1 School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China 2 School of Nuclear Equipment and Nuclear Engineering, Yantai University, Yantai 264000, Shandong, China
The irradiation effect is the change of microstructure and macroscopic properties caused by the interaction between incident particles and materials. Irradiation effect is not only an important method to modify the surface of materials, but also an essential part of the reliable evaluation of materials applied in special environment. The TiNi based shape memory alloy is a kind of important intelligent material, which has the unique shape memory effect and superelasticity and can be widely used in spacecraft such as satellites, space stations and biomedical science. The spacecraft will be irradiated by charged particles mainly including protons, electrons and ions. The irradiation effect can influence the microstructure of TiNi based shape memory alloy, which will change the phase transformation and mechanical behavior. However, the current investigation in irradiation effect of TiNi based shape memory alloy is still in its infancy. The change rules and mechanism of microstructure and phase transformation have not been studied clearly. And there are few studies on the effect of irradiation on the shape memory effect have been carried out. In-depth study on the irradiation parameters, microstructure, phase transformation behavior and functional properties is still needed.
Fig.1 质子辐照TiNiCu合金及其晶化过程的明场像及衍射花样[31] (a)550 K; (b)820 K; (c)1023 K
1
BOURDARIE S , XAPSOS M . The near-earth space radiation environment[J]. IEEE Transactions on Nuclear Science, 2008, 55 (4): 1810- 1832.
doi: 10.1109/TNS.2008.2001409
2
LI Q , YU J Y , SUN X D . Study on preparation and anodic oxidation of gradient porous NiTi alloy[J]. Advanced Materials Research, 2012, 430/432, 1373- 1377.
doi: 10.4028/www.scientific.net/AMR.430-432.1373
3
LOKOV A I, KASHIN O A, KUDRYAVTSEVA Y A, et al. Effect of plasma immersion ion implantation in TiNi implants on its interaction with animal subcutaneous tissues[C]//Proceedings of the International Conference on Physics of Cancer: Interdisciplinary Problems and Clinical Applications, Tomsk Russia, 2016: 1-5.
WEN Y , MA C , LI Y , et al. Effect of implantation dose on corrosion resistance of TiNi alloy modified with W ion implantation[J]. Heat Treatment Technology and Equipment, 2015, 36 (5): 23- 26.
doi: 10.3969/j.issn.1673-4971.2015.05.006
GUO H X , LIANG C H , MU Z X . Study of corrosion behavior and haemocompatibility of ion-implanted TiNi shape memory alloy and cobalt alloys[J]. Journal of Dalian University of Technology, 2002, 42 (3): 301- 305.
doi: 10.3321/j.issn:1000-8608.2002.03.010
6
OTSUKA K , WAYMAN C M . Shape memory materials[M]. Cambridge: Cambridge University Press, 1999: 246- 247.
7
OTSUKA K , REN X . Physical metallurgy of TiNi-based shape memory alloys[J]. Progress in Materials Science, 2005, 50 (5): 511- 678.
doi: 10.1016/j.pmatsci.2004.10.001
8
XU Z Y . Shape memory materials[J]. Transactions of Nonferrous Metals Society of China, 2001, 11 (1): 54- 61.
9
MIYAZAKI S , FU Y Q , HUANG W M . Thin film shape memory alloys: fundamentals and device applications[M]. Cambridge: Cambridge University Press, 2009: 437- 455.
10
JANI J M , LEARY M , SUBIC A , et al. A review of shape memory alloy research, applications and opportunities[J]. Materials & Design, 2014, 56 (4): 1078- 1113.
11
LAGOUDAS D C . Shape memory alloys: modeling and engineering applications[M]. Texas: Springer Science and Business Media, 2008: 1- 446.
12
YAMAUCHI K , OHKATA I , TSUCHIYA K , et al. Shape memory and superelastic alloys: technologies and applications[M]. Cambridge: Woodhead Publishing Limited, 2011: 85- 120.
13
KHALIL A J , REN X , EGGELER G . The mechanism of multistage martensitic transformations in aged Ni-rich NiTi shape memory alloys[J]. Acta Materialia, 2002, 50 (4): 793- 803.
doi: 10.1016/S1359-6454(01)00385-8
14
JAMES R D , WUTTING M . Magnetostriction of martensite[J]. Philosophical Magazine A, 1998, 77, 1273- 1299.
doi: 10.1080/01418619808214252
15
KAKESHITA T , TAKEUCHI T , FUKUDA T , et al. Magnetic-field-induced martensitic transformation and giant magnetostriction in Fe-Ni-Co-Ti and ordered Fe3Pt shape memory alloys[J]. Materials Transactions, JIM, 2000, 41 (8): 882- 887.
doi: 10.2320/matertrans1989.41.882
16
GIANNUZZI L A , STEVIE F A . Introduction to focused ion beams: instrumentation, theory, techniques and practice[M]. Berlin: Springer, 2005.
17
WAS G S . Fundamentals of radiation materials science: metals and alloys[M]. 2 ed Berlin: Springer, 2016: 1- 983.
18
WOLLANTS P , ROOS J R , DELAEY L . Thermally- and stress-induced thermoelastic martensitic transformations in the reference frame of equilibrium thermodynamics[J]. Progress in Materials Science, 1993, 37 (3): 227- 288.
doi: 10.1016/0079-6425(93)90005-6
19
AL-AQL A A , DUGHAISH Z H , BAIG M R . Study of the martensitic transformation in shape-memory Nitinol proton-irradiated alloy by electrical resistivity measurements[J]. Materials Letter, 1993, 17, 103- 108.
doi: 10.1016/0167-577X(93)90066-7
20
AL-AQL , DUGHAISH Z H , BAIG M R , et al. Effect of aging and annealing on the electrical resistivity of proton irradiated Nitinol[J]. Physica B, 1995, 210, 87- 90.
doi: 10.1016/0921-4526(94)00941-N
21
DUGHAISH Z H . Effect of variation of proton beam energy on the martensitic transformation temperature of shape memory Nitinol alloy[J]. Materials Letters, 1997, 32 (1): 29- 32.
doi: 10.1016/S0167-577X(97)00007-4
22
WANG Z G , ZU X T , LIU L J , et al. Effect of 18 MeV proton irradiation on the R-phase transformation in TiNi shape memory alloys[J]. High Power Laser and Particle Beams, 2003, 211 (2): 239- 243.
23
WAGNER C N J , LEE D , BOLDRICK M S , et al. The structure of amorphous Ni50Ti50 alloys prepared by proton irradiation and mechanical alloying[J]. Journal of Non-Crystalline Solids, 1988, 106 (1): 81- 84.
24
AYUB R , AFZAL N , AHMAD R . Phase transformation studies in unirradiated and proton beam irradiated Ni-Ti alloy between 25 and 100℃[J]. Ogukisiogucak Magazine, 2012, 92 (17): 2164- 2172.
25
WANG H Z , YI X Y , ZHU Y Y , et al. Effects of proton irradiation on the microstructure and shape recovery characteristics of a NiTi alloy[J]. Materials Characterization, 2018, 40 (1): 122- 128.
26
WANG H Z , YI X Y , ZHU Y Y , et al. Atom redistribution and multilayer structure in NiTi shape memory alloy induced by high energy proton irradiation[J]. Applied Surface Science, 2017, 419, 91- 97.
doi: 10.1016/j.apsusc.2017.05.021
27
AFZAL N , GHAURI I M , MUBARAK F E , et al. Mechanical response of proton beam irradiated nitinol[J]. Physica: B, 2011, 406 (1): 8- 11.
doi: 10.1016/j.physb.2010.09.040
28
WANG Z G , ZU X T , FU Y Q , et al. Effects of proton irradiation on transformation behavior of TiNi shape memory alloy thin films[J]. Thin Solid Films, 2005, 474, 322- 325.
doi: 10.1016/j.tsf.2004.08.168
29
GAO Z Y , WANG H Z , ZHU Y Y , et al. The martensitic transformation of Ti-Ni shape memory thin films under proton irradiation[J]. Thin Solid Films, 2015, 584, 369- 371.
doi: 10.1016/j.tsf.2015.01.023
30
WANG H Z , ZHAO Y D , MA Y H , et al. Effect of low-energy proton on the microstructure, martensitic transformation, and mechanical properties of irradiated Ni-rich TiNi alloy thin films[J]. International Journal of Minerals Metallurgy and Materials, 2020, 27 (4): 538- 543.
doi: 10.1007/s12613-019-1893-7
31
MATSUKAWA Y , SUDA T , OHNUKI S . Microstructural change and mechanical property of neutron irradiated TiNi shape memory alloy[J]. Science Report of the Research Institutes, Tohoku University, 1997, 45 (1): 336- 343.
32
MORI H , FUJITA H . Temperature dependence of electron-irradiation induced amorphization of NiTi alloys[J]. Japanese Journal of Applied Physics, 2014, 21 (8): L494- L496.
33
MORI H , FUJITA H , FUJITA M . Electron irradiation induced amorphization at dislocations in NiTi[J]. Japanese Journal of Applied Physics, 1983, 22 (2): 1400- 1401.
34
MATSUKAWA Y , OHNUKI S . Electron irradiation effect on phase transformation in TiNi shape memory alloy[J]. Journal of Nuclear Materials, 1996, 239, 261- 266.
doi: 10.1016/S0022-3115(96)00428-X
35
OKADA A , HAMADA K , MATSUMOTO T , et al. Electron irradiation effects on Ti-Ni shape memory alloys[J]. Journal of Nuclear Materials, 1999, (271/272): 189- 193.
36
NEIMAN A A , MEISNER L L , LOTKOV A I , et al. Cross-sectional TEM analysis of structural phase states in TiNi alloy treated by a low-energy high-current pulsed electron beam[J]. Applied Surface Science, 2015, 327, 321- 326.
doi: 10.1016/j.apsusc.2014.11.173
37
MO H Q , ZU X T , HUO Y . Irradiation-induced changes of martensitic transformation temperatures in a TiNiNb shape memory alloy[J]. Thermochimica Acta, 2005, 428 (1): 41- 45.
38
WANG Z G , ZU X T , HUO Y , et al. Effect of electron irradiation and heat treatment on the multi-step transformation in a Ni-rich near-equiatomic TiNi alloy[J]. Nuclear Instruments and Methods in Physics Research B, 2004, 215, 436- 442.
doi: 10.1016/j.nimb.2003.09.012
39
WANG Z G , ZU X T , FU Y Q , et al. Electron irradiation effect on the reverse phase transformation temperatures in TiNi shape memory alloy thin films[J]. Nuclear Instruments and Methods in Physics Research B, 2005, 227, 337- 342.
doi: 10.1016/j.nimb.2004.09.001
40
ZU X T , ZHANG C F , ZHU S , et al. Electron irradiation-induced changes of martensitic transformation characteristics in a TiNiCu shape memory alloy[J]. Materials Letters, 2003, 57, 2099- 2103.
doi: 10.1016/S0167-577X(02)01145-X
41
YEUNG K W K , POON R W Y , LIU X Y , et al. Corrosion resistance, surface mechanical properties, and cytocompatibility of plasma immersion ion implantation-treated nickel-titanium shape memory alloys[J]. Journal of Biomedical Materials Research Part A, 2005, 75 (2): 256- 267.
42
GRANT D M , GREEN S M , WOOD J V . The surface performance of shot peened and ion implanted NiTi shape memory alloy[J]. Acta Metallurgica et Materialia, 1995, 43 (3): 1051.
43
LAGRANGE T B , GRUMMON D S , GOTTHARDT R . The influence of irradiation parameters on the behavior of martensitic titanium nickel thin films[J]. MRS Proceedings, 2002, 753, 681- 686.
44
LAGRANGE T B , GOTTHARDT R . Microstructural evolution and thermomechanical response of Ni ion irradiated TiNi SMA thin films[J]. Journal of Optoelectronics and Advanced Materials, 2003, 5 (1): 313- 318.
45
GRUMMON D S , GOTTHARD R . Latent strain in titanium-nickel thin films modified by irradiation of the plastically-deformed martensite phase with 5 MeV Ni2+[J]. Acta Materialia, 2000, 48 (3): 635- 646.
doi: 10.1016/S1359-6454(99)00401-2
46
PELLETIER H , MULLER D , MILLER P , et al. Structural and mechanical characterisation of boron and nitrogen implanted NiTi shape memory alloy[J]. Surface & Coatings Technology, 2002, 158/159, 309- 317.
47
LIU X , WU S , CHAN Y L , et al. Structure and wear properties of NiTi modified by nitrogen plasma immersion ion implantation[J]. Materials Science & Engineering: A, 2007, 444 (1/2): 192- 197.
48
SHEVCHENKO N , PHAM M T , MAITZ M F . Studies of surface modified NiTi alloy[J]. Applied Surface Science, 2004, 235 (1/2): 126- 131.
49
LI Y , ZHANG F , ZHAO T T , et al. Enhanced wear resistance of NiTi alloy by surface modification with Nb ion implantation[J]. Rare Metals, 2014, 33 (3): 244- 248.
doi: 10.1007/s12598-014-0223-5
50
HOSHIYA T , TAKADA F , ICHIHASHI Y , et al. Restoration phenomena of neutron-irradiated TiNi shape memory alloys[J]. Materials Science and Engineering: A, 1990, 130 (2): 185- 191.
doi: 10.1016/0921-5093(90)90059-C
51
HOSHIYA T , SHIMAKAWA S , ICHIHASHI Y , et al. Fast neutron irradiation of TiNi shape memory alloys[J]. Journal of Nuclear Materials, 1991, 179/181 (1): 1119- 1122.
52
MUDGAL D , SINGH S , PRAKASH S . Restoration phenomena of TiNi shape memory alloys in a neutron irradiation environment[J]. Journal of Nuclear Materials, 1992, 191/194, 1070- 1074.
doi: 10.1016/0022-3115(92)90639-3
53
KIMURA A , TSURUGA H , MORIMURA T , et al. Effects of post-irradiation annealing on the transformation behavior of Ti-Ni alloys[J]. Materials Transactions, JIM, 1993, 34 (11): 1076- 1082.
doi: 10.2320/matertrans1989.34.1076
ZHAO X K. Microstructures and bio-medical properties of P-implanted layer in neutron irradiated TiNi alloys[D]. Harbin: Harbin Institute of Technology, 2002.
55
MATSUKAWA Y , SUDA T , OHNUKI S , et al. Microstructure and mechanical properties of neutron irradiated TiNi shape memory alloy[J]. Journal of Nuclear Materials, 1999, 271/272 (3): 106- 110.