Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (8): 54-62    DOI: 10.11868/j.issn.1001-4381.2020.000556
  综述 本期目录 | 过刊浏览 | 高级检索 |
TiO2/MXene纳米复合材料的可控制备及在光催化和电化学中的应用研究进展
李华鹏, 董旭晟, 孙彬, 周国伟
1. 齐鲁工业大学(山东省科学院) 化学与化工学院, 济南 250353;
2. 齐鲁工业大学(山东省科学院) 山东省高校轻工精细化学品重点实验室, 济南 250353
Research progress on controllable preparation of TiO2/MXene nanocomposites and applications in photocatalysis and electrochemistry
LI Hua-peng, DONG Xu-sheng, SUN Bin, ZHOU Guo-wei
1. School of Chemistry and Chemical Engineering, Qilu University of Technology(Shandong Academy of Sciences), Jinan 250353, China;
2. Key Laboratory of Fine Chemicals in Universities of Shandong, Qilu University of Technology(Shandong Academy of Sciences), Jinan 250353, China
全文: PDF(7984 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 TiO2纳米材料因其存在高的光生电子-空穴对复合速率、电子迁移率低、导电性差以及可逆容量低等问题,使其在光催化和电化学等领域的应用受到限制。MXene (Mn+1XnTx)作为一种新型的二维过渡金属碳化物、氮化物或碳氮化物,具有独特的二维层状结构、良好的金属导电性和较高的载流子迁移率等特性,将其引入TiO2纳米材料中构建TiO2/MXene纳米复合材料,利用两者的协同作用可进一步提高光电性能。本文从TiO2纳米材料的角度出发,系统综述了零维、一维和二维TiO2与MXene纳米复合材料的可控制备、结构性能及在光催化和电化学领域应用的最新研究进展,并着重介绍了纳米复合材料的构筑机理及MXene对提高TiO2的光催化和电化学性能的增强机制等,分析了目前TiO2/MXene复合材料的制备及其在光催化和电化学领域应用中存在的不足。此外,从优化制备工艺、提升性能和探索相应的性能增强机制等方面对未来TiO2/MXene复合材料的研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李华鹏
董旭晟
孙彬
周国伟
关键词 TiO2/MXene纳米复合材料TiO2纳米材料MXene光催化电化学    
Abstract:TiO2 nanomaterials have many disadvantages,including high photo-generated electron-hole recombination rate, low electron mobility, poor electrical conductivity and low reversible capacity, which have restricted application in the fields of photocatalysis and electrochemistry. MXene (Mn+1XnTx), a new type of two-dimensional transition metal carbides, nitrides, or carbonitrides, has a unique two-dimensional layer structure, excellent electrical conductivity, and high carrier mobility. By introducing MXene into TiO2 nanomaterials to construct the TiO2/MXene nanocomposites, the synergistic effect of MXene and TiO2 can further improve photocatalysis and electrochemistry properties. From the perspective of TiO2 nanomaterials, the latest research progress on the controllable preparation, structural properties, applications in photocatalysis and electrochemistry of zero-dimensional, one-dimensional, and two-dimensional TiO2 with MXene nanocomposites were reviewed. In particular, the construction mechanism of namocomposites and the enhancement mechanism of photocatalysis and electrochemistry properties of TiO2 by MXene were emphasized. The shortcomings of the existing research on preparation of TiO2/MXene composites and its applications in photocatalysis and electrochemistry were analyzed.Furthermore,the future research directions of TiO2/MXene composites from the aspects of optimizing the preparation process,improving the properties and exploring the property enhancement mechanism were also prospected.
