Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (3): 14-19    DOI: 10.11868/j.issn.1001-4381.2020.000570
  记忆合金专栏 本期目录 | 过刊浏览 | 高级检索 |
TiNi基形状记忆合金的辐照效应
宁睿1, 高智勇1,*(), 王海振2, 蔡伟1
1 哈尔滨工业大学 材料科学与工程学院, 哈尔滨 150001
2 烟台大学 核装备与核工程学院, 山东 烟台 264000
Irradiation effect of TiNi based shape memory alloys
Rui NING1, Zhi-yong GAO1,*(), Hai-zhen WANG2, Wei CAI1
1 School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
2 School of Nuclear Equipment and Nuclear Engineering, Yantai University, Yantai 264000, Shandong, China
全文: PDF(2986 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

材料辐照效应是入射粒子与物质交互作用造成的物质微观组织结构与宏观性能的变化。辐照效应不仅是改善材料表面性能的重要手段,而且也是特殊环境应用材料可靠性评价的重要组成部分。TiNi基形状记忆合金是一种重要的金属智能材料,具有独特的形状记忆效应和超弹性,已在卫星、空间站等航天器以及生物医学中广泛应用。本文阐述了Ti-Ni基形状记忆合金在空间粒子(质子、电子)以及离子辐照改性的研究进展,辐照效应会对TiNi合金的微观组织结构产生影响,进而改变合金的相变行为和力学行为。然而目前关于TiNi基合金的辐照效应的研究仍处于起步阶段,组织结构和相变行为的变化规律和机理还未研究清楚,有关形状记忆效应的研究较少,仍需深入研究辐照参数、组织结构、相变行为和功能特性之间的内在联系。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宁睿
高智勇
王海振
蔡伟
关键词 形状记忆合金辐照效应微观组织马氏体相变    
Abstract

The irradiation effect is the change of microstructure and macroscopic properties caused by the interaction between incident particles and materials. Irradiation effect is not only an important method to modify the surface of materials, but also an essential part of the reliable evaluation of materials applied in special environment. The TiNi based shape memory alloy is a kind of important intelligent material, which has the unique shape memory effect and superelasticity and can be widely used in spacecraft such as satellites, space stations and biomedical science. The spacecraft will be irradiated by charged particles mainly including protons, electrons and ions. The irradiation effect can influence the microstructure of TiNi based shape memory alloy, which will change the phase transformation and mechanical behavior. However, the current investigation in irradiation effect of TiNi based shape memory alloy is still in its infancy. The change rules and mechanism of microstructure and phase transformation have not been studied clearly. And there are few studies on the effect of irradiation on the shape memory effect have been carried out. In-depth study on the irradiation parameters, microstructure, phase transformation behavior and functional properties is still needed.

Key wordsshape memory alloy    irradiation effect    microstructure    martensitic transformation
收稿日期: 2020-06-21      出版日期: 2021-03-20
中图分类号:  TG139  
基金资助:国家自然科学基金重点项目(51731005);国家自然科学基金重点项目(51871079)
通讯作者: 高智勇     E-mail: sma@hit.edu.cn
作者简介: 高智勇(1976-), 男, 教授, 博士, 研究方向为马氏体相变与形状记忆效应, 联系地址: 黑龙江省哈尔滨市南岗区西大直街92号哈尔滨工业大学10号楼402(150001), E-mail: sma@hit.edu.cn
引用本文:   
宁睿, 高智勇, 王海振, 蔡伟. TiNi基形状记忆合金的辐照效应[J]. 材料工程, 2021, 49(3): 14-19.
Rui NING, Zhi-yong GAO, Hai-zhen WANG, Wei CAI. Irradiation effect of TiNi based shape memory alloys. Journal of Materials Engineering, 2021, 49(3): 14-19.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000570      或      http://jme.biam.ac.cn/CN/Y2021/V49/I3/14
Fig.1  质子辐照TiNiCu合金及其晶化过程的明场像及衍射花样[31]
(a)550 K; (b)820 K; (c)1023 K
1 BOURDARIE S , XAPSOS M . The near-earth space radiation environment[J]. IEEE Transactions on Nuclear Science, 2008, 55 (4): 1810- 1832.
doi: 10.1109/TNS.2008.2001409
2 LI Q , YU J Y , SUN X D . Study on preparation and anodic oxidation of gradient porous NiTi alloy[J]. Advanced Materials Research, 2012, 430/432, 1373- 1377.
doi: 10.4028/www.scientific.net/AMR.430-432.1373
3 LOKOV A I, KASHIN O A, KUDRYAVTSEVA Y A, et al. Effect of plasma immersion ion implantation in TiNi implants on its interaction with animal subcutaneous tissues[C]//Proceedings of the International Conference on Physics of Cancer: Interdisciplinary Problems and Clinical Applications, Tomsk Russia, 2016: 1-5.
4 闻雅, 马超, 李远, 等. 注入剂量对W离子注入改性TiNi合金耐蚀性的影响[J]. 热处理技术与装备, 2015, 36 (5): 23- 26.
doi: 10.3969/j.issn.1673-4971.2015.05.006
4 WEN Y , MA C , LI Y , et al. Effect of implantation dose on corrosion resistance of TiNi alloy modified with W ion implantation[J]. Heat Treatment Technology and Equipment, 2015, 36 (5): 23- 26.
doi: 10.3969/j.issn.1673-4971.2015.05.006
5 郭海霞, 梁成浩, 牟宗信. 离子注入TiNiSMA及Co合金耐蚀性与血液相容性研究[J]. 大连理工大学学报, 2002, 42 (3): 301- 305.
doi: 10.3321/j.issn:1000-8608.2002.03.010
5 GUO H X , LIANG C H , MU Z X . Study of corrosion behavior and haemocompatibility of ion-implanted TiNi shape memory alloy and cobalt alloys[J]. Journal of Dalian University of Technology, 2002, 42 (3): 301- 305.
doi: 10.3321/j.issn:1000-8608.2002.03.010
6 OTSUKA K , WAYMAN C M . Shape memory materials[M]. Cambridge: Cambridge University Press, 1999: 246- 247.
7 OTSUKA K , REN X . Physical metallurgy of TiNi-based shape memory alloys[J]. Progress in Materials Science, 2005, 50 (5): 511- 678.
doi: 10.1016/j.pmatsci.2004.10.001
8 XU Z Y . Shape memory materials[J]. Transactions of Nonferrous Metals Society of China, 2001, 11 (1): 54- 61.
9 MIYAZAKI S , FU Y Q , HUANG W M . Thin film shape memory alloys: fundamentals and device applications[M]. Cambridge: Cambridge University Press, 2009: 437- 455.
10 JANI J M , LEARY M , SUBIC A , et al. A review of shape memory alloy research, applications and opportunities[J]. Materials & Design, 2014, 56 (4): 1078- 1113.
11 LAGOUDAS D C . Shape memory alloys: modeling and engineering applications[M]. Texas: Springer Science and Business Media, 2008: 1- 446.
12 YAMAUCHI K , OHKATA I , TSUCHIYA K , et al. Shape memory and superelastic alloys: technologies and applications[M]. Cambridge: Woodhead Publishing Limited, 2011: 85- 120.
13 KHALIL A J , REN X , EGGELER G . The mechanism of multistage martensitic transformations in aged Ni-rich NiTi shape memory alloys[J]. Acta Materialia, 2002, 50 (4): 793- 803.
doi: 10.1016/S1359-6454(01)00385-8
14 JAMES R D , WUTTING M . Magnetostriction of martensite[J]. Philosophical Magazine A, 1998, 77, 1273- 1299.
doi: 10.1080/01418619808214252
15 KAKESHITA T , TAKEUCHI T , FUKUDA T , et al. Magnetic-field-induced martensitic transformation and giant magnetostriction in Fe-Ni-Co-Ti and ordered Fe3Pt shape memory alloys[J]. Materials Transactions, JIM, 2000, 41 (8): 882- 887.
doi: 10.2320/matertrans1989.41.882
16 GIANNUZZI L A , STEVIE F A . Introduction to focused ion beams: instrumentation, theory, techniques and practice[M]. Berlin: Springer, 2005.
17 WAS G S . Fundamentals of radiation materials science: metals and alloys[M]. 2 ed Berlin: Springer, 2016: 1- 983.
18 WOLLANTS P , ROOS J R , DELAEY L . Thermally- and stress-induced thermoelastic martensitic transformations in the reference frame of equilibrium thermodynamics[J]. Progress in Materials Science, 1993, 37 (3): 227- 288.
doi: 10.1016/0079-6425(93)90005-6
19 AL-AQL A A , DUGHAISH Z H , BAIG M R . Study of the martensitic transformation in shape-memory Nitinol proton-irradiated alloy by electrical resistivity measurements[J]. Materials Letter, 1993, 17, 103- 108.
doi: 10.1016/0167-577X(93)90066-7
20 AL-AQL , DUGHAISH Z H , BAIG M R , et al. Effect of aging and annealing on the electrical resistivity of proton irradiated Nitinol[J]. Physica B, 1995, 210, 87- 90.
doi: 10.1016/0921-4526(94)00941-N
21 DUGHAISH Z H . Effect of variation of proton beam energy on the martensitic transformation temperature of shape memory Nitinol alloy[J]. Materials Letters, 1997, 32 (1): 29- 32.
doi: 10.1016/S0167-577X(97)00007-4
22 WANG Z G , ZU X T , LIU L J , et al. Effect of 18 MeV proton irradiation on the R-phase transformation in TiNi shape memory alloys[J]. High Power Laser and Particle Beams, 2003, 211 (2): 239- 243.
23 WAGNER C N J , LEE D , BOLDRICK M S , et al. The structure of amorphous Ni50Ti50 alloys prepared by proton irradiation and mechanical alloying[J]. Journal of Non-Crystalline Solids, 1988, 106 (1): 81- 84.
24 AYUB R , AFZAL N , AHMAD R . Phase transformation studies in unirradiated and proton beam irradiated Ni-Ti alloy between 25 and 100℃[J]. Ogukisiogucak Magazine, 2012, 92 (17): 2164- 2172.
25 WANG H Z , YI X Y , ZHU Y Y , et al. Effects of proton irradiation on the microstructure and shape recovery characteristics of a NiTi alloy[J]. Materials Characterization, 2018, 40 (1): 122- 128.
26 WANG H Z , YI X Y , ZHU Y Y , et al. Atom redistribution and multilayer structure in NiTi shape memory alloy induced by high energy proton irradiation[J]. Applied Surface Science, 2017, 419, 91- 97.
doi: 10.1016/j.apsusc.2017.05.021
27 AFZAL N , GHAURI I M , MUBARAK F E , et al. Mechanical response of proton beam irradiated nitinol[J]. Physica: B, 2011, 406 (1): 8- 11.
doi: 10.1016/j.physb.2010.09.040
28 WANG Z G , ZU X T , FU Y Q , et al. Effects of proton irradiation on transformation behavior of TiNi shape memory alloy thin films[J]. Thin Solid Films, 2005, 474, 322- 325.
doi: 10.1016/j.tsf.2004.08.168
29 GAO Z Y , WANG H Z , ZHU Y Y , et al. The martensitic transformation of Ti-Ni shape memory thin films under proton irradiation[J]. Thin Solid Films, 2015, 584, 369- 371.
doi: 10.1016/j.tsf.2015.01.023
30 WANG H Z , ZHAO Y D , MA Y H , et al. Effect of low-energy proton on the microstructure, martensitic transformation, and mechanical properties of irradiated Ni-rich TiNi alloy thin films[J]. International Journal of Minerals Metallurgy and Materials, 2020, 27 (4): 538- 543.
doi: 10.1007/s12613-019-1893-7
31 MATSUKAWA Y , SUDA T , OHNUKI S . Microstructural change and mechanical property of neutron irradiated TiNi shape memory alloy[J]. Science Report of the Research Institutes, Tohoku University, 1997, 45 (1): 336- 343.
32 MORI H , FUJITA H . Temperature dependence of electron-irradiation induced amorphization of NiTi alloys[J]. Japanese Journal of Applied Physics, 2014, 21 (8): L494- L496.
33 MORI H , FUJITA H , FUJITA M . Electron irradiation induced amorphization at dislocations in NiTi[J]. Japanese Journal of Applied Physics, 1983, 22 (2): 1400- 1401.
34 MATSUKAWA Y , OHNUKI S . Electron irradiation effect on phase transformation in TiNi shape memory alloy[J]. Journal of Nuclear Materials, 1996, 239, 261- 266.
doi: 10.1016/S0022-3115(96)00428-X
35 OKADA A , HAMADA K , MATSUMOTO T , et al. Electron irradiation effects on Ti-Ni shape memory alloys[J]. Journal of Nuclear Materials, 1999, (271/272): 189- 193.
36 NEIMAN A A , MEISNER L L , LOTKOV A I , et al. Cross-sectional TEM analysis of structural phase states in TiNi alloy treated by a low-energy high-current pulsed electron beam[J]. Applied Surface Science, 2015, 327, 321- 326.
doi: 10.1016/j.apsusc.2014.11.173
37 MO H Q , ZU X T , HUO Y . Irradiation-induced changes of martensitic transformation temperatures in a TiNiNb shape memory alloy[J]. Thermochimica Acta, 2005, 428 (1): 41- 45.
38 WANG Z G , ZU X T , HUO Y , et al. Effect of electron irradiation and heat treatment on the multi-step transformation in a Ni-rich near-equiatomic TiNi alloy[J]. Nuclear Instruments and Methods in Physics Research B, 2004, 215, 436- 442.
doi: 10.1016/j.nimb.2003.09.012
39 WANG Z G , ZU X T , FU Y Q , et al. Electron irradiation effect on the reverse phase transformation temperatures in TiNi shape memory alloy thin films[J]. Nuclear Instruments and Methods in Physics Research B, 2005, 227, 337- 342.
doi: 10.1016/j.nimb.2004.09.001
40 ZU X T , ZHANG C F , ZHU S , et al. Electron irradiation-induced changes of martensitic transformation characteristics in a TiNiCu shape memory alloy[J]. Materials Letters, 2003, 57, 2099- 2103.
doi: 10.1016/S0167-577X(02)01145-X
41 YEUNG K W K , POON R W Y , LIU X Y , et al. Corrosion resistance, surface mechanical properties, and cytocompatibility of plasma immersion ion implantation-treated nickel-titanium shape memory alloys[J]. Journal of Biomedical Materials Research Part A, 2005, 75 (2): 256- 267.
42 GRANT D M , GREEN S M , WOOD J V . The surface performance of shot peened and ion implanted NiTi shape memory alloy[J]. Acta Metallurgica et Materialia, 1995, 43 (3): 1051.
43 LAGRANGE T B , GRUMMON D S , GOTTHARDT R . The influence of irradiation parameters on the behavior of martensitic titanium nickel thin films[J]. MRS Proceedings, 2002, 753, 681- 686.
44 LAGRANGE T B , GOTTHARDT R . Microstructural evolution and thermomechanical response of Ni ion irradiated TiNi SMA thin films[J]. Journal of Optoelectronics and Advanced Materials, 2003, 5 (1): 313- 318.
45 GRUMMON D S , GOTTHARD R . Latent strain in titanium-nickel thin films modified by irradiation of the plastically-deformed martensite phase with 5 MeV Ni2+[J]. Acta Materialia, 2000, 48 (3): 635- 646.
doi: 10.1016/S1359-6454(99)00401-2
46 PELLETIER H , MULLER D , MILLER P , et al. Structural and mechanical characterisation of boron and nitrogen implanted NiTi shape memory alloy[J]. Surface & Coatings Technology, 2002, 158/159, 309- 317.
47 LIU X , WU S , CHAN Y L , et al. Structure and wear properties of NiTi modified by nitrogen plasma immersion ion implantation[J]. Materials Science & Engineering: A, 2007, 444 (1/2): 192- 197.
48 SHEVCHENKO N , PHAM M T , MAITZ M F . Studies of surface modified NiTi alloy[J]. Applied Surface Science, 2004, 235 (1/2): 126- 131.
49 LI Y , ZHANG F , ZHAO T T , et al. Enhanced wear resistance of NiTi alloy by surface modification with Nb ion implantation[J]. Rare Metals, 2014, 33 (3): 244- 248.
doi: 10.1007/s12598-014-0223-5
50 HOSHIYA T , TAKADA F , ICHIHASHI Y , et al. Restoration phenomena of neutron-irradiated TiNi shape memory alloys[J]. Materials Science and Engineering: A, 1990, 130 (2): 185- 191.
doi: 10.1016/0921-5093(90)90059-C
51 HOSHIYA T , SHIMAKAWA S , ICHIHASHI Y , et al. Fast neutron irradiation of TiNi shape memory alloys[J]. Journal of Nuclear Materials, 1991, 179/181 (1): 1119- 1122.
52 MUDGAL D , SINGH S , PRAKASH S . Restoration phenomena of TiNi shape memory alloys in a neutron irradiation environment[J]. Journal of Nuclear Materials, 1992, 191/194, 1070- 1074.
doi: 10.1016/0022-3115(92)90639-3
53 KIMURA A , TSURUGA H , MORIMURA T , et al. Effects of post-irradiation annealing on the transformation behavior of Ti-Ni alloys[J]. Materials Transactions, JIM, 1993, 34 (11): 1076- 1082.
doi: 10.2320/matertrans1989.34.1076
54 赵兴科. 中子辐照活化TiNi合金注磷层的显微组织与生物医学性能[D]. 哈尔滨: 哈尔滨工业大学, 2002.
54 ZHAO X K. Microstructures and bio-medical properties of P-implanted layer in neutron irradiated TiNi alloys[D]. Harbin: Harbin Institute of Technology, 2002.
55 MATSUKAWA Y , SUDA T , OHNUKI S , et al. Microstructure and mechanical properties of neutron irradiated TiNi shape memory alloy[J]. Journal of Nuclear Materials, 1999, 271/272 (3): 106- 110.
[1] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[2] 朱阳阳, 李晓延, 张伟栋, 张虎, 何溪. 全Cu3Sn焊点在高温时效下的组织及力学性能[J]. 材料工程, 2022, 50(9): 169-176.
[3] 张昌青, 王树文, 罗德春, 师文辰, 刘晓, 崔国胜, 陈波阳, 辛舟, 芮执元. 热电耦合对铝/钢连续驱动摩擦焊接头组织的影响机理[J]. 材料工程, 2022, 50(5): 35-42.
[4] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[5] 安强, 祁文军, 左小刚. TA15钛合金表面原位合成TiC增强钛基激光熔覆层的组织与耐磨性[J]. 材料工程, 2022, 50(4): 139-146.
[6] 孙琦迪, 杨蔚涛, 郝庆国, 关肖虎, 章斌, 杨旗. 低周疲劳变形过程中Fe-33Mn-4Si合金钢的微观组织演变[J]. 材料工程, 2022, 50(4): 162-171.
[7] 计植耀, 马跃, 王清, 董闯. 高性能软磁合金的研究进展[J]. 材料工程, 2022, 50(3): 69-80.
[8] 余晖, 任军超, 杨鑫, 郭舒龙, 余炜, 冯建航, 殷福星, 辛光善. Zn层添加AZ31/7075合金复合成形工艺及组织与性能研究[J]. 材料工程, 2022, 50(3): 157-165.
[9] 陈维平, 陈焕达, 褚晨亮, 付志强. 粉末冶金(FeNiMnAlx)50Cu50中熵合金的微观组织与力学性能[J]. 材料工程, 2022, 50(10): 55-62.
[10] 邵震, 崔雷, 王东坡, 陈永亮, 胡正根, 王非凡. 几何参数对2219铝合金拉拔式摩擦塞补焊接头微观组织及力学性能的影响[J]. 材料工程, 2022, 50(1): 25-32.
[11] 李安庆, 张立华, 蒋日鹏, 李晓谦, 张昀. 冷却速度及超声振动协同作用对7085铝合金凝固组织及力学性能的影响[J]. 材料工程, 2021, 49(8): 63-71.
[12] 谷籽旺, 郭文敏, 张弘鳞, 李文娟. 基于核壳结构粉体设计的CoNiCrAlY-Al2O3复合涂层组织结构及其抗氧化性能[J]. 材料工程, 2021, 49(7): 112-123.
[13] 于娟, 陆政, 鲁原, 熊艳才, 李国爱, 冯朝辉, 郝时嘉. 中间形变热处理对2A97铝锂合金组织和性能的影响[J]. 材料工程, 2021, 49(5): 130-136.
[14] 武永丽, 熊毅, 陈正阁, 查小琴, 岳赟, 刘玉亮, 张金民, 任凤章. 超音速微粒轰击对TC11钛合金组织和疲劳性能的影响[J]. 材料工程, 2021, 49(5): 137-143.
[15] 臧金鑫, 邢清源, 陈军洲, 戴圣龙. 800 MPa级超高强度铝合金的时效析出行为[J]. 材料工程, 2021, 49(4): 71-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn