): 168- 187.
doi: 10.1007/s40830-017-0108-1
58 ELAHINIA M , MOGHADDAM N S , AMERINATANZI A , et al. Additive manufacturing of NiTiHf high temperature shape memory alloy[J]. Scripta Materialia, 2018, 145, 90- 94.
doi: 10.1016/j.scriptamat.2017.10.016
[1] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[2] 朱阳阳, 李晓延, 张伟栋, 张虎, 何溪. 全Cu3Sn焊点在高温时效下的组织及力学性能[J]. 材料工程, 2022, 50(9): 169-176.
[3] 张昌青, 王树文, 罗德春, 师文辰, 刘晓, 崔国胜, 陈波阳, 辛舟, 芮执元. 热电耦合对铝/钢连续驱动摩擦焊接头组织的影响机理[J]. 材料工程, 2022, 50(5): 35-42.
[4] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[5] 安强, 祁文军, 左小刚. TA15钛合金表面原位合成TiC增强钛基激光熔覆层的组织与耐磨性[J]. 材料工程, 2022, 50(4): 139-146.
[6] 孙琦迪, 杨蔚涛, 郝庆国, 关肖虎, 章斌, 杨旗. 低周疲劳变形过程中Fe-33Mn-4Si合金钢的微观组织演变[J]. 材料工程, 2022, 50(4): 162-171.
[7] 计植耀, 马跃, 王清, 董闯. 高性能软磁合金的研究进展[J]. 材料工程, 2022, 50(3): 69-80.
[8] 余晖, 任军超, 杨鑫, 郭舒龙, 余炜, 冯建航, 殷福星, 辛光善. Zn层添加AZ31/7075合金复合成形工艺及组织与性能研究[J]. 材料工程, 2022, 50(3): 157-165.
[9] 陈维平, 陈焕达, 褚晨亮, 付志强. 粉末冶金(FeNiMnAlx)50Cu50中熵合金的微观组织与力学性能[J]. 材料工程, 2022, 50(10): 55-62.
[10] 邵震, 崔雷, 王东坡, 陈永亮, 胡正根, 王非凡. 几何参数对2219铝合金拉拔式摩擦塞补焊接头微观组织及力学性能的影响[J]. 材料工程, 2022, 50(1): 25-32.
[11] 李安庆, 张立华, 蒋日鹏, 李晓谦, 张昀. 冷却速度及超声振动协同作用对7085铝合金凝固组织及力学性能的影响[J]. 材料工程, 2021, 49(8): 63-71.
[12] 谷籽旺, 郭文敏, 张弘鳞, 李文娟. 基于核壳结构粉体设计的CoNiCrAlY-Al2O3复合涂层组织结构及其抗氧化性能[J]. 材料工程, 2021, 49(7): 112-123.
[13] 于娟, 陆政, 鲁原, 熊艳才, 李国爱, 冯朝辉, 郝时嘉. 中间形变热处理对2A97铝锂合金组织和性能的影响[J]. 材料工程, 2021, 49(5): 130-136.
[14] 武永丽, 熊毅, 陈正阁, 查小琴, 岳赟, 刘玉亮, 张金民, 任凤章. 超音速微粒轰击对TC11钛合金组织和疲劳性能的影响[J]. 材料工程, 2021, 49(5): 137-143.
[15] 臧金鑫, 邢清源, 陈军洲, 戴圣龙. 800 MPa级超高强度铝合金的时效析出行为[J]. 材料工程, 2021, 49(4): 71-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn