Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (2): 21-31    DOI: 10.11868/j.issn.1001-4381.2020.000532
  综述 本期目录 | 过刊浏览 | 高级检索 |
PAA类黏结剂在锂电池中电化学性能研究进展
刘梦如1,2, 叶诚曦1,2, 彭黎波1,2, 翁景峥1,2,*()
1 福建师范大学 化学与材料学院, 福州 350007
2 福建师范大学 福建高分子重点实验室, 福州 350007
Research progress in electrochemical properties of lithium batteries with PAA binders
Meng-ru LIU1,2, Cheng-xi YE1,2, Li-bo PENG1,2, Jing-zheng WENG1,2,*()
1 College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
2 Fujian Key Laboratory of Polymer Science, Fujian Normal University, Fuzhou 350007, China
全文: PDF(3241 KB)   HTML ( 3 )  
输出: BibTeX | EndNote (RIS)      
摘要 

黏结剂是维持极片完整性必不可少的部分,对电池比容量、循环稳定等性能的提高非常重要。聚丙烯酸(PAA)因含有较多极性官能团,可溶于水,而被用作锂电池正负极黏结剂。PAA黏附性好,但极性基团使得分子链间形成的氢键导致PAA链刚性较大,不利于维持充放电过程中极片的完整性,因此,控制PAA官能团数量、改变官能团种类及PAA分子链结构,对锂电池电性能的提高势在必行。本文综述了近几年锂电池用PAA黏结剂的研究进展,重点介绍了PAA黏结剂的结构特性、改性及应用方式及其对不同种锂电池首次库伦效率、循环稳定性和阻抗性能的影响,并对PAA黏结剂的未来改性研究热点做了展望,探索PAA引入不同结构的弹性或导电聚合物后,对于黏结剂本身性能的影响,改善界面性能,以适用于不同活性材料正负极,提高锂离子传输速率,更好地提高锂电池的使用性能。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘梦如
叶诚曦
彭黎波
翁景峥
关键词 锂电池黏结剂PAA循环性能阻抗性能    
Abstract

Electrode binder is an essential part to maintain the integrity of electrode, and it is very important to improve the specific capacity and cycle stability of the battery. Polyacrylic acid (PAA) is widely used as the binder of anode or cathode in the lithium batteries because it contains more polar functional groups and can be dissolved in water. Due to possessing a lot of polar groups, PAA binder has better adhesion. But the hydrogen bond formed between the molecular chains by polar groups makes the PAA molecular chain more rigid, which is not conducive to maintaining the integrity of the electrodes during charging and discharging. It indicates that controlling the number of PAA functional groups and changing the type of functional groups/molecular chain structure of PAA binder have a great influence on the improvement of battery performance. The effect of PAA binder on electrochemical performance of lithium battery in recent years was reviewed in this paper, focusing on the structural characteristics, modification and application methods and their effects on the initial coulombic efficiency, cycling stability and impedance of different lithium batteries. Perspectives on the future of modified PAA binder were reviewed. The effects on the performance of the binder were explored after introducing different structures such as elastic or conductive groups. Improving the interface performance is to be suitable for cathode and anode with different active materials, and to improve the lithium ion diffusion coefficient. Then the performance of lithium battery is also enhanced.

Key wordslithium battery    binder    PAA    cycling performance    impedance performance
收稿日期: 2020-06-12      出版日期: 2021-02-27
中图分类号:  TM912.9  
基金资助:福建省引导性(重点)项目(2018H0009);福建省科技厅高校产学合作项目(2016H6006);福州市科技局资助项目(2017-G-68)
通讯作者: 翁景峥     E-mail: jackyweng@vip.163.com
作者简介: 翁景峥(1972-), 男, 副研究员, 博士, 研究方向为锂电池用黏结剂, 联系地址: 福州市仓山区对湖街道上三路32号福建师范大学化学与材料学院(350007), E-mail: jackyweng@vip.163.com
引用本文:   
刘梦如, 叶诚曦, 彭黎波, 翁景峥. PAA类黏结剂在锂电池中电化学性能研究进展[J]. 材料工程, 2021, 49(2): 21-31.
Meng-ru LIU, Cheng-xi YE, Li-bo PENG, Jing-zheng WENG. Research progress in electrochemical properties of lithium batteries with PAA binders. Journal of Materials Engineering, 2021, 49(2): 21-31.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000532      或      http://jme.biam.ac.cn/CN/Y2021/V49/I2/21
Fig.1  PAA的结构式
Fig.2  PAA黏结剂与活性材料间的作用机理图
Fig.3  PAA黏结剂解决活性材料体积变化的模型图
Fig.4  PAA-BP黏结剂的合成方法及其适应硅颗粒体积膨胀示意图[71]
(a)功能化PAA-BP黏结剂的合成方法;(b)PAA-BP黏结剂适应充放电循环期间硅阳极的体积膨胀示意图
Binder ICE/% Growth rate/%
Target group Control group
PAANa[65] ≈100 78.5 21.5
PDA-PAA-PEO[29] 74 68 8.1
c-LiPAACA-20% laponite[72] 99.89 99.18 0.71
Table 1  不同PAA黏结剂较PVDF对不同电极首次库仑效率的影响
Binder ICE/% Growth rate/%
Target group Control group
PAA-GA[27] 86.5 85.8 0.81
PVA-g-10PAA[28] 82.4 74.1 10.07
PAA-GL[61] 88.87 87.35 1.71
PAA-Rosin (1∶1)[66] 86.6 85.7 1.04
PAA-PVA (2∶1)[33] 98.5 95.6 2.94
c-PAA-DS[73] 61.3 57.6 6.04
Table 2  不同改性PAA黏结剂较纯PAA对不同电极首次库仑效率的影响
Fig.5  采用PAA-PVA(2∶1)黏结剂的LiFePO4/C正极的倍率性能图[33]
BinderCapacity retention/%Growth rate/%N/cycle
Target group Control group
PAALi[74] 90.8 100 at 0.2 C
ACC-PAA[57] 75 50 33.33 100 at 600 mA·g-1
PAA-PR[70] 97.6 100 at 0.5 C
PVA-g-10PAA[28] 61.4 31.9 48.05 150 at 400 mA·g-1
Table 3  不同改性PAA黏结剂较纯PAA在不同电极中多次循环后的容量保持率
BinderCapacity retention/%Growth rate/%N/cycle
Target group Control group
PAA-GA[27] 81 69.6 14.07 285 at 0.2 C
PAA-10% PANI[67] 56.5 11.3 80 300 at 1 C
PAA-PVA (2∶1)[33] 100.0 88.8 11.2 300 at 5 C
c-PAA-DS [73] Increased 71 >29 500 at 500 mA·g-1
1000 at 5 A·g-1
PVA-g-10PAA[28] 40.3 1000 at 400 mA·g-1
Table 4  不同改性PAA黏结剂纯PAA在不同电极中长期循环后的容量保持率
BinderRSEIReduction rate/%RCTReduction rate/%
Target group Control group Target group Control group
PAA-EDTA (9∶1)[41] 16.1 37.9 57.52
CS-PAANa[76] 4.00 4.75 15.79 33.51 76.30 56.08
PAA-PAA/PMA (1∶1)[62] 2.5 7.3 65.75 52.8 156.8 66.33
PAA-PVA (2∶1)[33] 18.0 28.8 37.5
Table 5  不同改性PAA黏结剂较纯PAA在不同电极中的阻抗数据表
BinderDLi/(cm2·s-1)Growth rate/%
Target group Control group
PAA-EDTA (9∶1)[41] 3.92×10-14 3.19×10-15 1128.84
CS-PAANa[76] 5.41×10-15 2.78×10-15 94.6
PAA-PVA (2∶1)[33] 6.8×10-12 1.5×10-13 4433.33
Table 6  不同改性PAA黏结剂较纯PAA在不同电极中的锂离子扩散系数
1 LIU W , SONG M S , KONG B , et al. Flexible and stretchable energy storage: recent advances and future perspectives[J]. Advanced Materials, 2017, 29 (1): 1603436.
doi: 10.1002/adma.201603436
2 GU S J , CUI Y Y , WEN K H , et al. 3-cyano-5-fluorobenzenzboronic acid as an electrolyte additive for enhancing the cycling stability of Li1.2Mn0.54Ni0.13Co0.13O2 cathode at high voltage[J]. Journal of Alloys and Compounds, 2020, 829, 154491.
doi: 10.1016/j.jallcom.2020.154491
3 WU Z Y , DENG L , LI J T , et al. Multiple hydrogel alginate binders for Si anodes of lithium-ion battery[J]. Electrochimica Acta, 2017, 245, 371- 378.
doi: 10.1016/j.electacta.2017.05.094
4 MA S S , LIN H , YANG L Y , et al. High thermal stability and low impedance polypropylene separator coated with aluminum phosphate[J]. Electrochimica Acta, 2019, 320, 134528.
doi: 10.1016/j.electacta.2019.07.039
5 FEI J , SUN Q Q , CUI Y L , et al. Sodium carboxyl methyl cellulose and polyacrylic acid binder with enhanced electrochemical properties for ZnMoO4·0.8H2O anode in lithium ion batteries[J]. Journal of Electroanalytical Chemistry, 2017, 804, 158- 164.
doi: 10.1016/j.jelechem.2017.09.061
6 NGUYEN Q D , CHUNG K . Frictional properties of polymer binders for Li-ion batteries[J]. Applied Physics Letters, 2020, 116 (6): 061604.
doi: 10.1063/1.5141495
7 MOCHIZUKI T , AOKI S , HORIBA T , et al. "Natto" binder of poly-γ-glutamate enabling to enhance silicon/graphite composite electrode performance for lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2017, 5 (7): 6343- 6355.
8 VERDIERA N , KHAKANIA S E , LEPAGE D , et al. Polyacrylonitrile-based rubber (HNBR) as a new potential elastomeric binder for lithium-ion battery electrodes[J]. Journal of Power Sources, 2019, 440, 227111.
doi: 10.1016/j.jpowsour.2019.227111
9 FONT F , PROTASB B , RICHARDSON G , et al. Binder migration during drying of lithium-ion battery electrodes: modelling and comparison to experiment[J]. Journal of Power Sources, 2018, 393, 177- 185.
doi: 10.1016/j.jpowsour.2018.04.097
10 MAZOUZI D , KARKAR Z , HERNANDEZ C R , et al. Critical roles of binders and formulation at multiscales of silicon-based composite electrodes[J]. Journal of Power Sources, 2015, 280, 533- 549.
doi: 10.1016/j.jpowsour.2015.01.140
11 TANG R X , MA L , ZHANG Y , et al. A flexible and conductive binder with strong adhesion for high performance silicon-based lithium-ion battery anode[J]. ChemElectroChem, 2020, 7 (9): 1992- 2000.
doi: 10.1002/celc.201902152
12 LING M , XU Y N , ZHAO H , et al. Dual-functional gum Arabic binder for silicon anodes in lithium ion batteries[J]. Nano Energy, 2015, 12, 178- 185.
doi: 10.1016/j.nanoen.2014.12.011
13 李娟娟. 基于聚丙烯酸的锂离子电池硅负极黏结剂的研究[D]. 广州: 华南理工大学, 2019.
13 LI J J.Investigation of polyacrylic acid-based binders for silicon anodes in lithium-ion batteries[D].Guangzhou: South China University of Technology, 2019.
14 QIAN J , WIENER C G , ZHU Y , et al. Swelling and plasticization of polymeric binders by Li-containing carbonate electrolytes using quartz crystal microbalance with dissipation[J]. Polymer, 2018, 143, 237- 244.
doi: 10.1016/j.polymer.2018.04.021
15 YI D W , CUI X M , LI N L , et al. Enhancement of electrochemical performance of LiFePO4@C by Ga coating[J]. ACS Omega, 2020, 5 (17): 9752- 9758.
doi: 10.1021/acsomega.9b04165
16 YOU M L , HUANG X K , LIN M , et al. Preparation of LiCo-MnO4 assisted by hydrothermal approach and its electrochemical performance[J]. American Journal of Engineering and Applied Sciences, 2016, 9 (2): 396- 405.
doi: 10.3844/ajeassp.2016.396.405
17 WU H W , PANG X F , BI J X , et al. Cellulose nanofiber assisted hydrothermal synthesis of Ni-rich cathode materials with high binding particles for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2020, 829, 154571.
doi: 10.1016/j.jallcom.2020.154571
18 MYUNG S , MAGLIA F , PARK K J , et al. Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives[J]. ACS Energy Letters, 2017, 2 (1): 196- 223.
doi: 10.1021/acsenergylett.6b00594
19 YOON C S , PARK K J , KIM U H , et al. High-energy Ni-rich Li[NixCoyMn1-x-y]O2 cathodes via compositional partitioning for next-generation electric vehicles[J]. Chemical of Materials, 2017, 29 (24): 10436- 10445.
doi: 10.1021/acs.chemmater.7b04047
20 LIU J , ZHANG Q , ZHANG T , et al. A robust ion-conductive biopolymer as a binder for Si anodes of lithium-ion batteries[J]. Advanced Functional Materials, 2015, 25 (23): 3599- 3605.
doi: 10.1002/adfm.201500589
21 GENDENSUREN B , OH E . Dual-crosslinked network binder of alginate with polyacrylamide for silicon/graphite anodes of lithium ion battery[J]. Journal of Power Sources, 2018, 384, 379- 386.
doi: 10.1016/j.jpowsour.2018.03.009
22 岳丽萍, 韩鹏献, 姚建华, 等. 锂离子电池硅基负极黏结剂研究进展[J]. 电池工业, 2017, 21 (1): 31- 44.
22 YUE L P , HAN P X , YAO J H , et al. Advances of binder for silicone-based anode in lithium ion batteries[J]. Chinese Battery Industry, 2017, 21 (1): 31- 44.
23 李延良, 夏清华, 张杰. 水性黏结剂在硅基负极中的应用研究进展[J]. 广东化工, 2019, 46 (13): 106- 107.
23 LI Y L , XIA Q H , ZHANG J . Application of water-soluble binder in Si-based anodes[J]. Guangdong Chemical Industry, 2019, 46 (13): 106- 107.
24 LEE J H , PAIK U , HACKLEY V A , et al. Effect of poly(acrylic acid) on adhesion strength and electrochemical performance of natural graphite negative electrode for lithium-ion batteries[J]. Journal of Power Sources, 2006, 161 (1): 612- 616.
doi: 10.1016/j.jpowsour.2006.03.087
25 MARONIA F , GABRIELLIA S , PALMIERI A , et al. High cycling stability of anodes for lithium-ion batteries based on Fe3O4nanoparticles and poly(acrylic acid) binder[J]. Journal of Power Sources, 2016, 332, 79- 87.
doi: 10.1016/j.jpowsour.2016.09.106
26 LI J , LE D B , FERGUSON P P , et al. Lithium polyacrylate as a binder for tin-cobalt-carbon negative electrodes in lithium-ion batteries[J]. Electrochimica Acta, 2010, 55 (8): 2991- 2995.
doi: 10.1016/j.electacta.2010.01.011
27 LI J J , ZHANG G Z , YANG Y , et al. Glycinamide modified polyacrylic acid as high-performance binder for silicon anodes in lithium-ion batteries[J]. Journal of Power Sources, 2018, 406, 102- 109.
doi: 10.1016/j.jpowsour.2018.10.057
28 HE J R , ZHANG L Z . Polyvinyl alcohol grafted poly(acrylic acid) as water-soluble binder with enhanced adhesion capability and electrochemical performances for Si anode[J]. Journal of Alloys and Compounds, 2018, 763, 228- 240.
doi: 10.1016/j.jallcom.2018.05.286
29 LV L , LOU H M , XIAO Y L , et al. Synthesis of triblock copolymer polydopamine-polyacrylic-polyoxyethylene with excellent performance as a binder for silicon anode lithium-ion batteries[J]. RSC Advances, 2018, 8 (9): 4604- 4609.
doi: 10.1039/C7RA13524F
30 KOMABA S , OZEKI T , OKUSHI K . Functional interface of polymer modified graphite anode[J]. Journal of Power Sources, 2009, 189 (1): 197- 203.
doi: 10.1016/j.jpowsour.2008.09.092
31 UI K , TOWADA J , AGATSUMA S , et al. Influence of the binder types on the electrochemical characteristics of natural graphite electrode in room-temperature ionic liquid[J]. Journal of Power Sources, 2011, 196 (8): 3900- 3905.
doi: 10.1016/j.jpowsour.2010.12.007
32 CAI Z P , LIANG Y , LI W S , et al. Preparation and performances of LiFePO4 cathode in aqueous solvent with polyacrylic acid as a binder[J]. Journal of Power Sources, 2009, 189 (1): 547- 551.
doi: 10.1016/j.jpowsour.2008.10.040
33 SUN J C , REN X , LI Z F , et al. Effect of poly(acrylic acid)/poly(vinyl alcohol) blending binder on electrochemical performance for lithium iron phosphate cathodes[J]. Journal of Alloys and Compounds, 2019, 783, 379- 386.
doi: 10.1016/j.jallcom.2018.12.197
34 ZHANG Z A , ZENG T , LAI Y Q , et al. A comparative study of different binders and their effects on electrochemical properties of LiMn2O4 cathode in lithium ion batteries[J]. Journal of Power Sources, 2014, 247, 1- 8.
doi: 10.1016/j.jpowsour.2013.08.051
35 PARIKH P , SINA M , BANERJEE A , et al. Role of polyacrylic acid (PAA) binder on the solid electrolyte interphase in silicon anodes[J]. Chemistry of Materials, 2019, 31 (7): 2535- 2544.
doi: 10.1021/acs.chemmater.8b05020
36 HU B , SHKROB I A , ZHANG S , et al. The existence of optimal molecular weight for poly(acrylic acid) binders in silicon/graphite composite anode for lithium-ion batteries[J]. Journal of Power Sources, 2018, 378, 671- 676.
doi: 10.1016/j.jpowsour.2017.12.068
37 KARKAR Z , GUYOMARD D , ROUE L , et al. A comparative study of polyacrylic acid (PAA) and carboxymethyl cellulose (CMC) binders for Si-based electrodes[J]. Electrochimica Acta, 2017, 258, 453- 466.
doi: 10.1016/j.electacta.2017.11.082
38 LI C , SHI T F , YOSHITAKE H , et al. Improved performance in micron-sized silicon anodes by in-situ polymerization of its acrylic acid-based slurry[J]. Journal of Materials Chemistry A, 2016, 4 (43): 16982- 16991.
doi: 10.1039/C6TA05650D
39 郭容男, 韩伟强. 极性聚合物黏结剂的结构和物性对锂离子电池的影响[J]. 无机材料学报, 2019, 24 (10): 1021- 1029.
39 GUO R N , HAN W Q . Effects of structure and properties of polar polymeric binders on lithium-ion batteries[J]. Journal of Inorganic Materials, 2019, 24 (10): 1021- 1029.
40 PORCHER W , CHAZELLE S , BOULINEAU A , et al. Understanding polyacrylic acid and lithium polyacrylate binder behavior in silicon based electrodes for Li-ion batteries[J]. Journal of the Electrochemical Society, 2017, 164 (14): 3633- 3640.
doi: 10.1149/2.0821714jes
41 LEE S Y , CHOI Y , HONG K S , et al. Influence of EDTA in poly(acrylic acid) binder for enhancing electrochemical performance and thermal stability of silicon anode[J]. Applied Surface Science, 2018, 447, 442- 451.
doi: 10.1016/j.apsusc.2018.04.004
42 KOMABA S , SHIMOMURA K , YABUUCHI N , et al. Study on polymer binders for high-capacity SiO negative electrode of Li-ion batteries[J]. Journal of Physical Chemistry C, 2011, 115 (27): 13487- 13495.
doi: 10.1021/jp201691g
43 曾涛. 聚丙烯酸黏结剂在锂离子电池正极中的应用研究[D]. 长沙: 中南大学, 2013.
43 ZENG T.Study on polyacrylic acid as binder of cathode in lithium ion battery[D].Changsha: Central South University, 2013.
44 KOVALENKO I , ZDYRKO B , MAGASINSKI A , et al. A major constituent of brown algae for use in high-capacity Li-ion batteries[J]. Science, 2011, 334 (6052): 75- 79.
doi: 10.1126/science.1209150
45 OBROVAC M N , CHEVRIER V . Alloy negative electrodes for Li-ion batteries[J]. Chemical Reviews, 2014, 114 (23): 11444- 11502.
doi: 10.1021/cr500207g
46 ZHENG Z N , GAO X , LUO Y W . Influence of copolymer chain sequence on electrode latex binder for lithium-ion batteries[J]. Colloid and Polymer Science, 2019, 297 (10): 1287- 1299.
doi: 10.1007/s00396-019-04548-9
47 WEI L M , CHEN C X , HOU Z Y , et al. Poly(acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries[J]. Scientific Reports, 2016, 6 (1): 19583.
doi: 10.1038/srep19583
48 WEI L M , HOU Z Y . High performance polymer binders inspired by chemical finishing of textiles for silicon anodes in lithium ion batteries[J]. Journal of Materials Chemistry A, 2017, 5 (42): 22156- 22162.
doi: 10.1039/C7TA05195F
49 BIE Y , YANG J , NULI Y , et al. Natural karaya gum as an excellent binder for silicon-based anodes in high-performance lithium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5 (5): 1919- 1924.
doi: 10.1039/C6TA09522D
50 BIE Y , YANG J , LIU X L , et al. Polydopamine wrapping silicon cross-linked with polyacrylic acid as high-performance anode for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8 (5): 2899- 2904.
51 SHIN D , PARK H , PAIK U . Cross-linked poly(acrylic acid)-carboxymethyl cellulose and styrene-butadiene rubber as an efficient binder system and its physicochemical effects on a high energy density graphite anode for Li-ion batteries[J]. Electrochemistry Communications, 2017, 77, 103- 106.
doi: 10.1016/j.elecom.2017.02.018
52 LEE S H , LEE J H , NAM D H , et al. Epoxidized natural rubber/chitosan network binder for silicon anode in lithium-ion battery[J]. ACS Applied Materials & Interfaces, 2018, 10 (19): 16449- 16457.
53 XU Z X , YANG J , ZHANG T , et al. Silicon microparticle anodes with self-healing multiple network binder[J]. Joule, 2018, 2 (5): 950- 961.
doi: 10.1016/j.joule.2018.02.012
54 WANG L , LIU T F , PENG X , et al. Highly stretchable conductive glue for high-performance silicon anodes in advanced lithium-ion batteries[J]. Advanced Functional Materials, 2018, 28 (3): 1704858.
doi: 10.1002/adfm.201704858
55 ZENG W W , WANG L , PENG X , et al. Enhanced ion conductivity in conducting polymer binder for high-performance silicon anodes in advanced lithium-ion batteries[J]. Advanced Energy Materials, 2018, 8 (11): 1702314.
doi: 10.1002/aenm.201702314
56 CHOI S , KWON T , COSKUN A , et al. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries[J]. Science, 2017, 357 (6348): 279- 283.
doi: 10.1126/science.aal4373
57 TIAN M , CHEN X , SUN S T , et al. A bioinspired high-modulus mineral hydrogel binder for improving the cycling stability of microsized silicon particle-based lithium-ion battery[J]. Nano Research, 2019, 12 (5): 1121- 1127.
doi: 10.1007/s12274-019-2359-y
58 TIAN M , WU P Y . Nature plant polyphenol coating silicon submicroparticle conjugated with polyacrylic acid for achieving a high-performance anode of lithium-ion battery[J]. ACS Applied Energy Materials, 2019, 2 (7): 5066- 5073.
doi: 10.1021/acsaem.9b00734
59 ZHANG J F , REN T , NAYAKA G P , et al. Design of polydopamine-encapsulation multiporous MnO cross-linked with polyacrylic acid binder for superior lithium ion battery anode[J]. Journal of Alloys and Compounds, 2019, 783, 341- 348.
doi: 10.1016/j.jallcom.2018.12.356
60 HWANG J , KIM H , SUN Y . High performance potassium-sulfur batteries based on a sulfurized polyacrylonitrile cathode and polyacrylic acid binder[J]. Journal of Materials Chemistry A, 2018, 6 (30): 14587- 14593.
doi: 10.1039/C8TA03135E
61 SUN S , HE D L , LI P , et al. Improved adhesion of cross-linked binder and SiO2-coating enhances structural and cyclic stability of silicon electrodes for lithium-ion batteries[J]. Journal of Power Sources, 2020, 454, 227907.
doi: 10.1016/j.jpowsour.2020.227907
62 YIM T , CHOI S J , PARK J , et al. The effect of an elastic functional group in a rigid binder framework of silicon-graphite composites on their electrochemical performance[J]. Physical Chemistry Chemical Physics, 2015, 17 (4): 2388- 2393.
doi: 10.1039/C4CP04723K
63 YIM T , CHOI S J , JO Y N , et al. Effect of binder properties on electrochemical performance for silicon-graphite anode: method and application of binder screening[J]. Electrochimica Acta, 2014, 136, 112- 120.
doi: 10.1016/j.electacta.2014.05.062
64 YANG X F , ZHANG H M , MING H , et al. Aqueous binder effects of poly(acrylic acid) and carboxy methylated cellulose on anode performance in lithium-ion batteries[J]. New Journal of Chemistry, 2019, 43 (32): 12555- 12562.
doi: 10.1039/C9NJ02078K
65 AN Y L , FENG J K , CI L J , et al. MnO2 Nanotubes with a water soluble binder as high performance sodium storage materials[J]. RSC Advances, 2016, 6 (105): 103579- 103584.
doi: 10.1039/C6RA20706E
66 CHOI S J , YIM T , CHO W , et al. Rosin-embedded poly(acrylic acid) binder for silicon/graphite negative electrode[J]. ACS Sustainable Chemistry & Engineering, 2016, 4 (12): 6362- 6370.
67 LEE K , LIM S , TRON A , et al. Polymeric binder based on PAA and conductive PANI for high performance silicon-based anodes[J]. RSC Advances, 2016, 6 (103): 101622- 101625.
doi: 10.1039/C6RA23805J
68 ZHENG M Y , CAI X M , TAN Y F , et al. A high-resilience and conductive composite binder for lithium-sulfur batteries[J]. Chemical Engineering Journal, 2020, 389, 124404.
doi: 10.1016/j.cej.2020.124404
69 JIANG S S , HU B , SHI Z X , et al. Re-engineering poly(acrylic acid) binder toward optimized electrochemical performance for silicon lithium-ion batteries: branching architecture leads to balanced properties of polymeric binders[J]. Advanced Functional Materials, 2020, 30 (10): 1908558.
doi: 10.1002/adfm.201908558
70 CHO Y M , KIM J , ELABD A , et al. A pyrene-poly(acrylic acid)-polyrotaxane supramolecular binder network for high-performance silicon negative electrodes[J]. Advanced Materials, 2019, 31 (51): 1905048.
doi: 10.1002/adma.201905048
71 PARK Y , LEE S , KIM S , et al. A photo-cross-linkable polymeric binder for silicon anodes in lithium ion batteries[J]. RSC Advances, 2013, 3 (31): 12625- 12630.
doi: 10.1039/c3ra42447b
72 GUO R N , WANG J L , ZHANG S L , et al. Multifunctional cross-linked polymer-Laponite nanocomposite binder for lithium-sulfur batteries[J]. Chemical Engineering Journal, 2020, 388, 124316.
doi: 10.1016/j.cej.2020.124316
73 HE D L , LI P , WANG W , et al. Collaborative design of hollow nanocubes, in situ cross-linked binder, and amorphous void@SiOx@C as a three-pronged strategy for ultrastable lithium storage[J]. Small, 2019, 16 (5): 1905736.
74 SONG J H , FENG Z H , WANG Y , et al. Suppressed volume variation of optimized SiOx/C anodes with PAA-based binders for advanced lithium-ion pouch cells[J]. Solid State Ionics, 2019, 343, 115070.
doi: 10.1016/j.ssi.2019.115070
75 YANG J S , LI P , ZHONG F P , et al. Suppressing voltage fading of Li-rich oxide cathode via building a well-protected and partially-protonated surface by polyacrylic acid binder for cycle-stable Li-ion batteries[J]. Advanced Energy Materials, 2020, 10 (15): 1904264.
doi: 10.1002/aenm.201904264
76 GAO Y , QIU X T , WANG X L , et al. Chitosan-g-poly(acrylic acid) copolymer and its sodium salt as stabilized aqueous binders for silicon anodes in lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7 (19): 16274- 16283.
[1] 黄俊俏, 沈之川, 钟嘉炜, 谢文浩, 施志聪. 聚合物固态电解质-锂负极界面的研究进展[J]. 材料工程, 2022, 50(5): 62-77.
[2] 罗萌, 向阳, 彭志航, 曹峰. 纤维多孔陶瓷的研究进展[J]. 材料工程, 2022, 50(11): 63-72.
[3] 张健华, 张伟, 余章龙, 史碧梦, 杨娟玉. 锂离子电池用三维网状水系黏结剂的研究进展[J]. 材料工程, 2021, 49(6): 44-54.
[4] 袁颂东, 杨灿星, 江国栋, 熊剑, 艾青, 黄仁忠. 锂离子电池高镍三元材料的研究进展[J]. 材料工程, 2019, 47(10): 1-9.
[5] 南文争, 燕绍九, 彭思侃, 张晓艳, 刘大博, 戴圣龙. 磷酸铁锂/石墨烯复合材料的合成及电化学性能[J]. 材料工程, 2018, 46(4): 43-50.
[6] 钟喜春, 胡庚, 郭兴家, 刘仲武. 流动温压成型黏结钕铁硼/锶铁氧体复合磁体的研究[J]. 材料工程, 2016, 44(4): 9-13.
[7] 荆慧, 鲁中良, 苗恺, 田国强, 庞师坤, 董茵, 李涤尘. 凝胶注模空心叶片氧化铝基陶瓷铸型的中温强度[J]. 材料工程, 2015, 43(4): 1-7.
[8] 史有强, 张秋禹, 何山, 王智勇, 齐宇. 含微胶囊单组分环氧树脂黏结剂的制备及性能研究[J]. 材料工程, 2013, 0(11): 32-37.
[9] 冯立明, 魏雪. Sn-Cu合金电沉积制备工艺及结构研究[J]. 材料工程, 2010, 0(9): 29-32.
[10] 谢建军, 韩心强, 何新建. PAAM高吸水树脂的土壤保水性能[J]. 材料工程, 2010, 0(3): 84-88.
[11] 张娜, 唐致远, 卢星河. 尖晶石LiMn1.98RE0.02O4(RE=Ce,Nd)及其性能研究[J]. 材料工程, 2005, 0(11): 35-37,63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn