Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (3): 67-77    DOI: 10.11868/j.issn.1001-4381.2020.000566
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
SA508Gr.4N钢热变形过程微观组织演变及流变应力模型
乔士宾1, 何西扣1,*(), 刘敬杰2, 赵德利2, 刘正东1
1 钢铁研究总院 特殊钢研究所, 北京 100081
2 天津重型装备工程研究有限公司, 天津 300457
Microstructure evolution and flow stress modeling of SA508Gr.4N steel during hot deformation process
Shi-bin QIAO1, Xi-kou HE1,*(), Jing-jie LIU2, De-li ZHAO2, Zheng-dong LIU1
1 Institute for Special Steels, Central Iron and Steel Research Institute, Beijing 100081, China
2 Tianjin Heavy Industries Research & Development Co., Ltd., Tianjin 300457, China
全文: PDF(20688 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

利用Gleeble-1500D热模拟试验机研究Ni-Cr-Mo系低合金SA508Gr.4N钢在变形温度为850~1200℃,应变速率为0.001~1 s-1,真应变为0.9条件下的等温热变形行为,建立包含动态回复和动态再结晶的基于物象的流变应力模型与动态再结晶晶粒尺寸模型,并提出避免粗大晶粒组织遗传性的适宜锻造工艺。结果表明:随着变形温度的升高,应变速率的降低,动态再结晶体积分数和晶粒尺寸逐渐增加;SA508Gr.4N钢的真应力-真应变曲线具有明显的不连续动态再结晶现象;通过实验值和模型预测值对比可得流变应力模型的相关系数(R)及平均相对误差(MRE)分别为0.998和4.76%,动态再结晶晶粒尺寸模型的相关系数(R)及平均相对误差(MRE)分别为0.991和8.69%,两个模型均具有较高的准确性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
乔士宾
何西扣
刘敬杰
赵德利
刘正东
关键词 SA508Gr.4N钢热变形动态再结晶流变应力晶粒尺寸    
Abstract

The isothermal deformation behavior of Ni-Cr-Mo low alloy SA508Gr.4N steel at deformation temperature of 850-1200 ℃, strain rate of 0.001-1 s-1, and true strain of 0.9 was studied by using Gleeble-1500D thermal simulation testing machine.The physically based flow stress model including dynamic recovery and dynamic recrystallization and the dynamic recrystallization grain size model were established, and the suitable forging process to avoid the coarse grain structure heredities was put forward.The results show that as the deformation temperature increases and the strain rate decreases, the dynamic recrystallization volume fraction and grain size gradually increase; the true stress-true strain curve of SA508Gr.4N steel has an obvious discontinuous dynamic recrystallization phenomenon; by comparing the experimental value with the predicted value of the model, the correlation coefficient (R) and mean relative error (MRE) of the flow stress model are 0.998 and 4.76%, respectively, and the correlation coefficient (R) and mean relative error (MRE) of the dynamic recrystallization grain size model are 0.991 and 8.69%, respectively. The two models have high accuracy.

Key wordsSA508Gr.4N steel    hot deformation    dynamic recrystallization    flow stress    grain size
收稿日期: 2020-06-23      出版日期: 2021-03-20
中图分类号:  TG142  
基金资助:国家科技重大专项(2010ZX06004-016)
通讯作者: 何西扣     E-mail: He_Xikou@163.com
作者简介: 何西扣(1985-), 男, 高级工程师, 博士, 研究方向为能源动力系统用耐热钢及合金, 联系地址: 北京市海淀区学院南路76号钢铁研究总院特殊钢研究所(100081), E-mail: He_Xikou@163.com
引用本文:   
乔士宾, 何西扣, 刘敬杰, 赵德利, 刘正东. SA508Gr.4N钢热变形过程微观组织演变及流变应力模型[J]. 材料工程, 2021, 49(3): 67-77.
Shi-bin QIAO, Xi-kou HE, Jing-jie LIU, De-li ZHAO, Zheng-dong LIU. Microstructure evolution and flow stress modeling of SA508Gr.4N steel during hot deformation process. Journal of Materials Engineering, 2021, 49(3): 67-77.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000566      或      http://jme.biam.ac.cn/CN/Y2021/V49/I3/67
C Si Mn Ni Cr Mo P S Al Fe
0.17 0.015 0.35 3.71 1.69 0.51 0.0016 0.0018 0.030 Bal
Table 1  SA508Gr.4N钢成分(质量分数/%)
Fig.1  热压缩变形工艺图
Fig.2  不同变形条件下SA508Gr.4N钢的真应力-真应变曲线
(a)0.001 s-1; (b)0.01 s-1; (c)0.1 s-1; (d)1 s-1
Fig.3  真应变为0.9时不同变形条件下SA508Gr.4N钢的晶粒微观组织
(a)850 ℃, 1 s-1; (b)950 ℃, 1 s-1; (c)1050 ℃, 1 s-1; (d)1150 ℃, 1 s-1; (e)1200 ℃, 1 s-1; (f)1200 ℃, 0.1 s-1; (g)1200 ℃, 0.01 s-1; (h)1200 ℃, 0.001 s-1
Strain rate/s-1 Compression temperature
850 ℃ 950 ℃ 1050 ℃ 1150 ℃ 1200 ℃
0.001 9.84 25.50 56.43 116.97 190.05
0.01 PDRX 14.03 31.05 59.99 108.16
0.1 PDRX 10.02 21.62 45.13 65.15
1 PDRX 6.11 11.48 24.09 29.50
Table 2  不同变形工艺下动态再结晶晶粒尺寸(μm)
Fig.4  不同热变形参数下SA508Gr.4N钢的加工硬化曲线
(a)0.001 s-1; (b)0.01 s-1; (c)0.1 s-1; (d)1 s-1
Fig.5  峰值应力、变形温度和应变速率之间的关系
(a)ln-lnσp; (b)ln-σp; (c)ln-ln [sinh (ασp)]; (d)ln [sinh (ασp)]-1000/T
Fig.6  特征值与lnZ的关系
(a)lnεc-lnZ; (b)ln[sinh(ασsat)]-lnZ; (c)ln[sinh(ασss)]-lnZ; (d)lnσ0-lnZ; (e)lnK-lnZ
Strain rate/s-1 Deformation temperature
850 ℃ 950 ℃ 1050 ℃ 1150 ℃ 1200 ℃
0.001 0.47 0.29 0.21 0.15 0.09
0.01 0.55 0.41 0.25 0.22 0.17
0.1 0.84 0.54 0.39 0.31 0.23
1 0.60 0.51 0.45 0.35
Table 3  不同变形条件下动态再结晶体积分数为50%时对应的真应变
Fig.7  lnε0.5与ln和1000T-1之间的关系
(a)lnε0.5-ln; (b)lnε0.5-1000T-1
Fig.8  ln{ln[1/(1-XDRX)]}和ln[(ε-εc)/ε0.5]之间的关系
Fig.9  晶粒尺寸与应变速率和变形温度的线性拟合关系
(a)lnDDRX-ln; (b)lnDDRX-1000T-1
Fig.10  不同应变速率下变形温度为850~1200 ℃时的流变应力预测值与实验值对比
(a)0.001 s-1; (b)0.01 s-1; (c)0.1 s-1; (d)1 s-1
Fig.11  不同变形条件下动态再结晶晶粒尺寸预测值与实验值对比
1 王梦寒, 王根田, 王瑞, 等. Mn-Ni-Mo系核电用钢高温流变行为及热加工图[J]. 中南大学学报(自然科学版), 2017, 48 (3): 592- 600.
1 WANG M H , WANG G T , WANG R , et al. Hot deformation and processing map of Mn-Ni-Mo system nuclear power steel[J]. Journal of Central South University (Science and Technology), 2017, 48 (3): 592- 600.
2 DONG D Q , CHEN F , CUI Z S . A physically-based constitutive model for SA508-Ⅲ steel: modeling and experimental verification[J]. Materials Science and Engineering: A, 2015, 634, 103- 115.
doi: 10.1016/j.msea.2015.03.036
3 LI L X , ZHENG L Y , YE B , et al. Metadynamic and static recrystallization softening behavior of a bainite steel[J]. Metals and Materials International, 2018, 24 (1): 60- 66.
doi: 10.1007/s12540-017-7201-z
4 DONG D Q , CHEN F , CUI Z S . Investigation on metadynamic recrystallization behavior in SA508-Ⅲ steel during hot deformation[J]. Journal of Manufacturing Processes, 2017, 29, 18- 28.
doi: 10.1016/j.jmapro.2017.07.008
5 ZHOU P , MA Q X . Static recrystallization behavior of 25CrMo4 mirror plate steel during two-pass hot deformation[J]. Journal of Iron and Steel Research, International, 2017, 24 (2): 222- 228.
doi: 10.1016/S1006-706X(17)30031-6
6 程明阳, 郝世明, 谢敬佩, 等. SiCP/Al-Cu复合材料的高温热变形行为[J]. 材料工程, 2017, 45 (2): 17- 23.
6 CHENG M Y , HAO S M , XIE J P , et al. Hot deformation behavior of SiCP/Al-Cu composite[J]. Journal of Materials Engineering, 2017, 45 (2): 17- 23.
7 张施琦, 冯定, 张跃, 等. 新型超高强度热冲压用钢的热变形行为及本构关系[J]. 材料工程, 2016, 44 (5): 15- 21.
doi: 10.3969/j.issn.1673-1433.2016.05.004
7 ZHANG S Q , FENG D , ZHANG Y , et al. Hot deformation behavior and constitutive model of advanced ultra-high strength hot stamping steel[J]. Journal of Materials Engineering, 2016, 44 (5): 15- 21.
doi: 10.3969/j.issn.1673-1433.2016.05.004
8 SUI D S , WANG T , ZHU L L , et al. Mathematical modeling of high-temperature constitutive equations and hot processing maps for as-cast SA508-3 steel[J]. Journal of Metals, 2016, 68 (11): 2944- 2951.
doi: 10.1007/s11837-016-2074-z
9 刘宁, 刘正东, 何西扣, 等. 核压力容器用SA508Gr.4N钢组织遗传性的消除[J]. 钢铁研究学报, 2017, 29 (5): 402- 410.
9 LIU N , LIU Z D , HE X K , et al. Structure inheritance removing of SA508Gr.4N steel for nuclear reactor pressure vessels[J]. Journal of Iron and Steel Research, 2017, 29 (5): 402- 410.
10 YANG Z Q , LIU Z D , HE X K , et al. Effect of microstructure on the impact toughness and temper embrittlement of SA508Gr.4N steel for advanced pressure vessel materials[J]. Scientific Reports, 2018, 8 (1): 207- 218.
doi: 10.1038/s41598-017-18434-3
11 PARK S G , KIM M C , LEE B S , et al. Correlation of the thermodynamic calculation and the experimental observation of Ni-Mo-Cr low alloy steel changing Ni, Mo, and Cr contents[J]. Journal of Nuclear Materials, 2010, 407 (2): 126- 135.
doi: 10.1016/j.jnucmat.2010.09.004
12 TAKU S , ANDREY B , RUSTAM K , et al. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions[J]. Progress in Materials Science, 2014, 60, 130- 207.
doi: 10.1016/j.pmatsci.2013.09.002
13 WU C , HAN S . Hot deformation behavior and dynamic recrystallization characteristics in a low-alloy high-strength Ni-Cr-Mo-V steel[J]. Acta Metallurgica Sinica, 2018, 31, 963- 974.
14 朱鸿昌, 罗军明, 朱知寿. TB17钛合金β相区动态再结晶行为及转变机理[J]. 材料工程, 2020, 48 (2): 108- 113.
14 ZHU H C , LUO J M , ZHU Z S . Dynamic recrystallization behavior and transformation mechanism in β-phase region of TB17 titanium alloy[J]. Journal of Materials Engineering, 2020, 48 (2): 108- 113.
15 XU Y K , BIRNBAUM P , PILZ S , et al. Investigation of constitutive relationship and dynamic recrystallization behavior of 22MnB5 during hot deformation[J]. Results in Physics, 2019, 14, 102426.
doi: 10.1016/j.rinp.2019.102426
16 HAN Y , YAN S , YIN B G , et al. Effects of temperature and strain rate on the dynamic recrystallization of a medium-high-carbon high-silicon bainitic steel during hot deformation[J]. Vacuum, 2018, 148, 78- 87.
doi: 10.1016/j.vacuum.2017.11.007
17 包喜荣, 王均安, 王晓东, 等. 一种Cr-Mo-Ni系贝氏体钢的动态再结晶行为[J]. 材料热处理学报, 2016, 37 (4): 222- 227.
17 BAO X R , WANG J A , WANG X D , et al. Dynamic recrystallization behavior of Cr-Mo-Ni bainitic steel[J]. Transactions of Materials and Heat Treatment, 2016, 37 (4): 222- 227.
18 CHEN X M , LIN Y C , WEN D X , et al. Dynamic recrystallization behavior of a typical nickel-based superalloy during hot deformation[J]. Materials & Design, 2014, 57, 568- 577.
19 DING R , GUO Z X . Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization[J]. Acta Materialia, 2001, 49 (16): 3163- 3175.
doi: 10.1016/S1359-6454(01)00233-6
20 CHEN G J , CHEN L , ZHAO G Q , et al. Microstructure analysis of an Al-Zn-Mg alloy during porthole die extrusion based on modeling of constitutive equation and dynamic recrystallization[J]. Journal of Alloys and Compounds, 2017, 710, 80- 91.
doi: 10.1016/j.jallcom.2017.03.240
21 杨志强, 刘正东, 何西扣, 等. 反应堆压力容器用SA508Gr.4N钢的热变形行为[J]. 材料工程, 2017, 45 (8): 88- 95.
21 YANG Z Q , LIU Z D , HE X K , et al. Hot deformation behavior of SA508Gr.4N steel for reactor pressure vessels[J]. Journal of Materials Engineering, 2017, 45 (8): 88- 95.
22 POLIAK E I , JONAS J J . A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization[J]. Acta Materialia, 1996, 44 (1): 127- 136.
doi: 10.1016/1359-6454(95)00146-7
23 LIU N , LIU Z D , HE X K , et al. Hot deformation behavior of SA508Gr.4N steel for nuclear reactor pressure vessels[J]. Journal of Iron and Steel Research, International, 2016, 23 (12): 1342- 1348.
doi: 10.1016/S1006-706X(16)30197-2
24 杨晓雅, 何岸, 谢甘霖, 等. 核电用奥氏体不锈钢的动态再结晶行为[J]. 工程科学学报, 2015, 37 (11): 1447- 1455.
24 YANG X Y , HE A , XIE G L , et al. Dynamic recrystallization behavior of an austenitic stainless steel for nuclear power plants[J]. Chinese Journal of Engineering, 2015, 37 (11): 1447- 1455.
[1] 汪雅婷, 黎俊良, 袁楷峰, 陈广义. 基于GA改进BP神经网络预测热变形流变应力模型的建立[J]. 材料工程, 2022, 50(6): 170-177.
[2] 汤中英, 邢清源, 杨守杰, 丁宁. 新型Al-Zn-Mg-Sc-Er-Zr合金的热变形行为[J]. 材料工程, 2022, 50(3): 131-137.
[3] 宋广胜, 牛嘉维, 宋鸿武, 张士宏, 邓思瀛. Zirlo锆合金高温变形行为及本构关系[J]. 材料工程, 2022, 50(3): 138-147.
[4] 杨璐, 曹敏, 曹玲飞, 廖斌, 王正安. 7B04包铝复合板热变形行为及其对组织演变的影响[J]. 材料工程, 2021, 49(3): 78-86.
[5] 张连腾, 陈乐平, 徐勇, 袁源平. Mg-9Al-3Si-0.375Sr-0.78Y合金的热变形行为及本构模型[J]. 材料工程, 2021, 49(2): 88-96.
[6] 支盛兴, 李兴刚, 袁家伟, 李永军, 马鸣龙, 石国梁, 张奎. 挤压态AZ40镁合金热变形行为及热加工图分析[J]. 材料工程, 2021, 49(11): 136-146.
[7] 周亚利, 杨秋月, 张文玮, 刘田文, 何威, 吴珍, 伍铭, 谭元标. 具有层片状α相组织的TB8钛合金热变形行为及本构方程[J]. 材料工程, 2021, 49(1): 75-81.
[8] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[9] 朱鸿昌, 罗军明, 朱知寿. TB17钛合金β相区动态再结晶行为及转变机理[J]. 材料工程, 2020, 48(2): 108-113.
[10] 甘洪岩, 程明, 宋鸿武, 陈岩, 张士宏, Vladimir Petrenko. GH4169合金楔横轧加工过程中动态再结晶及织构演变[J]. 材料工程, 2020, 48(2): 114-122.
[11] 韩永明, 韩俊玲, 辛龙, 刘廷光, 陆永浩, 庄子哲雄. 晶界工程处理对Inconel 690TT合金微动磨损行为的影响[J]. 材料工程, 2020, 48(10): 123-132.
[12] 周峰, 王克鲁, 鲁世强, 万鹏, 陈虚怀. Ti-22Al-24Nb-0.5Y合金流变行为及BP神经网络高温本构模型[J]. 材料工程, 2019, 47(8): 141-146.
[13] 周强, 程军, 于振涛, 崔文芳. 一种新型近β型Ti-5.5Mo-6V-7Cr-4Al-2Sn-1Fe合金热变形行为[J]. 材料工程, 2019, 47(6): 121-128.
[14] 任书杰, 罗飞, 田野, 刘大博, 王克鲁, 鲁世强. A100超高强度钢的流变应力曲线修正与唯象本构关系[J]. 材料工程, 2019, 47(6): 144-151.
[15] 万鹏, 王克鲁, 鲁世强, 陈虚怀, 周峰. 基于应变补偿和PSO-BP神经网络的Ti-2.7Cu合金本构关系[J]. 材料工程, 2019, 47(4): 113-119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn