Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (7): 85-91    DOI: 10.11868/j.issn.1001-4381.2020.000542
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
催化炭化-原位反应/反应熔体浸渗法制备C/C-SiC复合材料
张海连, 段淼, 李四中(), 林志勇
华侨大学 材料科学与工程学院, 福建 厦门 361021
Fabrication of C/C-SiC composites via catalytic carbonization-in situ reacted and catalytic carbonization-reactive melt infiltration process
Hai-lian ZHANG, Miao DUAN, Si-zhong LI(), Zhi-yong LIN
College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, Fujian, China
全文: PDF(17127 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

利用三氯化铝为催化剂、煤焦油为前驱体催化炭化致密化碳毡制备C/C复合材料,在此基础上结合同步浸渍原位反应或反应熔体浸渗过程制备C/C-SiC复合材料,并对复合材料的微观结构、力学性能等进行表征分析。结果表明:在催化炭化-原位反应法制得的C/C-SiC复合材料中,SiC多以纳米线的形式存在于碳纤维束内部和碳纤维束之间的孔隙,C/C-SiC复合材料总体表现出假塑性断裂模式,其弯曲强度达到了(158±12)MPa;而催化炭化-反应熔体浸渗法制得的C/C-SiC复合材料中,SiC以立方体、六方体颗粒存在,复合材料的断裂行为呈现出脆性断裂模式,弯曲强度达到了(150±10)MPa。相对于催化炭化-反应熔体浸渗法,催化炭化-原位反应法所得到的C/C-SiC复合材料具有工艺简单、成本低、力学性能优异等诸多优势。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张海连
段淼
李四中
林志勇
关键词 催化炭化C/C-SiC复合材料纳米线微观结构力学性能    
Abstract

By aid of aluminium trichloride (AlCl3), an effective fabrication of the preform of carbon/carbon silicon carbide (C/C-SiC) composites via catalytic carbonization was developed, using coal tar as precursor at a low temperature. C/C-SiC composites were obtained by two different approaches, one combining catalytic carbonization and in-situ reacted (CC-ISR) method, the other combining catalytic carbonization and reactive melt infiltration (CC-RMI) method. Furthermore, the microstructure and mechanical properties of the resulted C/C-SiC composites were characterized. SiC nanowires distributed in the voids of interbundle and intrabundle of carbon fibers in as-prepared samples with CC-ISR process. The CC-ISR sample exhibits a pseudo-plastic fracture mode and its flexural strength is about (158±12) MPa. By contrast, the SiC morphology of composites fabricated in CC-RMI process contains cube and hexagonal grains. The fracture behavior of CC-RMI sample shows a brittle fracture mode and its flexural strength was about (150±10) MPa. Compared with the CC-RMI method, the C/C-SiC composites obtained by the CC-ISR method has many advantages such as simple technology, low cost and excellent mechanical properties.

Key wordscatalytic carbonization    C/C-SiC composites    nanowire    microstructure    mechanical property
收稿日期: 2020-06-15      出版日期: 2021-07-19
中图分类号:  TB332  
基金资助:华侨大学科研启动基金(11BS214);福建省中青年教师教育科研项目(JAT160031);福建省石墨烯粉体及复合材料工程技术研究中心建设项目(2017H2001);华侨大学国家自然科学培育基金(JBZR1214);华侨大学2019年实验教学与管理改革课题(SY2019Y002);华侨大学2020年校级实验教学与管理改革课题(SY20X007)
通讯作者: 李四中     E-mail: lisz04@mails.gucas.ac.cn
作者简介: 李四中(1979-), 男, 讲师, 博士, 研究方向为碳材料及纳米材料应用, 联系地址: 福建省厦门市集美大道668号华侨大学材料科学与工程学院(361021), E-mail: lisz04@mails.gucas.ac.cn
引用本文:   
张海连, 段淼, 李四中, 林志勇. 催化炭化-原位反应/反应熔体浸渗法制备C/C-SiC复合材料[J]. 材料工程, 2021, 49(7): 85-91.
Hai-lian ZHANG, Miao DUAN, Si-zhong LI, Zhi-yong LIN. Fabrication of C/C-SiC composites via catalytic carbonization-in situ reacted and catalytic carbonization-reactive melt infiltration process. Journal of Materials Engineering, 2021, 49(7): 85-91.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000542      或      http://jme.biam.ac.cn/CN/Y2021/V49/I7/85
Fig.1  CC-ISR过程制备C/C-SiC复合材料的工艺示意图
Fig.2  CC-ISR,CC-RMI产物的XRD图谱
Fig.3  CC-ISR产物中SiC的形貌
(a)位于纤维束间;(b)位于纤维束内部;(c)SEM图片;(d)TEM图片
Fig.4  CC-ISR产物表面形貌
(a)SiC纳米线及熔融硅球;(b),(c),(d)分别对应图(a)中3个局部的放大
Fig.5  不同放大倍数下CC-RMI产物中SiC晶粒
Fig.6  经3次致密化后C/C复合材料的偏光显微图
Composites Mass fraction of SiC/% Density/(g·cm-3) Open porosity/% Flexural strength/MPa Fracture toughness/(MPa·m1/2)
Plain 0 1.53 11 139±9 3.9
CC-ISR 12 1.55 9 158±12 4.5
CC-RMI 30 1.86 7 150±10 3.2
Table 1  复合材料的弯曲性能
Fig.7  复合材料的弯曲应力-应变曲线
Fig.8  复合材料的断口形貌
(a)CC-ISR产物; (b)CC-ISR断口附近SiC纳米线;(c)CC-RMI产物
1 KRENKEL W , HEIDENREICH B , RENZ R . C/C-SiC composites for advanced friction systems[J]. Advanced Engineering Materials, 2002, 4 (7): 427- 436.
doi: 10.1002/1527-2648(20020717)4:7<427::AID-ADEM427>3.0.CO;2-C
2 LIU C X , CAO L X , CHEN J X , et al. Microstructure and ablation behavior of SiC coated C/C-SiC-ZrC composites prepared by a hybrid infiltration process[J]. Carbon, 2013, 65, 196- 205.
doi: 10.1016/j.carbon.2013.08.014
3 李贺军, 罗瑞盈, 杨峥. 碳/碳复合材料在航空领域的应用研究现状[J]. 材料工程, 1997, (8): 8- 10.
3 LI H J , LUO R Y , YANG Z . The status and future on research and application about carbon/carbon composites in the aeronautical area[J]. Journal of Materials Engineering, 1997, (8): 8- 10.
4 曹宇, 刘荣军, 曹英斌, 等. 素坯密度对气相渗硅制备C/C-SiC复合材料结构与性能的影响[J]. 材料工程, 2016, 44 (7): 19- 25.
4 CAO Y , LIU R J , CAO Y B , et al. Effects of preform density on structure and property of C/C-SiC composites fabricated by gaseous silicon infiltration[J]. Journal of Materials Engineering, 2016, 44 (7): 19- 25.
5 KUMAR P , SRIVASTAVA V K . Tribological behaviour of C/C-SiC composites-a review[J]. J Adv Ceram, 2016, 5 (1): 1- 12.
doi: 10.1007/s40145-015-0171-z
6 符冬菊, 曾燮榕, 邹继兆, 等. 微波CVI制备碳碳复合材料微观组织结构的研究[J]. 材料工程, 2009, (增刊1): 5- 8.
6 FU D J , ZENG X R , ZOU J Z , et al. Study on microstructure of C/C composites prepared by microwave chemical vapor infiltration[J]. Journal of Materials Engineering, 2009, (Suppl 1): 5- 8.
7 ODESHI A G , MUCHA H , WIELAGE B . Manufacture and characterization of a low cost carbon fibre reinforced C/SiC dual matrix composite[J]. Carbon, 2006, 44 (10): 1994- 2001.
doi: 10.1016/j.carbon.2006.01.025
8 王跃明, 时启龙. 等温化学气相渗透法制备C/C-SiC复合材料的摩擦磨损性能[J]. 航空材料学报, 2017, 37 (4): 52- 60.
8 WANG Y M , SHI Q L . Tribological property of C/C-SiC composites fabricated by isothermal chemical vapor infiltration[J]. Journal of Aeronautical Materials, 2017, 37 (4): 52- 60.
9 SWAMINATHAN B , PAINULY A , PRABHAKARAN P V , et al. Liquid polycarbosilane-derived C/C-SiC composites with improved mechanical strength for high temperature applications[J]. Ceramics International, 2015, 41 (3): 3575- 3577.
10 CUI Y Y , LI A J , LI B , et al. Microstructure and ablation mechanism of C/C-SiC composites[J]. Journal of the European Ceramic Society, 2014, 34 (2): 171- 177.
doi: 10.1016/j.jeurceramsoc.2013.08.026
11 康文杰, 薛如月, 赵大明, 等. 反应熔渗工艺制备的C/C-SiC复合材料烧蚀性能及构件研制[J]. 固体火箭技术, 2019, 42 (4): 519- 522.
11 KANG W J , XUE R Y , ZHAO D M , et al. Component development and ablation properties of C/C-SiC composites prepared with RMI process[J]. Journal of Solid Rocket Technology, 2019, 42 (4): 519- 522.
12 LI Y , XIAO P , LI Z , et al. Tensile fatigue behavior of plain-weave reinforced Cf/C-SiC composites[J]. Ceramics International, 2016, 42 (6): 6850- 6857.
doi: 10.1016/j.ceramint.2016.01.068
13 NAKANO K , KAMIYA A , OGAWA H , et al. Fabrication and mechanical properties of carbon fiber reinforced silicon carbide composites[J]. Journal of the Ceramic Society of Japan, 1992, 100 (1160): 472- 475.
doi: 10.2109/jcersj.100.472
14 XIAO P , LI Z , ZHU Z B , et al. Preparation, properties and application of C/C-SiC composites fabricated by warm compacted-in situ reaction[J]. Journal of Materials Science & Technology, 2010, 26 (3): 283- 288.
15 KOUMOTO K , TAKEDA S , PAI C H , et al. High-resolution electron microscopy observations of stacking faults in β-SiC[J]. Journal of the American Ceramic Society, 1989, 72 (10): 1985- 1987.
doi: 10.1111/j.1151-2916.1989.tb06014.x
16 CHUNG F H . Quantitative interpretation of X-ray diffraction patterns of mixtures Ⅰ matrix-flushing method for quantitative multicomponent analysis[J]. Journal of Applied Crystallography, 1974, 7 (6): 519- 525.
doi: 10.1107/S0021889874010375
17 彭可, 葛毅成, 杨琳, 等. C/C坯体密度对熔融渗硅法制备的C/C-SiC复合材料摩擦行为的影响[J]. 粉末冶金材料科学与工程, 2010, 15 (3): 252- 257.
17 PENG K , GE Y C , YANG L , et al. Effect of C/C preforms density on sliding friction behavior of C/C-SiC composites fabricated by molten silicon infiltration method[J]. Materials Science and Engineering of Powder Metallurgy, 2010, 15 (3): 252- 257.
18 CHEN J J , PAN Y , TANG W H , et al. Tuning the morphologies of SiC nanowires via the change of the CoxSiy melts[J]. Nano-micro Letters, 2010, 2 (1): 11- 17.
doi: 10.1007/BF03353610
19 WU R B , LI B S , GAO M X , et al. Tuning the morphologies of SiC nanowires via the control of growth temperature, and their photoluminescence properties[J]. Nanotechnology, 2008, 19 (33): 335602.
doi: 10.1088/0957-4484/19/33/335602
20 CHEN J J , SHI Q , XIN L P , et al. A simple catalyst-free route for large-scale synthesis of SiC nanowires[J]. Journal of Alloys and Compounds, 2011, 509 (24): 6844- 6847.
doi: 10.1016/j.jallcom.2011.03.131
21 SCHULTE-FISCHEDICK J , ZERN A , MAYER J , et al. The morphology of silicon carbide in C/C-SiC composites[J]. Materials Science and Engineering: A, 2002, 332 (1): 146- 152.
22 XIAO P , LI Z , ZHU Z B , et al. The morphology and mechanism of formation of SiC in C/C-SiC composites fabricated by liquid silicon infiltration[J]. Journal of Ceramic Processing Research, 2010, 11 (3): 335- 340.
23 崔园园, 白瑞成, 孙晋良, 等. 熔融渗硅法制备C/C-SiC复合材料的研究进展[J]. 材料导报, 2011, 25 (1): 31- 35.
23 CUI Y Y , BAI R C , SUN J L , et al. Research of C/C-SiC composites prepared by liquid silicon infiltration[J]. Materials Reports, 2011, 25 (1): 31- 35.
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[3] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[4] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[5] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[6] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[7] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[8] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[9] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[10] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[11] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[12] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[13] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[14] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
[15] 陈帅, 陶凤和, 贾长治, 孙河洋. 成形角度对选区激光熔化4Cr5MoSiV1钢组织和性能的影响[J]. 材料工程, 2022, 50(3): 122-130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn