1 College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China 2 Fujian Key Laboratory of Polymer Science, Fujian Normal University, Fuzhou 350007, China
Electrode binder is an essential part to maintain the integrity of electrode, and it is very important to improve the specific capacity and cycle stability of the battery. Polyacrylic acid (PAA) is widely used as the binder of anode or cathode in the lithium batteries because it contains more polar functional groups and can be dissolved in water. Due to possessing a lot of polar groups, PAA binder has better adhesion. But the hydrogen bond formed between the molecular chains by polar groups makes the PAA molecular chain more rigid, which is not conducive to maintaining the integrity of the electrodes during charging and discharging. It indicates that controlling the number of PAA functional groups and changing the type of functional groups/molecular chain structure of PAA binder have a great influence on the improvement of battery performance. The effect of PAA binder on electrochemical performance of lithium battery in recent years was reviewed in this paper, focusing on the structural characteristics, modification and application methods and their effects on the initial coulombic efficiency, cycling stability and impedance of different lithium batteries. Perspectives on the future of modified PAA binder were reviewed. The effects on the performance of the binder were explored after introducing different structures such as elastic or conductive groups. Improving the interface performance is to be suitable for cathode and anode with different active materials, and to improve the lithium ion diffusion coefficient. Then the performance of lithium battery is also enhanced.
LIU W , SONG M S , KONG B , et al. Flexible and stretchable energy storage: recent advances and future perspectives[J]. Advanced Materials, 2017, 29 (1): 1603436.
doi: 10.1002/adma.201603436
2
GU S J , CUI Y Y , WEN K H , et al. 3-cyano-5-fluorobenzenzboronic acid as an electrolyte additive for enhancing the cycling stability of Li1.2Mn0.54Ni0.13Co0.13O2 cathode at high voltage[J]. Journal of Alloys and Compounds, 2020, 829, 154491.
doi: 10.1016/j.jallcom.2020.154491
3
WU Z Y , DENG L , LI J T , et al. Multiple hydrogel alginate binders for Si anodes of lithium-ion battery[J]. Electrochimica Acta, 2017, 245, 371- 378.
doi: 10.1016/j.electacta.2017.05.094
4
MA S S , LIN H , YANG L Y , et al. High thermal stability and low impedance polypropylene separator coated with aluminum phosphate[J]. Electrochimica Acta, 2019, 320, 134528.
doi: 10.1016/j.electacta.2019.07.039
5
FEI J , SUN Q Q , CUI Y L , et al. Sodium carboxyl methyl cellulose and polyacrylic acid binder with enhanced electrochemical properties for ZnMoO4·0.8H2O anode in lithium ion batteries[J]. Journal of Electroanalytical Chemistry, 2017, 804, 158- 164.
doi: 10.1016/j.jelechem.2017.09.061
6
NGUYEN Q D , CHUNG K . Frictional properties of polymer binders for Li-ion batteries[J]. Applied Physics Letters, 2020, 116 (6): 061604.
doi: 10.1063/1.5141495
7
MOCHIZUKI T , AOKI S , HORIBA T , et al. "Natto" binder of poly-γ-glutamate enabling to enhance silicon/graphite composite electrode performance for lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2017, 5 (7): 6343- 6355.
8
VERDIERA N , KHAKANIA S E , LEPAGE D , et al. Polyacrylonitrile-based rubber (HNBR) as a new potential elastomeric binder for lithium-ion battery electrodes[J]. Journal of Power Sources, 2019, 440, 227111.
doi: 10.1016/j.jpowsour.2019.227111
9
FONT F , PROTASB B , RICHARDSON G , et al. Binder migration during drying of lithium-ion battery electrodes: modelling and comparison to experiment[J]. Journal of Power Sources, 2018, 393, 177- 185.
doi: 10.1016/j.jpowsour.2018.04.097
10
MAZOUZI D , KARKAR Z , HERNANDEZ C R , et al. Critical roles of binders and formulation at multiscales of silicon-based composite electrodes[J]. Journal of Power Sources, 2015, 280, 533- 549.
doi: 10.1016/j.jpowsour.2015.01.140
11
TANG R X , MA L , ZHANG Y , et al. A flexible and conductive binder with strong adhesion for high performance silicon-based lithium-ion battery anode[J]. ChemElectroChem, 2020, 7 (9): 1992- 2000.
doi: 10.1002/celc.201902152
12
LING M , XU Y N , ZHAO H , et al. Dual-functional gum Arabic binder for silicon anodes in lithium ion batteries[J]. Nano Energy, 2015, 12, 178- 185.
doi: 10.1016/j.nanoen.2014.12.011
13
李娟娟. 基于聚丙烯酸的锂离子电池硅负极黏结剂的研究[D]. 广州: 华南理工大学, 2019.
13
LI J J.Investigation of polyacrylic acid-based binders for silicon anodes in lithium-ion batteries[D].Guangzhou: South China University of Technology, 2019.
14
QIAN J , WIENER C G , ZHU Y , et al. Swelling and plasticization of polymeric binders by Li-containing carbonate electrolytes using quartz crystal microbalance with dissipation[J]. Polymer, 2018, 143, 237- 244.
doi: 10.1016/j.polymer.2018.04.021
15
YI D W , CUI X M , LI N L , et al. Enhancement of electrochemical performance of LiFePO4@C by Ga coating[J]. ACS Omega, 2020, 5 (17): 9752- 9758.
doi: 10.1021/acsomega.9b04165
16
YOU M L , HUANG X K , LIN M , et al. Preparation of LiCo-MnO4 assisted by hydrothermal approach and its electrochemical performance[J]. American Journal of Engineering and Applied Sciences, 2016, 9 (2): 396- 405.
doi: 10.3844/ajeassp.2016.396.405
17
WU H W , PANG X F , BI J X , et al. Cellulose nanofiber assisted hydrothermal synthesis of Ni-rich cathode materials with high binding particles for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2020, 829, 154571.
doi: 10.1016/j.jallcom.2020.154571
18
MYUNG S , MAGLIA F , PARK K J , et al. Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives[J]. ACS Energy Letters, 2017, 2 (1): 196- 223.
doi: 10.1021/acsenergylett.6b00594
19
YOON C S , PARK K J , KIM U H , et al. High-energy Ni-rich Li[NixCoyMn1-x-y]O2 cathodes via compositional partitioning for next-generation electric vehicles[J]. Chemical of Materials, 2017, 29 (24): 10436- 10445.
doi: 10.1021/acs.chemmater.7b04047
20
LIU J , ZHANG Q , ZHANG T , et al. A robust ion-conductive biopolymer as a binder for Si anodes of lithium-ion batteries[J]. Advanced Functional Materials, 2015, 25 (23): 3599- 3605.
doi: 10.1002/adfm.201500589
21
GENDENSUREN B , OH E . Dual-crosslinked network binder of alginate with polyacrylamide for silicon/graphite anodes of lithium ion battery[J]. Journal of Power Sources, 2018, 384, 379- 386.
doi: 10.1016/j.jpowsour.2018.03.009
YUE L P , HAN P X , YAO J H , et al. Advances of binder for silicone-based anode in lithium ion batteries[J]. Chinese Battery Industry, 2017, 21 (1): 31- 44.
LI Y L , XIA Q H , ZHANG J . Application of water-soluble binder in Si-based anodes[J]. Guangdong Chemical Industry, 2019, 46 (13): 106- 107.
24
LEE J H , PAIK U , HACKLEY V A , et al. Effect of poly(acrylic acid) on adhesion strength and electrochemical performance of natural graphite negative electrode for lithium-ion batteries[J]. Journal of Power Sources, 2006, 161 (1): 612- 616.
doi: 10.1016/j.jpowsour.2006.03.087
25
MARONIA F , GABRIELLIA S , PALMIERI A , et al. High cycling stability of anodes for lithium-ion batteries based on Fe3O4nanoparticles and poly(acrylic acid) binder[J]. Journal of Power Sources, 2016, 332, 79- 87.
doi: 10.1016/j.jpowsour.2016.09.106
26
LI J , LE D B , FERGUSON P P , et al. Lithium polyacrylate as a binder for tin-cobalt-carbon negative electrodes in lithium-ion batteries[J]. Electrochimica Acta, 2010, 55 (8): 2991- 2995.
doi: 10.1016/j.electacta.2010.01.011
27
LI J J , ZHANG G Z , YANG Y , et al. Glycinamide modified polyacrylic acid as high-performance binder for silicon anodes in lithium-ion batteries[J]. Journal of Power Sources, 2018, 406, 102- 109.
doi: 10.1016/j.jpowsour.2018.10.057
28
HE J R , ZHANG L Z . Polyvinyl alcohol grafted poly(acrylic acid) as water-soluble binder with enhanced adhesion capability and electrochemical performances for Si anode[J]. Journal of Alloys and Compounds, 2018, 763, 228- 240.
doi: 10.1016/j.jallcom.2018.05.286
29
LV L , LOU H M , XIAO Y L , et al. Synthesis of triblock copolymer polydopamine-polyacrylic-polyoxyethylene with excellent performance as a binder for silicon anode lithium-ion batteries[J]. RSC Advances, 2018, 8 (9): 4604- 4609.
doi: 10.1039/C7RA13524F
30
KOMABA S , OZEKI T , OKUSHI K . Functional interface of polymer modified graphite anode[J]. Journal of Power Sources, 2009, 189 (1): 197- 203.
doi: 10.1016/j.jpowsour.2008.09.092
31
UI K , TOWADA J , AGATSUMA S , et al. Influence of the binder types on the electrochemical characteristics of natural graphite electrode in room-temperature ionic liquid[J]. Journal of Power Sources, 2011, 196 (8): 3900- 3905.
doi: 10.1016/j.jpowsour.2010.12.007
32
CAI Z P , LIANG Y , LI W S , et al. Preparation and performances of LiFePO4 cathode in aqueous solvent with polyacrylic acid as a binder[J]. Journal of Power Sources, 2009, 189 (1): 547- 551.
doi: 10.1016/j.jpowsour.2008.10.040
33
SUN J C , REN X , LI Z F , et al. Effect of poly(acrylic acid)/poly(vinyl alcohol) blending binder on electrochemical performance for lithium iron phosphate cathodes[J]. Journal of Alloys and Compounds, 2019, 783, 379- 386.
doi: 10.1016/j.jallcom.2018.12.197
34
ZHANG Z A , ZENG T , LAI Y Q , et al. A comparative study of different binders and their effects on electrochemical properties of LiMn2O4 cathode in lithium ion batteries[J]. Journal of Power Sources, 2014, 247, 1- 8.
doi: 10.1016/j.jpowsour.2013.08.051
35
PARIKH P , SINA M , BANERJEE A , et al. Role of polyacrylic acid (PAA) binder on the solid electrolyte interphase in silicon anodes[J]. Chemistry of Materials, 2019, 31 (7): 2535- 2544.
doi: 10.1021/acs.chemmater.8b05020
36
HU B , SHKROB I A , ZHANG S , et al. The existence of optimal molecular weight for poly(acrylic acid) binders in silicon/graphite composite anode for lithium-ion batteries[J]. Journal of Power Sources, 2018, 378, 671- 676.
doi: 10.1016/j.jpowsour.2017.12.068
37
KARKAR Z , GUYOMARD D , ROUE L , et al. A comparative study of polyacrylic acid (PAA) and carboxymethyl cellulose (CMC) binders for Si-based electrodes[J]. Electrochimica Acta, 2017, 258, 453- 466.
doi: 10.1016/j.electacta.2017.11.082
38
LI C , SHI T F , YOSHITAKE H , et al. Improved performance in micron-sized silicon anodes by in-situ polymerization of its acrylic acid-based slurry[J]. Journal of Materials Chemistry A, 2016, 4 (43): 16982- 16991.
doi: 10.1039/C6TA05650D
GUO R N , HAN W Q . Effects of structure and properties of polar polymeric binders on lithium-ion batteries[J]. Journal of Inorganic Materials, 2019, 24 (10): 1021- 1029.
40
PORCHER W , CHAZELLE S , BOULINEAU A , et al. Understanding polyacrylic acid and lithium polyacrylate binder behavior in silicon based electrodes for Li-ion batteries[J]. Journal of the Electrochemical Society, 2017, 164 (14): 3633- 3640.
doi: 10.1149/2.0821714jes
41
LEE S Y , CHOI Y , HONG K S , et al. Influence of EDTA in poly(acrylic acid) binder for enhancing electrochemical performance and thermal stability of silicon anode[J]. Applied Surface Science, 2018, 447, 442- 451.
doi: 10.1016/j.apsusc.2018.04.004
42
KOMABA S , SHIMOMURA K , YABUUCHI N , et al. Study on polymer binders for high-capacity SiO negative electrode of Li-ion batteries[J]. Journal of Physical Chemistry C, 2011, 115 (27): 13487- 13495.
doi: 10.1021/jp201691g
43
曾涛. 聚丙烯酸黏结剂在锂离子电池正极中的应用研究[D]. 长沙: 中南大学, 2013.
43
ZENG T.Study on polyacrylic acid as binder of cathode in lithium ion battery[D].Changsha: Central South University, 2013.
44
KOVALENKO I , ZDYRKO B , MAGASINSKI A , et al. A major constituent of brown algae for use in high-capacity Li-ion batteries[J]. Science, 2011, 334 (6052): 75- 79.
doi: 10.1126/science.1209150
45
OBROVAC M N , CHEVRIER V . Alloy negative electrodes for Li-ion batteries[J]. Chemical Reviews, 2014, 114 (23): 11444- 11502.
doi: 10.1021/cr500207g
46
ZHENG Z N , GAO X , LUO Y W . Influence of copolymer chain sequence on electrode latex binder for lithium-ion batteries[J]. Colloid and Polymer Science, 2019, 297 (10): 1287- 1299.
doi: 10.1007/s00396-019-04548-9
47
WEI L M , CHEN C X , HOU Z Y , et al. Poly(acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries[J]. Scientific Reports, 2016, 6 (1): 19583.
doi: 10.1038/srep19583
48
WEI L M , HOU Z Y . High performance polymer binders inspired by chemical finishing of textiles for silicon anodes in lithium ion batteries[J]. Journal of Materials Chemistry A, 2017, 5 (42): 22156- 22162.
doi: 10.1039/C7TA05195F
49
BIE Y , YANG J , NULI Y , et al. Natural karaya gum as an excellent binder for silicon-based anodes in high-performance lithium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5 (5): 1919- 1924.
doi: 10.1039/C6TA09522D
50
BIE Y , YANG J , LIU X L , et al. Polydopamine wrapping silicon cross-linked with polyacrylic acid as high-performance anode for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8 (5): 2899- 2904.
51
SHIN D , PARK H , PAIK U . Cross-linked poly(acrylic acid)-carboxymethyl cellulose and styrene-butadiene rubber as an efficient binder system and its physicochemical effects on a high energy density graphite anode for Li-ion batteries[J]. Electrochemistry Communications, 2017, 77, 103- 106.
doi: 10.1016/j.elecom.2017.02.018
52
LEE S H , LEE J H , NAM D H , et al. Epoxidized natural rubber/chitosan network binder for silicon anode in lithium-ion battery[J]. ACS Applied Materials & Interfaces, 2018, 10 (19): 16449- 16457.
53
XU Z X , YANG J , ZHANG T , et al. Silicon microparticle anodes with self-healing multiple network binder[J]. Joule, 2018, 2 (5): 950- 961.
doi: 10.1016/j.joule.2018.02.012
54
WANG L , LIU T F , PENG X , et al. Highly stretchable conductive glue for high-performance silicon anodes in advanced lithium-ion batteries[J]. Advanced Functional Materials, 2018, 28 (3): 1704858.
doi: 10.1002/adfm.201704858
55
ZENG W W , WANG L , PENG X , et al. Enhanced ion conductivity in conducting polymer binder for high-performance silicon anodes in advanced lithium-ion batteries[J]. Advanced Energy Materials, 2018, 8 (11): 1702314.
doi: 10.1002/aenm.201702314
56
CHOI S , KWON T , COSKUN A , et al. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries[J]. Science, 2017, 357 (6348): 279- 283.
doi: 10.1126/science.aal4373
57
TIAN M , CHEN X , SUN S T , et al. A bioinspired high-modulus mineral hydrogel binder for improving the cycling stability of microsized silicon particle-based lithium-ion battery[J]. Nano Research, 2019, 12 (5): 1121- 1127.
doi: 10.1007/s12274-019-2359-y
58
TIAN M , WU P Y . Nature plant polyphenol coating silicon submicroparticle conjugated with polyacrylic acid for achieving a high-performance anode of lithium-ion battery[J]. ACS Applied Energy Materials, 2019, 2 (7): 5066- 5073.
doi: 10.1021/acsaem.9b00734
59
ZHANG J F , REN T , NAYAKA G P , et al. Design of polydopamine-encapsulation multiporous MnO cross-linked with polyacrylic acid binder for superior lithium ion battery anode[J]. Journal of Alloys and Compounds, 2019, 783, 341- 348.
doi: 10.1016/j.jallcom.2018.12.356
60
HWANG J , KIM H , SUN Y . High performance potassium-sulfur batteries based on a sulfurized polyacrylonitrile cathode and polyacrylic acid binder[J]. Journal of Materials Chemistry A, 2018, 6 (30): 14587- 14593.
doi: 10.1039/C8TA03135E
61
SUN S , HE D L , LI P , et al. Improved adhesion of cross-linked binder and SiO2-coating enhances structural and cyclic stability of silicon electrodes for lithium-ion batteries[J]. Journal of Power Sources, 2020, 454, 227907.
doi: 10.1016/j.jpowsour.2020.227907
62
YIM T , CHOI S J , PARK J , et al. The effect of an elastic functional group in a rigid binder framework of silicon-graphite composites on their electrochemical performance[J]. Physical Chemistry Chemical Physics, 2015, 17 (4): 2388- 2393.
doi: 10.1039/C4CP04723K
63
YIM T , CHOI S J , JO Y N , et al. Effect of binder properties on electrochemical performance for silicon-graphite anode: method and application of binder screening[J]. Electrochimica Acta, 2014, 136, 112- 120.
doi: 10.1016/j.electacta.2014.05.062
64
YANG X F , ZHANG H M , MING H , et al. Aqueous binder effects of poly(acrylic acid) and carboxy methylated cellulose on anode performance in lithium-ion batteries[J]. New Journal of Chemistry, 2019, 43 (32): 12555- 12562.
doi: 10.1039/C9NJ02078K
65
AN Y L , FENG J K , CI L J , et al. MnO2 Nanotubes with a water soluble binder as high performance sodium storage materials[J]. RSC Advances, 2016, 6 (105): 103579- 103584.
doi: 10.1039/C6RA20706E
66
CHOI S J , YIM T , CHO W , et al. Rosin-embedded poly(acrylic acid) binder for silicon/graphite negative electrode[J]. ACS Sustainable Chemistry & Engineering, 2016, 4 (12): 6362- 6370.
67
LEE K , LIM S , TRON A , et al. Polymeric binder based on PAA and conductive PANI for high performance silicon-based anodes[J]. RSC Advances, 2016, 6 (103): 101622- 101625.
doi: 10.1039/C6RA23805J
68
ZHENG M Y , CAI X M , TAN Y F , et al. A high-resilience and conductive composite binder for lithium-sulfur batteries[J]. Chemical Engineering Journal, 2020, 389, 124404.
doi: 10.1016/j.cej.2020.124404
69
JIANG S S , HU B , SHI Z X , et al. Re-engineering poly(acrylic acid) binder toward optimized electrochemical performance for silicon lithium-ion batteries: branching architecture leads to balanced properties of polymeric binders[J]. Advanced Functional Materials, 2020, 30 (10): 1908558.
doi: 10.1002/adfm.201908558
70
CHO Y M , KIM J , ELABD A , et al. A pyrene-poly(acrylic acid)-polyrotaxane supramolecular binder network for high-performance silicon negative electrodes[J]. Advanced Materials, 2019, 31 (51): 1905048.
doi: 10.1002/adma.201905048
71
PARK Y , LEE S , KIM S , et al. A photo-cross-linkable polymeric binder for silicon anodes in lithium ion batteries[J]. RSC Advances, 2013, 3 (31): 12625- 12630.
doi: 10.1039/c3ra42447b
72
GUO R N , WANG J L , ZHANG S L , et al. Multifunctional cross-linked polymer-Laponite nanocomposite binder for lithium-sulfur batteries[J]. Chemical Engineering Journal, 2020, 388, 124316.
doi: 10.1016/j.cej.2020.124316
73
HE D L , LI P , WANG W , et al. Collaborative design of hollow nanocubes, in situ cross-linked binder, and amorphous void@SiOx@C as a three-pronged strategy for ultrastable lithium storage[J]. Small, 2019, 16 (5): 1905736.
74
SONG J H , FENG Z H , WANG Y , et al. Suppressed volume variation of optimized SiOx/C anodes with PAA-based binders for advanced lithium-ion pouch cells[J]. Solid State Ionics, 2019, 343, 115070.
doi: 10.1016/j.ssi.2019.115070
75
YANG J S , LI P , ZHONG F P , et al. Suppressing voltage fading of Li-rich oxide cathode via building a well-protected and partially-protonated surface by polyacrylic acid binder for cycle-stable Li-ion batteries[J]. Advanced Energy Materials, 2020, 10 (15): 1904264.
doi: 10.1002/aenm.201904264
76
GAO Y , QIU X T , WANG X L , et al. Chitosan-g-poly(acrylic acid) copolymer and its sodium salt as stabilized aqueous binders for silicon anodes in lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7 (19): 16274- 16283.