Key wordsTiO2/MXene nanocomposite    TiO2 nanomaterial    MXene    photocatalysis    electrochemistry
收稿日期: 2020-06-17      出版日期: 2021-08-12
中图分类号:  TB33  
基金资助:国家自然科学基金项目(51972180,51572134);山东省自然科学基金项目(ZR2019BB030);山东省重点研发计划资助项目(2019GGX102070);济南市高校院所创新团队资助项目(2018GXRC006)
通讯作者: 孙彬(1987-),男,讲师,博士,研究方向:低维纳米材料的可控制备及其应用,联系地址:山东省济南市长清区大学路3501号齐鲁工业大学(山东省科学院)(250353),E-mail:binsun@qlu.edu.cn;周国伟(1965-),男,教授,博士,研究方向:纳米材料的可控制备及其应用,联系地址:山东省济南市长清区大学路3501号齐鲁工业大学(山东省科学院)(250353),E-mail:gwzhou@qlu.edu.cn     E-mail: binsun@qlu.edu.cn;gwzhou@qlu.edu.cn
引用本文:   
李华鹏, 董旭晟, 孙彬, 周国伟. TiO2/MXene纳米复合材料的可控制备及在光催化和电化学中的应用研究进展[J]. 材料工程, 2021, 49(8): 54-62.
LI Hua-peng, DONG Xu-sheng, SUN Bin, ZHOU Guo-wei. Research progress on controllable preparation of TiO2/MXene nanocomposites and applications in photocatalysis and electrochemistry. Journal of Materials Engineering, 2021, 49(8): 54-62.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000556      或      http://jme.biam.ac.cn/CN/Y2021/V49/I8/54
[1] ZHANG W, HE H L, TIAN Y, et al. Synthesis of uniform ordered mesoporous TiO2 microspheres with controllable phase junctions for efficient solar water splitting[J]. Chemical Science, 2019, 10(6): 1664-1670.
[2] REN H, YU R B, QI J, et al. Hollow multishelled heterostructured anatase/TiO2 (B) with superior rate capability and cycling performance[J]. Advanced Materials, 2019, 31(10): 1805754.
[3] 金嘉玮, 李国臣, 张冶, 等. TiO2薄膜型气敏传感器研究进展[J]. 材料工程, 2020, 48(10): 28-38. JIN J W, LI G C, ZHANG Y, et al. Research progress in TiO2 thin film gas sensor[J]. Journal of Materials Engineering, 2020, 48(10): 28-38.
[4] GUO Q, ZHOU C Y, MA Z B, et al. Fundamentals of TiO2 photocatalysis:concepts, mechanisms, and challenges[J]. Advanced Materials, 2019, 31(50): 1901997.
[5] LI Y, LIU X, REN D S, et al. Toward a high-voltage fast-charging pouch cell with TiO2 cathode coating and enhanced battery safety[J]. Nano Energy, 2020, 71:104643.
[6] TAVAKOLI M M, YADAV P, TAVAKOLI R, et al. Surface engineering of TiO2 ETL for highly efficient and hysteresis-less planar perovskite solar cell (21.4%) with enhanced open-circuit voltage and stability[J]. Advanced Energy Materials, 2018, 8(23): 1800794.
[7] MIODUNSKA M, MIKOLAJCZYK A, BAJOROWICZ B, et al. Urchin-like TiO2 structures decorated with lanthanide-doped Bi2S3 quantum dots to boost hydrogen photogeneration performance[J]. Applied Catalysis B, 2020, 272:118962.
[8] ZHANG X L, LI J F, LI J B, et al. 3D TiO2@nitrogen-doped carbon/Fe7S8 composite derived from polypyrrole-encapsulated alkalized MXene as anode material for high performance lithium-ion batteries[J]. Chemical Engineering Journal, 2020, 385:123394-123405.
[9] CAI J S, SHEN J L, ZHANG X N, et al. Light-driven sustainable hydrogen production utilizing TiO2 nanostructures:a review[J]. Small Methods, 2019, 3(1): 1800184-1800208.
[10] LI Y J, DENG X T, TIAN J, et al. Ti3C2 MXene-derived Ti3C2/TiO2 nanoflowers for noble-metal-free photocatalytic overall water splitting[J]. Applied Materials Today, 2018, 13:217-227.
[11] LI Y B, SHAO H, LIN Z F, A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte[J]. Nature Materials, 2020, 19:894-899.
[12] NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. MXenes:a new family of two-dimensional materials[J]. Advanced Materials, 2014, 26(7): 992-1005.
[13] BU F X, ZAGHO M M, IBRAHIM Y, et al. Porous MXenes:synthesis, structures, and applications[J]. Nano Today, 2020, 30:100803.
[14] 党阿磊, 方成林, 赵曌, 等. 新型二维纳米材料MXene的制备及在储能领域的应用进展[J]. 材料工程, 2020, 48(4): 1-14. DANG A L, FANG C L, ZHAO Z, et al. Preparation of a new two-dimensional nanomaterial MXene and its application progress in energy storage[J]. Journal of Materials Engineering, 2020, 48(4): 1-14.
[15] MA Y J, TANG Q, SUN W Y, et al. Assembling ultrafine TiO2 nanoparticles on UiO-66 octahedrons to promote selective photocatalytic conversion of CO2 to CH4 at a low concentration[J]. Applied Catalysis B, 2020, 270:118856.
[16] SUN B, ZHOU G W, GAO T T, et al. NiO nanosheet/TiO2 nanorod-constructed p-n heterostructures for improved photocatalytic activity[J]. Applied Surface Science, 2016, 364:322-331.
[17] LAN K, LIU Y, ZHANG W, et al. Uniform ordered two-dimensional mesoporous TiO2 nanosheets from hydrothermal-induced solvent-confined monomicelle assembly[J]. Journal of the American Chemical Society, 2018, 140(11): 4135-4143.
[18] WANG H, PENG R, HOOD Z D, et al. Titania composites with 2D transiton metal carbides as photocatalysts for hydrogen production under visible-light irradiation[J]. ChemSusChem, 2016, 9(12): 1490-1497.
[19] GAO Y P, WANG L B, ZHOU A G, et al. Hydrothermal synthesis of TiO2/Ti3C2 nanocomposites with enhanced photocatalytic activity[J]. Materials Letters, 2015, 150:62-64.
[20] LUO Q, CHAI B, XU M Q, et al. Preparation and photocatalytic activity of TiO2-loaded Ti3C2with small interlayer spacing[J]. Applied Physics A, 2018, 124(7): 495.
[21] YE M H, WANG X, LIU E Z, et al. Boosting the photocatalytic activity of P25 for carbon dioxide reduction by using a surface-alkalinized titanium carbide MXene as cocatalyst[J]. ChemSusChem, 2018, 11(10): 1606-1611.
[22] DU C, WU J, YANG P, et al. Embedding S@TiO2 nanospheres into MXene layers as high rate cyclability cathodes for lithium-sulfur batteries[J]. Electrochimica Acta, 2019, 295:1067-1074.
[23] ZHUANG Y, LIU Y F, MENG X F. Fabrication of TiO2 nanofibers/MXene Ti3C2 nanocomposites for photocatalytic H2 evolution by electrostatic self-assembly[J]. Applied Surface Science, 2019, 496:143647.
[24] LIU Y T, ZHANG P, SUN N, et al. Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage[J]. Advanced Materials, 2018, 30(23): 1707334.
[25] LV W J, ZHU J F, WANG F, et al. Facile synthesis and electrochemical performance of TiO2 nanowires/Ti3C2 composite[J]. Journal of Materials Science, 2018, 29(6): 4881-4887.
[26] PENG C, YANG X F, LI Y H, et al. Hybrids of two-dimensional Ti3C2 and TiO2 exposing (001) facets toward enhanced photocatalytic activity[J]. ACS Applied Materials & Interfaces, 2016, 8(9): 6051-6060.
[27] PENG C, WEI P, LI X Y, et al. High efficiency photocatalytic hydrogen production over ternary Cu/TiO2@Ti3C2Tx enabled by low-work-function 2D titanium carbide[J]. Nano Energy, 2018, 53:97-107.
[28] SHAHZAD A, RASOOL K, NAWAZ M, et al. Heterostructural TiO2/Ti3C2Tx (MXene) for photocatalytic degradation of antiepileptic drug carbamazepine[J]. Chemical Engineering Journal, 2018, 349:748-755.
[29] LI Y J, DING L, YIN S J, et al. Photocatalytic H2 evolution on TiO2 assembled with Ti3C2 MXene and metallic 1T-WS2 as co-catalysts[J]. Nano-Micro Letters, 2020, 12:6.
[30] LI Y J, YIN Z H, JI G R, et al. 2D/2D/2D heterojunction of Ti3C2 MXene/MoS2 nanosheets/TiO2 nanosheets with exposed (001) facets toward enhanced photocatalytic hydrogen production activity[J]. Applied Catalysis B, 2020, 246:12-20.
[31] LI Y J, DING L, LIANG Z Q, et al. Synergetic effect of defects rich MoS2 and Ti3C2 MXene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2[J]. Chemical Engineering Journal, 2020, 383:123178.
[32] WANG H H, CUI H Z, SONG X J, et al. Facile synthesis of heterojunction of MXenes/TiO2 nanoparticles towards enhanced hexavalent chromium removal[J]. Journal of Colloid and Interface Science, 2020, 561:46-57.
[33] AL-ANTAKI A H M, ALHARBI T M D, KELLICI S, et al. Vortex fluidic mediated synthesis of TiO2 nanoparticle/MXene composites[J]. ChemNanoMat, 2019, 6(4): 657-662.
[34] GE M Z, CAO C Y, HUANG J Y, et al. A review of one-dimensional TiO2nanostructured materials for environmental and energy applications[J]. Journal of Materials Chemistry A, 2016, 4(18): 6772-6801.
[35] LIU Z H, ZHENG Y J, GAO T T, et al. Fabrication of anatase TiO2 tapered tetragonal nanorods with designed (100), (001) and (101) facets for enhanced photocatalytic H2 evolution[J]. International Journal of Hydrogen Energy, 2017, 42(34): 21775-21785.
[36] 赵文军, 秦疆洲, 尹志凡, 等. 新型2D MXenes纳米材料在光催化领域的应用[J]. 化学进展, 2019, 31(12): 1729-1736. ZHAO W J, QIN J Z, YIN Z F, et al. 2D MXenes for photocatalysis[J]. Progress in Chemistry, 2019, 31(12): 1729-1736.
[37] WANG H, WU Y, XIAO T, et al. Formation of quasi-core-shell In2S3/anatase TiO2@metallic Ti3C2Tx hybrids with favorable charge transfer channels for excellent visible-light-photocatalytic performance[J]. Applied Catalysis B, 2018, 233:213-225.
[38] 严康, 关云峰, 丛野, 等. 溶剂热氧化少层Ti3C2 MXene制备二维TiO2/Ti3C2复合光催化剂[J]. 无机化学学报, 2019, 35(7): 1203-1211. YAN K, GUAN Y F, CONG Y, et al. Preparation of two dimensional TiO2/Ti3C2 photocatalyst by solvothermal oxidation of few-layered Ti3C2 MXene[J]. Chinese Journal of Inorganic Chemistry, 2019, 35(7): 1203-1211.
[39] GUPTA S M, TRIPATHI M. A review of TiO2 nanoparticles[J]. Chinese Science Bulletin, 2011, 56(16): 1639-1657.
[40] ZHENG Y J, LIU B J, CAO P, et al. Fabrication of flower-like mesoporous TiO2 hierarchical spheres with ordered stratified structure as an anode for lithium-ion batteries[J]. Journal of Materials Science & Technology, 2019, 35(4): 667-673.
[41] 齐新, 陈翔, 彭思侃, 等. MXenes二维纳米材料及其在锂离子电池中的应用研究进展[J]. 材料工程, 2019, 47(12): 10-20. QI X, CHEN X, PENG S K, et al. Research progress on two dimensional nanomaterials MXenes and their application for Lithium batteries[J]. Journal of Materials Engineering, 2019, 47(12): 10-20.
[42] 董旭晟, 赵瑞正, 孙彬, 等. MXenes的表面改性及其在碱金属离子电池中应用的研究进展[J]. 功能材料, 2020, 51(9): 09031-09043. DONG X S, ZHAO R Z, SUN B, et al. Research progresses on surface modifications and applications of MXenes-based nanocomposites in alkali metal ion batteries[J]. Journal of Founctional Materials, 2020, 51(9): 09031-09043.
[43] GUO X, ZHANG J Q, SONG J J, et al. MXene encapsulated titanium oxide nanospheres for ultra-stable and fast sodium storage[J]. Energy Storage Materials, 2018, 14:306-313.
[44] JIAO L, ZHANG C, GENG C N, et al. Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium-sulfur batteries[J]. Advanced Energy Materials, 2019, 9(19): 1900219.
[45] ZHU J F, TANG Y, YANG C H, et al. Composites of TiO2 nanoparticles deposited on Ti3C2 MXene nanosheets with enhanced electrochemical performance[J]. Journal of The Electrochemical Society, 2016, 163(5): A785-A791.
[46] YANG C, LIU Y, SUN X, et al. In situ construction of hierarchical accordion-like TiO2/Ti3C2 nanohybrid as anode material for lithium and sodium ion batteries[J]. Electrochimica Acta, 2018, 271:165-172.
[47] SUN L, XIE J, ZHANG L, et al. 2D black TiO2-x nanoplate-decorated Ti3C2 MXene hybrids for ultrafast and elevated stable lithium storage[J]. FlatChem, 2020, 20:100152.
[1] 陈达, 石宇晴, 张伟, 练美玲. 基于MXene的电化学传感研究进展[J]. 材料工程, 2022, 50(4): 85-95.
[2] 任美娟, 王淼, 吴芳辉, 贾虎, 叶明富, 文国强. 氮掺杂多孔碳负载铜钴纳米复合材料的制备及其电催化性能[J]. 材料工程, 2022, 50(4): 104-111.
[3] 李茂辉, 杨智, 潘廷仙, 同鑫, 胡长刚, 田娟. 铁氮掺杂活性炭载体增强碳载铂基催化剂氧还原反应稳定性[J]. 材料工程, 2022, 50(4): 132-138.
[4] 赵卫峰, 郝宁, 张改, 钱慧锦, 马爱洁, 周宏伟, 陈卫星. 苝四羧酸二酰亚胺修饰增强g-C3N4光催化性能[J]. 材料工程, 2022, 50(3): 98-106.
[5] 侯小鹏, 曾浩, 杜邵文, 李娜, 朱怡雯, 傅小珂, 李秀涛. 基于工业化碳材料的锂氟化碳电池正极材料制备及性能[J]. 材料工程, 2022, 50(3): 107-114.
[6] 吴鹏, 陈诚, 赵雪伶, 林东海. 纳米材料模拟酶应用进展[J]. 材料工程, 2022, 50(2): 62-72.
[7] 王佳佳, 喻兰兰, 胡霞, 刘宝军. 二维纳米材料MXenes及其复合物在电催化领域中的应用研究进展[J]. 材料工程, 2022, 50(1): 43-55.
[8] 朱陈杰, 陈海权, 于有海. 静电喷雾法/原位洗脱法结合制备电致变色薄膜[J]. 材料工程, 2022, 50(1): 109-116.
[9] 张文娟, 寇苗. 二维材料MXene在水处理领域的应用[J]. 材料工程, 2021, 49(9): 14-26.
[10] 杨夕馨, 常增花, 邵泽超, 吴帅锦, 王仁念, 王建涛, 卢世刚. 富锂锰基正极材料在不同温度下的极化行为[J]. 材料工程, 2021, 49(9): 69-78.
[11] 褚召冉, 陈功, 赵雪伶, 林东海, 陈诚. 光子晶体在光催化领域的研究进展[J]. 材料工程, 2021, 49(8): 43-53.
[12] 晏秘, 薛云, 申妍铭, 程琥, 庄金亮. 分级结构苯并噻二唑聚合物应用于可见光诱导硫醚选择性氧化[J]. 材料工程, 2021, 49(7): 64-70.
[13] 王敬枫, 康辉, 成中军, 谢志民, 王友善, 刘宇艳, 樊志敏. Ti3C2Tx MXene基电磁屏蔽材料的研究进展[J]. 材料工程, 2021, 49(6): 14-25.
[14] 崔静轩, 吕东风, 张学凤, 郭鑫鑫, 刘洁, 张澳寒, 崔帅, 魏恒勇, 卜景龙. 电解液添加剂NaHCO3对多孔氮化铌纤维电化学性能的影响[J]. 材料工程, 2021, 49(6): 122-131.
[15] 葛玉杰, 吴姣, 何志强, 王国华, 刘金香. g-C3N4基异质耦合光催化剂制备及在环境污染物去除领域的研究进展[J]. 材料工程, 2021, 49(4): 23-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn