1 School of Materials and Engineering, Harbin University of Technology, Harbin 150001, China 2 College of Nuclear Equipment and Nuclear Engineering, Yantai University, Yantai 264005, Shandong, China
Ti-Ni-Hf alloy is one of the most potential high temperature shape memory alloys due to the various advantages such as higher phase transformation temperature, relatively lower cost and larger output work. However, the plastic deformation takes place prior to the reorientation of martensitic variants due to the lower matrix strength, which results in the poor shape memory properties. To date, the measures of improving the strain recovery characteristics consist of thermo-mechanical treatment (cold rolling + annealing), alloying, aging treatment and fabrication of single crystal etc. It has been revealed that the strain recovery performances of Ti-Ni-Hf alloys are closely related to the microstructural features. In the present paper, the recent progress in the field of Ti-Ni-Hf high temperature shape memory alloy was presented, mainly consisting of microstructural evolution, martensitic transformation behaviour, mechanical properties and strain recovery features, moreover, the relationship between the microstructure, martensitic transformation as well as the mechanical and strain recovery characteristics was established, based on the previous research results. At present, the poor cold or hot workability of Ti-Ni-Hf high temperature shape memory alloy is the bottleneck which limits its extensive applications. Hence, the future research may focus on the powder metallurgy and additive manufacturing of Ti-Ni-Hf high temperature shape memory alloy.
KARACA H E , ACAR E , TOBE H , et al. NiTiHf-based shape memory alloys[J]. Materials Science and Technology, 2014, 30 (13): 530- 544.
2
FIRSTOV G , VAN HUMBEECK J , KOVAL Y N . High temperature shape memory alloys: some recent developments[J]. Materials Science and Engineering: A, 2004, 378 (1/2): 2- 10.
3
FIRSTOV G , VAN HUMBEECK J , KOVAL Y N . High temperature shape memory alloys problems and prospects[J]. Journal of Intelligent Material Systems and Structures, 2016, 17 (12): 1041- 1047.
4
MA J , KARAMAN I , NOEBE R D . High temperature shape memory alloys[J]. International Materials Reviews, 2010, 55 (5): 257- 315.
doi: 10.1179/095066010X12646898728363
5
MENG X L , CAI W , WANG L M , et al. Microstructure of stress-induced martensite in a Ti-Ni-Hf high temperature shape memory alloy[J]. Scripta Materialia, 2001, 45, 1177- 1182.
doi: 10.1016/S1359-6462(01)01147-2
6
WANG Y Q , ZHENG Y F , CAI W , et al. Tensile behavior of Ti36Ni49Hf15 high temperature shape memory alloy[J]. Scripta Materialia, 1999, 40 (12): 1327- 1331.
doi: 10.1016/S1359-6462(99)00085-8
7
OTSUKA K , REN X . Physical metallurgy of Ti-Ni-based shape memory alloys[J]. Progress in Materials Science, 2005, 50 (5): 511- 678.
doi: 10.1016/j.pmatsci.2004.10.001
8
KARACA H E , ACAR E , DED G S , et al. Microstructure and transformation related behaviors of a Ni45.3Ti29.7Hf20Cu5 high temperature shape memory alloy[J]. Materials Science and Engineering: A, 2015, 627 (11): 82- 94.
9
HSU D H D , HORNBUCKLE B C , VALDERRAMA B , et al. The effect of aluminum additions on the thermal, microstructural, and mechanical behavior of NiTiHf shape memory alloys[J]. Journal of Alloys and Compounds, 2015, 638, 67- 76.
doi: 10.1016/j.jallcom.2015.01.071
10
KIM H Y , JINGUU T , NAM T H , et al. Cold workability and shape memory properties of novel Ti-Ni-Hf-Nb high-temperature shape memory alloys[J]. Scripta Materialia, 2011, 65 (9): 846- 849.
doi: 10.1016/j.scriptamat.2011.07.049
11
ACAR E , KARACA H E , TOBE H , et al. Characterization of the shape memory properties of a Ni45.3Ti39.7Hf10Pd5 alloy[J]. Journal of Alloys and Compounds, 2013, 578, 297- 302.
doi: 10.1016/j.jallcom.2013.06.030
12
ACAR E , TOBE H , KAYA I , et al. Compressive response of Ni45.3Ti34.7Hf15Pd5 and Ni45.3Ti29.7Hf20Pd5 shape-memory alloys[J]. Journal of Materials Science, 2015, 50 (4): 1924- 1934.
doi: 10.1007/s10853-014-8757-3
13
YI X Y , GAO W H , MENG X L , et al. Microstructure, transformation behavior and mechanical properties of (Ti36Ni49Hf15)100-xYx high temperature shape memory alloys[J]. Journal of Alloys and Compounds, 2017, 705, 98- 104.
doi: 10.1016/j.jallcom.2017.02.137
14
HONG S H , KIM J T , PARK H J , et al. Influence of Zr content on phase formation, transition and mechanical behavior of Ni-Ti-Hf-Zr high temperature shape memory alloys[J]. Journal of Alloys and Compounds, 2017, 692, 77- 85.
doi: 10.1016/j.jallcom.2016.09.023
15
KOCKAR B , KARAMAN I , KIM J I , et al. A method to enhance cyclic reversibility of NiTiHf high temperature shape memory alloys[J]. Scripta Materialia, 2006, 54 (12): 2203- 2208.
doi: 10.1016/j.scriptamat.2006.02.029
16
BABACAN N , BILAL M , HAYRETTIN C , et al. Effects of cold and warm rolling on the shape memory response of Ni50Ti30Hf20 high-temperature shape memory alloy[J]. Acta Materialia, 2018, 157, 228- 244.
doi: 10.1016/j.actamat.2018.07.009
17
MENG X L , ZHENG Y F , WANG Z , et al. Effect of aging on the phase transformation and mechanical behavior of Ti36Ni49Hf15 high temperature shape memory alloy[J]. Scripta Materialia, 2000, 42 (4): 341- 348.
doi: 10.1016/S1359-6462(99)00347-4
18
MENG X L , ZHENG Y F , WANG Z , et al. Shape memory properties of the Ti36Ni49Hf15 high temperature shape memory alloy[J]. Materials Letters, 2000, 45 (2): 128- 132.
doi: 10.1016/S0167-577X(00)00091-4
19
KARACA H E , SAGHAIAN S M , DED G , et al. Effects of nanoprecipitation on the shape memory and material properties of an Ni-rich NiTiHf high temperature shape memory alloy[J]. Acta Materialia, 2013, 61 (19): 7422- 7431.
doi: 10.1016/j.actamat.2013.08.048
20
EVIRGEN A , KARAMAN I , SANTAMARTA R , et al. Microstructural characterization and shape memory characteristics of the Ni50.3Ti34.7Hf15 shape memory alloy[J]. Acta Materialia, 2015, 83, 48- 60.
doi: 10.1016/j.actamat.2014.09.027
21
MENG X L , CAI W , LAU K T , et al. Phase transformation and microstructure of quaternary TiNiHfCu high temperature shape memory alloy[J]. Intermetallics, 2005, 13 (2): 197- 201.
doi: 10.1016/j.intermet.2004.07.044
22
MENG X L , CAI W , FU Y D , et al. Martensite structure in Ti-Ni-Hf-Cu quaternary alloy ribbons containing(Ti, Hf)2Ni precipitates[J]. Acta Materialia, 2010, 58 (10): 3751- 3763.
doi: 10.1016/j.actamat.2010.03.015
23
KARACA H E , ACAR E , BASARAN B , et al. Superelastic response and damping capacity of ultrahigh-strength [111]-oriented NiTiHfPd single crystals[J]. Scripta Materialia, 2012, 67 (5): 447- 450.
doi: 10.1016/j.scriptamat.2012.05.044
24
YI X Y , WEN G Y , SUN K S , et al. Fabrication, characterization and potential application of larger bulk Ti-Ni-Hf high temperature shape memory alloy composite reinforced by hybrid particles[J]. Journal of Alloys and Compounds, 2018, 764, 347- 358.
doi: 10.1016/j.jallcom.2018.06.084
25
YI X Y , MENG X L , CAI W , et al. Larger strain recovery characteristics of Ti-Ni-Hf shape memory alloy composite under compression[J]. Scripta Materialia, 2018, 153, 90- 93.
doi: 10.1016/j.scriptamat.2018.05.006
26
MENG X L , TONG Y X , LAU K T , et al. Effect of Cu addition on phase transformation of Ti-Ni-Hf high-temperature shape memory alloys[J]. Materials Letters, 2002, 57 (2): 452- 456.
doi: 10.1016/S0167-577X(02)00810-8
27
KIM K M , HONG J K , PARK C H , et al. Comparative study of the thermocyclic behavior of Ti-Ni-Hf and Ti-Ni-Hf-Ta shape memory alloys[J]. Journal of Nanoscience and Nanotechnology, 2016, 16 (11): 11775- 11778.
doi: 10.1166/jnn.2016.13592
28
PRASAD R V S , PARK C H , KIM S W , et al. Microstructure and phase transformation behavior of a new high temperature NiTiHf-Ta shape memory alloy with excellent formability[J]. Journal of Alloys and Compounds, 2016, 697, 55- 61.
29
YI X Y , PANG G B , SUN B , et al. The microstructure and martensitic transformation behaviors in Ti-Ni-Hf-X (Ag, Sn) high temperature shape memory alloys[J]. Journal of Alloys and Compounds, 2018, 756, 19- 25.
doi: 10.1016/j.jallcom.2018.05.043
ZHENG Y F. Microstructure and interface struture of martensite variants in TiNi based shape memory alleys[D]. Harbin: Harbin Institute of Technology, 1998.
31
MENG X L , CAI W , CHEN F , et al. Effect of aging on martensitic transformation and microstructure in Ni-rich TiNiHf shape memory alloy[J]. Scripta Materialia, 2006, 54 (9): 1599- 1604.
doi: 10.1016/j.scriptamat.2006.01.017
32
MENG X L , CAI W , FU Y D , et al. Shape-memory behaviors in an aged Ni-rich TiNiHf high temperature shape-memory alloy[J]. Intermetallics, 2008, 16 (5): 698- 705.
doi: 10.1016/j.intermet.2008.02.005
33
SANTAMARTA R , ARROYAVE R , PONS J , et al. TEM study of structural and microstructural characteristics of a precipitate phase in Ni-rich Ni-Ti-Hf and Ni-Ti-Zr shape memory alloys[J]. Acta Materialia, 2013, 61 (16): 6191- 6206.
doi: 10.1016/j.actamat.2013.06.057
34
YANG F , COUGHLIN D R , PHILLIPS P J , et al. Structure analysis of a precipitate phase in an Ni-rich high-temperature NiTiHf shape memory alloy[J]. Acta Materialia, 2013, 61 (9): 3335- 3346.
doi: 10.1016/j.actamat.2013.02.023
35
KARACA H E , ACAR E , BASARAN B , et al. Effects of aging on [111] oriented NiTiHfPd single crystals under compression[J]. Scripta Materialia, 2012, 67 (7/8): 728- 731.
36
YI X Y , SUN K S , GAO W H , et al. Martensitic transformation and mechanical properties of Ti-Ni-Hf high temperature shape memory alloy with network structure second particles[J]. Journal of Alloys and Compounds, 2018, 735, 1219- 1226.
doi: 10.1016/j.jallcom.2017.11.270
37
YI X Y , SUN K S , GAO W H , et al. Microstructure design of the excellent shape recovery properties in(Ti, Hf)2Ni/Ti-Ni-Hf high temperature shape memory alloy composite[J]. Journal of Alloys and Compounds, 2017, 729, 758- 763.
doi: 10.1016/j.jallcom.2017.09.242
38
YI X Y , SUN B , GAO W H , et al. Microstructure evolution and superelasticity behavior of Ti-Ni-Hf shape memory alloy composite with multi-scale and heterogeneous reinforcements[J]. Journal of Materials Science and Technology, 2020, 42, 113- 121.
doi: 10.1016/j.jmst.2019.09.027
39
TONG Y X , CHEN F , TIAN B , et al. Microstructure and martensitic transformation of Ti49Ni51-xHfx high temperature shape memory alloys[J]. Materials Letters, 2009, 63 (21): 1869- 1871.
doi: 10.1016/j.matlet.2009.05.069
40
MENG X L , FU Y D , CAI W , et al. Microstructure and martensitic transformation behaviors of a Ti-Ni-Hf-Cu high-temperature shape memory alloy ribbon[J]. Philosophical Magazine Letters, 2009, 89 (7): 431- 438.
doi: 10.1080/09500830903019004
41
MENG X L , FU Y D , CAI W , et al. Cu content and annealing temperature dependence of martensitic transformation of Ti36Ni49-xHf15Cux melt spun ribbons[J]. Intermetallics, 2009, 17 (12): 1078- 1084.
doi: 10.1016/j.intermet.2009.05.010
42
YI X Y , MENG X L , CAI W , et al. Multi-stage martensitic transformation behaviors and microstructural characteristics of Ti-Ni-Hf high temperature shape memory alloy powders[J]. Journal of Alloys and Compounds, 2019, 781, 644- 656.
doi: 10.1016/j.jallcom.2018.12.064
MENG X Y. Phase trasformation behaviors and shape menory effect of aged NiTiHf alloys[D]. Harbin: Harbin Institute of Technology, 2004.
44
MAHDI M J , SEYED H S , MOHAMMAD T S , et al. Age-induced multi-stage transformation in a Ni-rich NiTiHf alloy[J]. Acta Materialia, 2013, 61 (7): 2583- 2594.
doi: 10.1016/j.actamat.2013.01.037
45
ZARINEJAD M , LIU Y . Dependence of transformation temperatures of NiTi-based shape memory alloys on the number and concentration of valence electrons[J]. Advanced Functional Materials, 2008, 18 (18): 2789- 2794.
doi: 10.1002/adfm.200701423
46
ZARINEJAD M , LIU Y , TONG Y X . Transformation temperature changes due to second phase precipitation in NiTi-based shape memory alloys[J]. Intermetallics, 2009, 17 (11): 914- 919.
doi: 10.1016/j.intermet.2009.03.022
47
BIGELOW G S , GARG A , PADULA Ⅱ S A P , et al. Load-biased shape-memory and superelastic properties of a precipitation strengthened high-temperature Ni50.3Ni29.7Hf20 alloy[J]. Scripta Materialia, 2011, 64 (8): 725- 728.
doi: 10.1016/j.scriptamat.2010.12.028
48
ACAR E , KARACA H E , BASARAN B , et al. Role of aging time on the microstructure and shape memory properties of NiTiHfPd single crystals[J]. Materials Science and Engineering: A, 2013, 573, 161- 165.
doi: 10.1016/j.msea.2013.02.016
49
KARAKOC O , HAYRETTIN C , EVIRGEN A , et al. Role of microstructure on the actuation fatigue performance of Ni-Rich NiTiHf high temperature shape memory alloys[J]. Acta Materialia, 2019, 175, 107- 120.
doi: 10.1016/j.actamat.2019.05.051
50
PATRIARCA L , SEHITOGLU H , PANCHENKO E Y , et al. High-temperature functional behavior of single crystal Ni51.2Ti23.4Hf25.4 shape memory alloy[J]. Acta Materialia, 2016, 106, 333- 343.
doi: 10.1016/j.actamat.2016.01.015
51
SAGHAIAN S M , KARACA H E , TOBE H , et al. Effects of aging on the shape memory behavior of Ni-rich Ni50.3Ti29.7Hf20 single crystals[J]. Acta Materialia, 2015, 87 (4): 128- 141.
52
SAGHAIAN S M , KARACA H E , TOBE H , et al. High strength NiTiHf shape memory alloys with tailorable properties[J]. Acta Materialia, 2017, 134, 211- 220.
doi: 10.1016/j.actamat.2017.05.065
53
PATRIARCA L , SEHITOGLU H . High-temperature superelasticity of Ni50.6Ti24.4Hf25.0 shape memory alloy[J]. Scripta Materialia, 2015, 101, 12- 15.
doi: 10.1016/j.scriptamat.2015.01.005
54
PATRIARCA L , WU Y , SEHITOGLU H , CHUMLYAKOV Y I . High temperature shape memory behavior of Ni50.3Ti25Hf24.7 single crystals[J]. Scripta Materialia, 2016, 115, 133- 136.
doi: 10.1016/j.scriptamat.2016.01.015
55
BEHNAM A A , THOMAS G , JOSEPH G , et al. Effect of a pre-aging treatment on the mechanical behaviors of Ni50.3Ti49.7-XHfX (X ≤ 9at.%) shape memory alloys[J]. Scripta Materialia, 2018, 147, 11- 15.
doi: 10.1016/j.scriptamat.2017.12.024
56
ACAR E , KARACA H E , TOBE H , et al. Orientation dependence of the shape memory properties in aged Ni45.3Ti29.7Hf20Pd5 single crystals[J]. Intermetallics, 2014, 54, 60- 68.
doi: 10.1016/j.intermet.2014.04.011
57
SEHITOGLU H , WU Y , PATRIARCA L , et al. Superelasticity and shape memory behavior of NiTiHf alloys[J]. Shape Memory and Superelasticity, 2017, 3 (2): 168- 187.
doi: 10.1007/s40830-017-0108-1
58
ELAHINIA M , MOGHADDAM N S , AMERINATANZI A , et al. Additive manufacturing of NiTiHf high temperature shape memory alloy[J]. Scripta Materialia, 2018, 145, 90- 94.
doi: 10.1016/j.scriptamat.2017.10.016