Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (7): 133-140    DOI: 10.11868/j.issn.1001-4381.2020.000543
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于非线性超声空化效应的铝合金热浸镀工艺
陈海燕1,*(), 曾越1, 李艺2, 吴建新1, 许世锬1, 邹燕成3
1 广东工业大学 材料与能源学院, 广州 510006
2 谢菲尔德大学 数学与统计学院, 英国 谢菲尔德 S3 7RH
3 惠州市惠阳广杰五金制品有限公司, 广东 惠州 516221
Hot dip process of aluminum alloy based on nonlinear ultrasonic cavitation effect
Hai-yan CHEN1,*(), Yue ZENG1, Yi LI2, Jian-xin WU1, Shi-tan XU1, Yan-cheng ZOU3
1 School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
2 School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, UK
3 Guangjie Metal Co., Ltd. Huiyang, Huizhou 516221, Guangdong, China
全文: PDF(13278 KB)   HTML ( 1 )  
输出: BibTeX | EndNote (RIS)      
摘要 

在390℃热浸镀锌过程中施加20 kHz的超声波,采用数值分析法求解Keller-Miksis和Mettin方程,描述ZnAl8熔池中0~800 W超声空泡的生长规律和空化效应,研究超声功率对镀层ZnAl8合金组织的影响,以及对1050铝合金表面氧化膜的作用。结果表明:空化效应与超声功率呈现出非线性的变化规律,当超声功率为0~500 W时,空化以稳态效应为主,空化能量不足以消除镀层合金初生相的粗大枝晶组织,也不能消除铝合金氧化膜。当功率为600~800 W时,空化以瞬态崩溃破裂的方式释放能量,其中700~800 W的空化压强和温度效应可以将铝合金表面氧化膜击碎和熔蚀,为镀层中元素扩散提供了铺展润湿和物质传输的通道,镀层ZnAl8合金与1050铝合金基体之间形成了良好的冶金结合,镀层合金呈细小均匀的蔷薇组织。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈海燕
曾越
李艺
吴建新
许世锬
邹燕成
关键词 铝合金热浸镀数值模拟超声空化    
Abstract

20 kHz ultrasounds were applied in the process of 390 ℃ hot dip galvanization of 1050 aluminum alloy. The evolution of the cavitation bubbles were solved numerically from the Keller-Miksis and Mettin equations. The growth of the cavitation bubbles of 0-800 W ultrasonic cavitation and their effects in the ZnAl8 molten pool were described. The effects of the ultrasonic power on the alloy structure of the coating and the removal of the oxide film on the surface of the 1050 aluminum alloy were analyzed. The results show that cavitational effects display nonlinear relation with the ultrasonic power. For ultrasonic power in the range of 0-500 W, stable cavitation dominates. The dendritic structure of the coating ZnAl8 alloy and the aluminium oxide film remain mostly unchanged. When the power is 600-800 W, transient cavitation bubbles release energy in the form of violent collapse. The high cavitation pressure and temperature, respectively, crush and melt the oxide film on the surface of the aluminum alloy, which facilitates spreading, wetting and transfer of the elements between the aluminum substrate and the coating. Therefore, under the action of power ultrasonic waves of 700-800 W, good metallurgical bond is formed between the coating alloy and the aluminum alloy substrate, and the coating alloy displays fine and uniform rosette-like microstructure.

Key wordsaluminum alloy    hot dipping    numerical simulation    ultrasonic cavitation
收稿日期: 2020-06-15      出版日期: 2021-07-19
中图分类号:  TG178  
基金资助:2017年广州市产学研协同创新重大专项对外科技合作项目(201704030010);大学生创新创业训练计划项目(xj201911845386);大学生创新创业训练计划项目(xj201911845376);广东大学生科技创新培育专项资金(pdjh2020b0185)
通讯作者: 陈海燕     E-mail: gdutchy1@163.com
作者简介: 陈海燕(1974-), 女, 副教授, 博士, 研究方向: 超声辅助金属加工技术, 联系地址: 广州大学城外环西100号广东工业大学材料与能源学院(510006), E-mail: gdutchy1@163.com
引用本文:   
陈海燕, 曾越, 李艺, 吴建新, 许世锬, 邹燕成. 基于非线性超声空化效应的铝合金热浸镀工艺[J]. 材料工程, 2021, 49(7): 133-140.
Hai-yan CHEN, Yue ZENG, Yi LI, Jian-xin WU, Shi-tan XU, Yan-cheng ZOU. Hot dip process of aluminum alloy based on nonlinear ultrasonic cavitation effect. Journal of Materials Engineering, 2021, 49(7): 133-140.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000543      或      http://jme.biam.ac.cn/CN/Y2021/V49/I7/133
Al Si Cu Mg Zn Mn Ti V Fe
Bal 0.25 0.05 0.05 0.05 0.05 0.03 ≤0.05 0-0.400
Table 1  1050铝合金的化学组成(质量分数/%)
Fig.1  不同功率下ZnAl8合金熔体中的声压幅
Fig.2  气泡簇中的空化泡生长曲线
(a)400 W;(b)500 W;(c)600 W;(d)700 W;(e)800 W
Fig.3  不同功率的超声空化效应
(a)最大压强;(b)最高温度
Fig.4  Zn-Al二元合金相图[17]
Fig.5  Zn-Al合金的DSC曲线
Fig.6  ZnAl8合金的SEM图
Region Atom fraction/% Impurity
Zn Al
1 49.93 49.49 Remain
2 68.80 30.88 Remain
3 97.46 2.29 Remain
Table 2  EDS能谱分析结果
Ultrasonic power/W
0 400 500 600 700 800
None None None Locally formed coating Complete coating Complete coating
Table 3  不同超声功率下的镀层质量
Fig.7  不同超声功率对镀层显微组织的影响
(a)400 W;(b)500 W;(c)600 W;(d)700 W;(e)800 W
Fig.8  700 W时超声镀层的SEM图(a),Al(b)和Zn(c)的面扫描
1 黄玉永. 微量钛硅对热浸镀锌铝合金金相组织的影响探究[J]. 矿冶工程, 2019, 39 (6): 143- 145.
doi: 10.3969/j.issn.0253-6099.2019.06.035
1 HUANG Y Y . The effect of trace titanium silicon on the microstructure of hot dip galvanized aluminum alloy[J]. Mining Engineering, 2019, 39 (6): 143- 145.
doi: 10.3969/j.issn.0253-6099.2019.06.035
2 王宗雄. 铝合金上电镀的浸锌工艺及配方[J]. 表面工程与再制造, 2018, 18 (5): 33- 36.
doi: 10.3969/j.issn.1672-3732.2018.05.012
2 WANG Z X . Zinc dipping process and formula of electroplating on aluminum alloy[J]. Surface Engineering and Remanufacturing, 2018, 18 (5): 33- 36.
doi: 10.3969/j.issn.1672-3732.2018.05.012
3 肖阳, 刘鹏亮. 低磁性电连接器用铝合金镀锌的失效分析[J]. 电镀与涂饰, 2019, 38 (17): 963- 966.
3 XIAO Y , LIU P L . Failure analysis of zinc coating electroplated on aluminum alloy applied to low-magnetism electrical connector[J]. Electroplating & Finishing, 2019, 38 (17): 963- 966.
4 俞伟元, 吴炜杰, 孙学敏. 超声辅助电阻钎焊6063铝合金接头显微组织的演变[J]. 稀有金属材料与工程, 2019, 48 (12): 4081- 4087.
4 YU W Y , WU W J , SUN X M . Microstructure evolution of ultrasonic-assisted electrical resistance brazing joints of 6063 aluminum alloys[J]. Rare Metal Materials and Engineering, 2019, 48 (12): 4081- 4087.
5 WANG Q , CHEN X , ZHU L , et al. Rapid ultrasound-induced transient-liquid-phase bonding of Al-50Si alloys with Zn interlayer in air for electrical packaging application[J]. Ultrasonics Sonoche-mistry, 2017, 34, 947- 952.
doi: 10.1016/j.ultsonch.2016.08.004
6 FENG X H , ZHAO F Z , JIA H M , et al. Numerical simulation of non-dendritic structure formation in Mg-Al alloy solidified with ultrasonic field[J]. Ultrasonics Sonochemistry, 2018, 4, 113- 119.
7 HAGHAYEGHI R , DE PAULA L C , ZOQUI E J . Comparison of Si refinement efficiency of electromagnetic stirring and ultrasonic treatment for a hypereutectic Al-Si alloy[J]. Journal of Materials Engineering and Performance, 2017, 26 (4): 1900- 1907.
doi: 10.1007/s11665-017-2602-1
8 POLA A , MONTESANO L , TOCCI M , et al. Influence of ultrasound treatment on cavitation erosion resistance of AlSi7 alloy[J]. Materials, 2017, 10 (3): 256.
doi: 10.3390/ma10030256
9 NAMPOOTHIRI J , BALASUNDAR I , RAJ B , et al. Porosity alleviation and mechanical property improvement of strontium modified A356 alloy by ultrasonic treatment[J]. Materials Science and Engineering: A, 2018, 724, 586- 593.
doi: 10.1016/j.msea.2018.03.069
10 张洋, 宋博瀚, 闫久春. 超声波振动下SiC陶瓷颗粒与Zn-Al液态合金的相互作用机制[J]. 材料工程, 2016, 44 (2): 28- 34.
10 ZHANG Y , SONG B H , YAN J C . Interaction mechanism between SiC ceramic particles and liquid Zn-Al alloy under ultrasonic vibration[J]. Journal of Materials Engineering, 2016, 44 (2): 28- 34.
11 CHEN H Y , LAI Z M , CHEN Z L , et al. The secondary Bjerknes force between two oscillating bubbles in Kelvin-Voigt-type viscoelastic fluids driven by harmonic ultrasonic pressure[J]. Ultrasonics-Sonochemistry, 2019, 52 (4): 344- 352.
12 王德鑫, 那仁满都拉. 耦合双泡声空化特性的理论研究[J]. 物理学报, 2018, 67 (3): 231- 238.
12 WANG D X , Naranmandula . Theoretical study of coupling dou-ble-bubbles ultrasonic cavitation characteristics[J]. Acta Phys Sin, 2018, 67 (3): 231- 238.
13 陈子良. 金属熔体超声空化数值模拟和超声细晶及除气作用的研究[D]. 广州: 广东工业大学, 2019.
13 CHEN Z L. Numerical simulation of ultrasonic cavitation of metal melt and ultrasonic fine grain and degassing[D]. Guangzhou: Guangdong University of Technology, 2019.
14 CAMPBELL J . Effects of vibration during solidification[J]. International Metals Reviews, 1981, 26 (1): 71- 108.
doi: 10.1179/imtr.1981.26.1.71
15 沈壮志. 声驻波场中空化泡的动力学特性[J]. 物理学报, 2015, 64 (12): 1- 8.
15 SHEN Z Z . Dynamic characteristics of cavitation bubbles in acoustic standing wave field[J]. Journal of Physics, 2015, 64 (12): 1- 8.
16 MAEDA K , COLONIUS T . Bubble cloud dynamics in an ultrasound field[J]. J Fluid Mech, 2019, 862, 1105- 1134.
doi: 10.1017/jfm.2018.968
17 JIANG J F , WANG Y . Microstructure and mechanical properties of the semisolid slurries and rheoformed component of nano-sized SiC/7075 aluminum matrix composite prepared by ultrasonic-assisted semisolid stirring[J]. Mat Sci Eng: A, 2015, 639, 350- 358.
doi: 10.1016/j.msea.2015.04.064
18 STRAUMAL B , MAZILKIN A , SAUVAGE X , et al. Pseudo-partial wetting of grain boundaries in severely deformed Al-Zn alloys[J]. Russian Journal of Non-Ferrous Metals, 2015, 56 (1): 44- 51.
doi: 10.3103/S1067821215010198
19 YU B L , JIANG J D . Applied thermal analysis[M]. Beijing: Textile Industry press, 1990.
20 ESKIN G I . Ultrasonic treatment of light alloy melt[M]. Moscow: CRC Press, 1998.
[1] 刘小辉, 刘允中. 激光选区熔化成形高强铝合金晶粒细化抑制裂纹研究现状[J]. 材料工程, 2022, 50(8): 1-16.
[2] 潘士伟, 王自东, 陈晓华, 王艳林, 陈凯旋, 朱谕至. 锆微合金化增强铝合金的研究进展[J]. 材料工程, 2022, 50(8): 17-33.
[3] 金士杰, 田鑫, 林莉. 铝合金搅拌摩擦焊超声检测研究进展[J]. 材料工程, 2022, 50(8): 45-59.
[4] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[5] 王付胜, 孔繁淇, 王文平, 陈亚军. 航空铝合金原位腐蚀疲劳性能及断裂机理[J]. 材料工程, 2022, 50(6): 149-156.
[6] 韩启飞, 符瑞, 胡锦龙, 郭跃岭, 韩亚峰, 王俊升, 纪涛, 卢继平, 刘长猛. 电弧熔丝增材制造铝合金研究进展[J]. 材料工程, 2022, 50(4): 62-73.
[7] 余晖, 任军超, 杨鑫, 郭舒龙, 余炜, 冯建航, 殷福星, 辛光善. Zn层添加AZ31/7075合金复合成形工艺及组织与性能研究[J]. 材料工程, 2022, 50(3): 157-165.
[8] 李红, 闫维嘉, 张禹, 杜文博, 栗卓新, MARIUSZBober, SENKARAJacek. 先进航空材料焊接过程热裂纹研究进展[J]. 材料工程, 2022, 50(2): 50-61.
[9] 陈高红, 张月, 李应权, 刘建华, 于美. 缓蚀剂组合的容器负载方式对铝合金涂层耐蚀性能的影响[J]. 材料工程, 2022, 50(2): 153-163.
[10] 邵震, 崔雷, 王东坡, 陈永亮, 胡正根, 王非凡. 几何参数对2219铝合金拉拔式摩擦塞补焊接头微观组织及力学性能的影响[J]. 材料工程, 2022, 50(1): 25-32.
[11] 王浩, 肖纳敏, 李惠曲, 王晓. 7050铝合金结构件热处理与冷成形过程残余应力演化规律的数值模拟[J]. 材料工程, 2021, 49(8): 72-80.
[12] 詹强坤, 刘允中, 刘小辉, 周志光. 激光选区熔化成形含锆7××× 系铝合金的显微组织与力学性能[J]. 材料工程, 2021, 49(6): 85-93.
[13] 杨鑫, 王犇, 谷文萍, 张兆洋, 刘世锋, 武涛. 金属激光3D打印过程数值模拟应用及研究现状[J]. 材料工程, 2021, 49(4): 52-62.
[14] 臧金鑫, 邢清源, 陈军洲, 戴圣龙. 800 MPa级超高强度铝合金的时效析出行为[J]. 材料工程, 2021, 49(4): 71-77.
[15] 孙大翔, 董宇, 叶凌英, 唐建国. 形变热处理工艺对2519A铝合金动态变形行为的影响[J]. 材料工程, 2021, 49(2): 79-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn