Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (9): 27-40    DOI: 10.11868/j.issn.1001-4381.2020.000599
  综述 本期目录 | 过刊浏览 | 高级检索 |
基于MOFs的碳纳米管复合材料的制备和应用进展
乔俊宇, 李秀涛()
中国民航大学 民航热灾害防控与应急重点实验室, 天津 300300
Progress in preparation and application of carbon nanotube composites based on MOFs
Jun-yu QIAO, Xiu-tao LI()
Key Laboratory of Civil Aviation Thermal Hazards Management and Emergency Response, Civil Aviation University of China, Tianjin 300300, China
全文: PDF(14523 KB)   HTML ( 2 )  
输出: BibTeX | EndNote (RIS)      
摘要 

碳纳米管(CNTs)作为纳米材料研究中的一个重要发现,自其诞生以来就成为碳材料领域的研究热点之一。金属有机框架(MOFs)凭借其独特的多孔结构,近年来在各领域的应用已经成为研究前沿之一。随着材料科学的不断发展,对具有不同功能特性材料的复合技术研究,已经成为解决材料应用领域中关键问题的主要方法。而碳纳米管和金属有机框架作为目前材料领域两类十分重要的纳米材料,通过复合技术将碳纳米管的高导电特性和金属有机框架材料的高比表面积、丰富孔道分布特性相结合是研究与应用的必然趋势。本文综述了近年来金属有机框架和碳纳米管的主要复合形式和制备方法,整理了复合材料在超级电容器、锂电池、催化、吸附等领域的最新研究进展,对两种材料性能的协同提升方面进行了讨论和总结,并指出CNTs与MOFs材料的复合以及CNTs的生长分布具有很高的随机性,对其实现进一步控制是未来的技术研究重点。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
乔俊宇
李秀涛
关键词 碳纳米管金属有机框架复合材料原位生长    
Abstract

Carbon nanotubes(CNTs), as an important discovery in the research of nanomaterials, have become a research hotspot in the field of carbon materials since their birth. With its unique porous structure, metal-organic frameworks (MOFs) has been developed into one of the frontiers of research in recent years. With the continuous development of materials science in recent years, the research on composite technology of materials with different functional characteristics has become one of the main methods to solve key problems in the field of materials applications.CNTs and MOFs are two very important types of nanomaterials in the current material field. Combining the high electrical conductivity of CNTs with the high specific surface area and rich pore distribution characteristics of MOFs through composite technology is an inevitable trend for future research and application in the field of materials. In this paper, the main composite forms and preparation methods of MOFs and CNTs in recent years were reviewed, and the latest research progress of composites in the fields of supercapacitors, lithium battery electrodes, catalysis, adsorption, etc. was summarized. The synergistic improvement of the performance of the two materials was discussed and analyzed, and it was pointed out that the composite of CNTs and MOFs materials and the growth and distribution of CNTs have a high degree of randomness, and further control of them is the focus of future technical research.

Key wordscarbon nanotube    metal-organic framework    composite    in-situ growth
收稿日期: 2020-07-01      出版日期: 2021-09-17
中图分类号:  O6-1  
基金资助:中国民航大学科研启动费项目(2020KYQD06)
通讯作者: 李秀涛     E-mail: xiutaolee@163.com
作者简介: 李秀涛(1984-), 男, 讲师, 博士, 研究方向: 基于MOFs的多功能材料, 联系地址: 天津市东丽区中国民航大学民航热灾害防控与应急重点实验室(300300), E-mail: xiutaolee@163.com
引用本文:   
乔俊宇, 李秀涛. 基于MOFs的碳纳米管复合材料的制备和应用进展[J]. 材料工程, 2021, 49(9): 27-40.
Jun-yu QIAO, Xiu-tao LI. Progress in preparation and application of carbon nanotube composites based on MOFs. Journal of Materials Engineering, 2021, 49(9): 27-40.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000599      或      http://jme.biam.ac.cn/CN/Y2021/V49/I9/27
Fig.1  MOFs/CNTs复合材料制备方法示意图
Fig.2  HKUST-1@CNTs的SEM图(a)[42],ZIF-67@MWCNTs的TEM图(b)[43],HKUST-1@VACNT的SEM图(c)[45]和ZnO@NC@CNTs的TEM图(d)[46]
Mental salt Organic ligand Solvent Pretreatment Atmosphere Carbonization temperature/℃ Carbonization rate/(℃·min-1) Time/h Ref
Zn(CH3COO)2·2H2O
Co(CH3COO)2·4H2O
2-methylimidazole Methanol N2 800 2 5 [47]
Co(NO3)2·3H2O Sodium dicyanamide/pyrazine Hot H2O N2 700-1000 10 3 [49]
Co(NO3)2·6H2O 2-methylimidazole Methanol/ethanol Ar/H2 700-1000 2 3.5 [50]
Ni(CH3COO)2·4H2O 1, 4-benzenedi-carboxylic acid DMF N2 800 8 [51]
Co(NO3)2·6H2O Bib/H2BDC CH3OH/H2O N2 800 2 5 [52]
Zn(NO3)2·6H2O
Co(NO3)2·6H2O
2-methylimidazole Methanol Double solvent N2 600 5 2 [53]
Co(NO3)2·6H2O 2-methylimidazole Methanol Grind dicyandiamide N2 700 2 2 [54]
Zn(NO3)2·2H2OFeCl3·6H2O 2-methylimidazole H2O Grind pyrazine/ impregnation N2 800 5 2 [55]
FeCl3·6H2O H2BDC DMF Grind melamine N2 600-800 10 5 [56]
Co(NO3)2·6H2O 2-methylimidazole Methanol Impregnation NaOH/CTAB N2 700-900 5 3 [48]
Table 1  MOFs原位生长CNTs制备方法
Fig.3  CoSe2@DC的TEM图(a)[47],Co/Zn-ZIF-NPC(b)[57]和Co@BNCNTs[49]的SEM图(c)
Fig.4  CNT-UiO-66的SEM图(a)[61],ZnO/CNT的TEM图(b)[66]及不同电流密度下Ni-MOF/CNTs的比电容(c)[62]
Composite Sample Current density Specific capacitance Max energy density Max power density Cycle/Retention Ref
MOF@CNTs CNTs@Mn-MOF 0.5 A/g 203.1 F/g 6.9 Wh/kg 2240 W/kg 3000/88% [60]
CNT-UiO-66 0.05 mA/cm2 4.9 mF/cm2 2000/88% [61]
Ni-MOF/CNTs 0.5 A/g 1765 F/g 36.6 Wh/kg 5000/95% [62]
RGO/CNTs-ZIF-8 1 mA/cm2 961 mF/cm2 3000/90% [63]
Ni-MOF@CNT/GN 1 mA/cm2 898 mF/cm2 0.34 mWh/cm2 4000/93% [64]
IITI-1@CNT 1.6 A/g 380 F/g 4000/63.63% [44]
MOF/CNTs Ni-CoP@C@CNT 1.0 A/g 708 F/g 17.4 Wh/kg 3000/76.1% [65]
derived composite HKUST-1/CNT 2 A/g 194.8 F/g 9.1 Wh/kg 3500 W/kg 10000/95% [42]
ZIF-8/CNTs 1 A/g 250 F/g 23.6 Wh/kg 16900 kW/kg 3000/96.1% [66]
MOF in-situ Co/Zn-ZIF-NPC 2.5/Ag 286 F/g 10000/- [47]
preparation of Ni-MOF@CNT 0.5 mA/cm2 272 mF/cm2 0.054 mWh/cm2 5.99 mW/cm2 5000/100% [51]
CNTs composite CoS2@CNTs 0.5 A/g 825 F/g 5000/82.9% [52]
Table 2  MOF@CNTs及其衍生复合材料电容器性能参数
Fig.5  CNTs/MOFs-C/Al2(OH)2.76F3.24/S的循环特性图(a)[69], CNT@Co-N-C/S的恒流充放电图(b)[54], MWCNTs/Co3O4(c)[43]和CZO@C/CNT(d)[53]的TEM图
Composite Sample Current density/(mA·g-1) Cycle Specific capacity/(mAh·g-1) Ref
MOF/CNTs derived Ni-Sn-P@C-CNT 100 200 704 [67]
composite CoP@C-CNTs 100 100 692 [68]
C/Al2(OH)2.76F3.24/S 500 300 889 [69]
ZCS@NC/CNTs 500 500 873 [70]
MWCNTs/MCo2O4 100 100 813 [43]
ZnO@NC@CNTs 100 100 850 [46]
MOF in-situ preparation CZO@C/CNT 100 100 758 [53]
of CNTs composite CNT@Co-N-C/S 0.2 C 500 970 [54]
Table 3  MOF@CNTs及其衍生复合材料电极材料性能参数
Fig.6  ZIF-8@CNTs(a)[73]和Co@BNCNTs(b)[57]的SEM图,ZIF-67/CNT和CoSe2@NC-NR/CNT微观结构示意图(c)[74]及双功能催化剂Co-N/PC@CNT的催化性能(d)[79]
Composite Sample ORR OER Loading/(mg·cm-2) Ref
Eonset/V E1/2/V Eonset/V E1/2/V
MOF@CNTs Co-MOF@CNTs 0.91 vs RHE 0.82 1.51 vs RHE 1.577 0.3 [72]
MOF/CNTs derived composite ZIF-8/CNTs 0.8-0.9 vs RHE 0.3 [73]
MOF in-situ Co-ZnO@NC/CNT 0.90 vs RHE 0.86 0.24 [77]
preparation of CNTs Co-CNT/PC 0.918 vs RHE 0.5 [78]
composite Co@BNCNTs 0.93 vs RHE 0.82 0.3 [57]
Fe3C/b-NCNT 0.96 vs RHE 0.42 [55]
Fe/Fe3C@NGL-CNT 0.04 vs Ag/AgCl [56]
Co-N/PC@CNT 0.92 vs RHE 0.78 1.45 vs RHE 1.63 0.25 [79]
Co/N-CNTs -0.005 vs Ag/AgCl ―0.154 0.3 [48]
Table 4  MOF@CNTs复合材料催化性能参数
1 IIJIMA S . Helical microtubules of graphitic carbon[J]. Nature, 1991, 354 (6348): 56- 58.
doi: 10.1038/354056a0
2 PENG B , LOCASCIO M , ZAPOL P , et al. Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements[J]. Nature Nanotechno-logy, 2008, 3 (10): 626- 631.
doi: 10.1038/nnano.2008.211
3 WEI B Q , VAJTAI R , AJAYAN P M . Reliability and current ca-rrying capacity of carbon nanotubes[J]. Applied Physics Letters, 2001, 79 (8): 1172- 1174.
doi: 10.1063/1.1396632
4 POP E , MANN D , WANG Q , et al. Thermal conductance of an individual single-wall carbon nanotube above room temperature[J]. Nano Letters, 2006, 6 (1): 96- 100.
doi: 10.1021/nl052145f
5 De VOLDER M F L , TAWFICK S H , BAUGHMAN R H , et al. Carbon nanotubes: present and future commercial applications[J]. Science, 2013, 339 (6119): 535- 539.
doi: 10.1126/science.1222453
6 ZHANG Q , HUANG J Q , QIAN W Z , et al. The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage[J]. Small, 2013, 9 (8): 1237- 1265.
doi: 10.1002/smll.201203252
7 O'CONNELL M J . Carbon nanotubes: properties and applications[M]. Boca Raton, USA: CRC Press, 2006: 19- 26.
8 ARORA N , SHARMA N N . Arc discharge synthesis of carbon nanotubes: comprehensive review[J]. Diamond and Related Materials, 2014, 50, 135- 150.
doi: 10.1016/j.diamond.2014.10.001
9 CAO Q , KIM H , PIMPARKAR N , et al. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates[J]. Nature, 2008, 454 (7203): 495- 500.
doi: 10.1038/nature07110
10 FRANKLIN A D . Electronics: the road to carbon nanotube transistors[J]. Nature, 2013, 498 (7455): 443- 444.
doi: 10.1038/498443a
11 LI S , LIU C , HOU P X , et al. Enrichment of semiconducting single-walled carbon nanotubes by carbothermic reaction for use in all-nanotube field effect transistors[J]. ACS Nano, 2012, 6 (11): 9657- 9661.
doi: 10.1021/nn303070p
12 UPADHYAYULA V K K , DENG S , MITCHELL M C , et al. Application of carbon nanotube technology for removal of contaminants in drinking water: a review[J]. Science of the Total Environment, 2009, 408 (1): 1- 13.
doi: 10.1016/j.scitotenv.2009.09.027
13 TOFIGHY M A , MOHAMMADI T . Adsorption of divalent heavy metal ions from water using carbon nanotube sheets[J]. Journal of Hazardous Materials, 2011, 185 (1): 140- 147.
doi: 10.1016/j.jhazmat.2010.09.008
14 LIU X , WANG M , ZHANG S , et al. Application potential of carbon nanotubes in water treatment: a review[J]. Journal of Environmental Sciences, 2013, 25 (7): 1263- 1280.
doi: 10.1016/S1001-0742(12)60161-2
15 APUL O G , KARANFIL T . Adsorption of synthetic organic contaminants by carbon nanotubes: a critical review[J]. Water Research, 2015, 68, 34- 55.
doi: 10.1016/j.watres.2014.09.032
16 WARIS O , TAO L . A review: carbon nanotube-based piezoresistive strain sensors[J]. Journal of Sensors, 2012, 2012, 1- 15.
17 MEYYAPPAN M . Carbon nanotube-based chemical sensors[J]. Small, 2016, 12 (16): 2118- 2129.
doi: 10.1002/smll.201502555
18 NOKED M , OKASHY S , ZIMRIN T , et al. Composite carbon nanotube/carbon electrodes for electrical double-layer super capacitors[J]. Angewandte Chemie International Edition, 2012, 51 (7): 1568- 1571.
doi: 10.1002/anie.201104334
19 SALVATIERRA R V , ZAKHIDOV D , SHA J , et al. Graphene carbon nanotube carpets grown using binary catalysts for high-performance lithium-ion capacitors[J]. ACS Nano, 2017, 11 (3): 2724- 2733.
doi: 10.1021/acsnano.6b07707
20 BYEON A , GLUSHENKOV A M , ANASORI B , et al. Lithium-ion capacitors with 2D Nb2CTx (MXene)-carbon nanotube electrodes[J]. Journal of Power Sources, 2016, 326, 686- 694.
doi: 10.1016/j.jpowsour.2016.03.066
21 VARDHARAJULA S , ALI S Z , TIWARI P M , et al. Func-tionalized carbon nanotubes: biomedical applications[J]. Interna-tional Journal of Nanomedicine, 2012, 7, 5361- 5374.
22 SAJID M I , JAMSHAID U , JAMSHAID T , et al. Carbon nanotubes from synthesis to in vivo biomedical applications[J]. International Journal of Pharmaceutics, 2016, 501 (1/2): 278- 299.
23 GOHARDANI O , ELOLA M C , ELIZETXEA C . Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles: a review of current and expected applications in aerospace sciences[J]. Progress in Aerospace Sciences, 2014, 70, 42- 68.
doi: 10.1016/j.paerosci.2014.05.002
24 BAKSHI S R , LAHIRI D , AGARWAL A . Carbon nanotube reinforced metal matrix composites-a review[J]. International Materials Reviews, 2010, 55 (1): 41- 64.
doi: 10.1179/095066009X12572530170543
25 赵冬梅, 李振伟, 刘领弟, 等. 石墨烯/碳纳米管复合材料的制备及应用进展[J]. 化学学报, 2014, 72 (2): 185- 200.
25 ZHAO D M , LI Z W , LIU L D , et al. Progress of preparation and application of graphene/carbon nanotube composite materials[J]. Acta Chimica Sinica, 2014, 72 (2): 185- 200.
26 PRASEK J , DRBOHLAVOVA J , CHOMOUCKA J , et al. Methods for carbon nanotubes synthesis[J]. Journal of Materials Chemistry, 2011, 21 (40): 15872- 15884.
doi: 10.1039/c1jm12254a
27 练澎, 张小凤. 碳纳米管制备方法的研究进展[J]. 当代化工, 2015, 44 (4): 737- 739.
doi: 10.3969/j.issn.1671-0460.2015.04.025
27 LIAN P , ZHANG X F . Research progress in preparation methods of carbon nanotubes[J]. Contemporary Chemical Industry, 2015, 44 (4): 737- 739.
doi: 10.3969/j.issn.1671-0460.2015.04.025
28 SALUNKHE R R , KANETI Y V , KIM J , et al. Nanoarchitectures for metal-organic framework-derived nanoporous carbons toward supercapacitor applications[J]. Accounts of Chemical Research, 2016, 49 (12): 2796- 2806.
doi: 10.1021/acs.accounts.6b00460
29 XIA W , MAHMOOD A , ZOU R , et al. Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion[J]. Energy & Environmental Science, 2015, 8 (7): 1837- 1866.
30 XUE Y , ZHENG S , XUE H , et al. Metal-organic framework composites and their electrochemical applications[J]. Journal of Materials Chemistry A, 2019, 7 (13): 7301- 7327.
doi: 10.1039/C8TA12178H
31 DANG S , ZHU Q L , XU Q . Nanomaterials derived from metal-organic frameworks[J]. Nature Reviews Materials, 2017, 3 (1): 1- 14.
32 KHAN N A , HASAN Z , JHUNG S H . Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): a review[J]. Journal of Hazardous Materials, 2013, 244, 444- 456.
33 FALCARO P , RICCO R , YAZDI A , et al. Application of metal and metal oxide nanoparticles@MOFs[J]. Coordination Chemistry Reviews, 2016, 307, 237- 254.
doi: 10.1016/j.ccr.2015.08.002
34 SONG Z , CHENG N , LUSHINGTON A , et al. Recent progress on MOF-derived nanomaterials as advanced electrocatalysts in fuel cells[J]. Catalysts, 2016, 6 (8): 116.
doi: 10.3390/catal6080116
35 JIAO L , WANG Y , JIANG H L , et al. Metal-organic frameworks as platforms for catalytic applications[J]. Advanced Materials, 2018, 30 (37): 1703663.
doi: 10.1002/adma.201703663
36 KANG Y S , LU Y , CHEN K , et al. Metal-organic frameworks with catalytic centers: from synthesis to catalytic application[J]. Coordination Chemistry Reviews, 2019, 378, 262- 280.
doi: 10.1016/j.ccr.2018.02.009
37 刘志强, 黄永清, 孙为银. 金属有机框架化合物对溶剂分子和有机小分子荧光识别与传感研究进展[J]. 无机化学学报, 2017, 33 (11): 1959- 1969.
doi: 10.11862/CJIC.2017.244
37 LIU Z Q , HUANG Y Q , SUN W Y . Progress in fluorescent re-cognition and sensing of solvent and small organic molecules based on metal-organic frameworks[J]. Chinese Journal of Inorganic Chemistry, 2017, 33 (11): 1959- 1969.
doi: 10.11862/CJIC.2017.244
38 KUMAR P , DEEP A , KIM K H . Metal organic frameworks for sensing applications[J]. TrAC Trends in Analytical Chemistry, 2015, 73, 39- 53.
doi: 10.1016/j.trac.2015.04.009
39 ZHANG Y , YUAN S , DAY G , et al. Luminescent sensors based on metal-organic frameworks[J]. Coordination Chemistry Reviews, 2018, 354, 28- 45.
doi: 10.1016/j.ccr.2017.06.007
40 KOTZABASAKI M , FROUDAKIS G E . Review of computer simulations on anti-cancer drug delivery in MOFs[J]. Inorganic Chemistry Frontiers, 2018, 5 (6): 1255- 1272.
doi: 10.1039/C7QI00645D
41 BAHRANI S , HASHEMI S A , MOUSAVI S M , et al. Zinc-based metal-organic frameworks as nontoxic and biodegradable platforms for biomedical applications: review study[J]. Drug Metabolism Reviews, 2019, 51 (3): 356- 377.
doi: 10.1080/03602532.2019.1632887
42 LIU Y , LI G , GUO Y , et al. Flexible and binder-free hierarchical porous carbon film for supercapacitor electrodes derived from MOFs/CNT[J]. ACS Applied Materials & Interfaces, 2017, 9 (16): 14043- 14050.
43 HUANG G , ZHANG F , DU X , et al. Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries[J]. ACS Nano, 2015, 9 (2): 1592- 1599.
doi: 10.1021/nn506252u
44 ANSARI S N , SARAF M , GUPTA A K , et al. Functionalized Cu-MOF@ CNT hybrid: synthesis, crystal structure and applicability in supercapacitors[J]. Chemistry-an Asian Journal, 2019, 14 (20): 3566- 3571.
doi: 10.1002/asia.201900629
45 GE L , WANG L , RUDOLPH V , et al. Hierarchically structured metal-organic framework/vertically-aligned carbon nanotubes hybrids for CO2 capture[J]. RSC Advances, 2013, 3 (47): 25360- 25366.
doi: 10.1039/c3ra44250k
46 ZHANG H , WANG Y , ZHAO W , et al. MOF-derived ZnO na-noparticles covered by N-doped carbon layers and hybridized on carbon nanotubes for lithium-ion battery anodes[J]. ACS App-lied Materials & Interfaces, 2017, 9 (43): 37813- 37822.
47 ZHOU W J , LU J , ZHOU K , et al. CoSe2 nanoparticles embedd-ed defective carbon nanotubes derived from MOFs as efficient electrocatalyst for hydrogen evolution reaction[J]. Nano Energy, 2016, 28, 143- 150.
doi: 10.1016/j.nanoen.2016.08.040
48 ZHOU H , HE D , SAANA A I , et al. Mesoporous-silica induced doped carbon nanotube growth from metal-organic frameworks[J]. Nanoscale, 2018, 10 (13): 6147- 6154.
doi: 10.1039/C8NR00137E
49 MA L , WANG R , LI Y H , et al. Apically Co-nanoparticles-wrapped nitrogen-doped carbon nanotubes from a single-source MOF for efficient oxygen reduction[J]. Journal of Materials Chemistry A, 2018, 6 (47): 24071- 24077.
doi: 10.1039/C8TA08668K
50 XIA B Y , YAN Y , LI N , et al. A metal-organic framework-derived bifunctional oxygen electrocatalyst[J]. Nature Energy, 2016, 1 (1): 1- 8.
51 YANG J , GUO J , GUO X , et al. In-situ growth carbon nanotubes deriving from a new metal-organic framework for high-performance all-solid-state supercapacitors[J]. Materials Letters, 2019, 236, 739- 742.
doi: 10.1016/j.matlet.2018.11.062
52 ZOU K Y , LIU Y C , JIANG Y F , et al. Benzoate acid-dependent lattice dimension of Co-MOFs and MOF-derived CoS2@CNTs with tunable pore diameters for supercapacitors[J]. Inorganic Chemistry, 2017, 56 (11): 6184- 6196.
doi: 10.1021/acs.inorgchem.7b00200
53 YUE H , SHI Z , WANG Q , et al. In situ preparation of cobalt doped ZnO@C/CNT composites by the pyrolysis of a cobalt doped MOF for high performance lithium ion batteries[J]. RSC Advances, 2015, 5 (92): 75653- 75658.
doi: 10.1039/C5RA14271G
54 ZHAO J , LIU C , DENG H , et al. In-situ catalytic growth carbon nanotubes from metal organic frameworks for high performance lithium-sulfur batteries[J]. Materialstoday Energy, 2018, 8, 134- 142.
55 AIJAZ A , MASA J , RÖSLER C , et al. MOF-templated assembly approach for Fe3C nanoparticles encapsulated in bamboo-like N-doped CNTs: highly efficient oxygen reduction under acidic and basic conditions[J]. Chemistry-a European Journal, 2017, 23 (50): 12125- 12130.
doi: 10.1002/chem.201701389
56 LI J S , LI S L , TANG Y J , et al. Nitrogen-doped Fe/Fe3C@ graphitic layer/carbon nanotube hybrids derived from MOFs: efficient bifunctional electrocatalysts for ORR and OER[J]. Chemical Communications, 2015, 51 (13): 2710- 2713.
doi: 10.1039/C4CC09062D
57 KIM J , YOUNG C , LEE J , et al. CNTs grown on nanoporous carbon from zeolitic imidazolate frameworks for supercapacitors[J]. Chemical Communications, 2016, 52 (88): 13016- 13019.
doi: 10.1039/C6CC07705F
58 INAGAKI M , KONNO H , TANAIKE O . Carbon materials for electrochemical capacitors[J]. Journal of Power Sources, 2010, 195 (24): 7880- 7903.
doi: 10.1016/j.jpowsour.2010.06.036
59 亢敏霞, 周帅, 熊凌亨, 等. 金属有机骨架在超级电容器方面的研究进展[J]. 材料工程, 2019, 47 (8): 1- 12.
59 KANG M X , ZHOU S , XIONG L H , et al. Research progress of metal organic framework in supercapacitors[J]. Journal of Materials Engineering, 2019, 47 (8): 1- 12.
60 ZHANG Y , LIN B , SUN Y , et al. Carbon nanotubes@ metal-organic frameworks as Mn-based symmetrical supercapacitor electrodes for enhanced charge storage[J]. RSC Advances, 2015, 5 (72): 58100- 58106.
doi: 10.1039/C5RA11597C
61 WANG Y S , CHEN Y C , LI J H , et al. Toward metal-organic-framework-based supercapacitors: room-temperature synthesis of electrically conducting MOF-based nanocomposites decorated with redox-active manganese[J]. European Journal of Inorganic Chemistry, 2019, (26): 3036- 3044.
62 WEN P , GONG P , SUN J , et al. Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride composites for an asymmetric supercapacitor with high energy and power density[J]. Journal of Materials Chemistry A, 2015, 3 (26): 13874- 13883.
doi: 10.1039/C5TA02461G
63 TAN S , LI J , ZHOU L , et al. A new strategy for the improvement of direct use of MOFs as supercapacitor electrodes[J]. Materials Letters, 2019, 251, 102- 105.
doi: 10.1016/j.matlet.2019.05.060
64 YANG J , LI P , WANG L , et al. In-situ synthesis of Ni-MOF@CNT on graphene/Ni foam substrate as a novel self-supporting hybrid structure for all-solid-state supercapacitors with a high energy density[J]. Journal of Electroanalytical Chemistry, 2019, 848, 113301.
doi: 10.1016/j.jelechem.2019.113301
65 GU J , SUN L , ZHANG Y , et al. MOF-derived Ni-doped CoP@C grown on CNTs for high-performance supercapacitors[J]. Che-mical Engineering Journal, 2020, 385, 123454.
doi: 10.1016/j.cej.2019.123454
66 ZHANG Y , LIN B , WANG J , et al. All-solid-state asymmetric supercapacitors based on ZnO quantum dots/carbon/CNT and porous N-doped carbon/CNT electrodes derived from a single ZIF-8/CNT template[J]. Journal of Materials Chemistry A, 2016, 4 (26): 10282- 10293.
doi: 10.1039/C6TA03633C
67 DAI R , SUN W , LV L P , et al. Bimetal-organic-framework derivation of ball-cactus-like Ni-Sn-P@C-CNT as long-cycle anode for lithiumion battery[J]. Small, 2017, 13 (27): 1700521.
doi: 10.1002/smll.201700521
68 ZHU P , ZHANG Z , ZHAO P , et al. Rational design of intertwined carbon nanotubes threaded porous CoP@ carbon nanocubes as anode with superior lithium storage[J]. Carbon, 2019, 142, 269- 277.
doi: 10.1016/j.carbon.2018.10.066
69 LI C , XI Z , DONG S , et al. CNTs/MOFs-derived carbon/Al2(OH)2.76F3.24/S cathodes for high-performance lithium-sulfur batteries[J]. Energy Storage Materials, 2018, 12, 341- 351.
doi: 10.1016/j.ensm.2017.10.013
70 JIN J , ZHENG Y , KONG L B , et al. Tuning ZnSe/CoSe in MOF-derived N-doped porous carbon/CNTs for high-performance lithium storage[J]. Journal of Materials Chemistry A, 2018, 6 (32): 15710- 15717.
doi: 10.1039/C8TA04425B
71 DAU H , LIMBERG C , REIER T , et al. The mechanism of water oxidation: from electrolysis via homogeneous to biological cataly-sis[J]. ChemCatChem, 2010, 2 (7): 724- 761.
doi: 10.1002/cctc.201000126
72 FANG Y , LI X , LI F , et al. Self-assembly of cobalt-centered metal organic framework and multiwalled carbon nanotubes hybrids as a highly active and corrosion-resistant bifunctional oxygen catalyst[J]. Journal of Power Sources, 2016, 326, 50- 59.
doi: 10.1016/j.jpowsour.2016.06.114
73 TAN B , WU Z F , XIE Z L . Fine decoration of carbon nanotubes with metal organic frameworks for enhanced performance in supercapacitance and oxygen reduction reaction[J]. Science Bulletin, 2017, 62 (16): 1132- 1141.
doi: 10.1016/j.scib.2017.08.011
74 PARK S K , KANG Y C . MOF-templated N-doped carbon-coated CoSe2 nanorods supported on porous CNT microspheres with excellent sodium-ion storage and electrocatalytic properties[J]. ACS Applied Materials & Interfaces, 2018, 10 (20): 17203- 17213.
75 ZHANG X , DONG P , LEE J I , et al. Enhanced cycling perfor-mance of rechargeable Li-O2 batteries via LiOH formation and decomposition using high-performance MOF-74@CNTs hybrid catalysts[J]. Energy Storage Materials, 2019, 17, 167- 177.
doi: 10.1016/j.ensm.2018.11.014
76 GAO Y , LV Z , GAO R , et al. Oxidative desulfurization process of model fuel under molecular oxygen by polyoxometalate loaded in hybrid material CNTs@MOF-199 as catalyst[J]. Journal of Hazardous Materials, 2018, 359, 258- 265.
doi: 10.1016/j.jhazmat.2018.07.008
77 ZHAO X , HE X , CHEN B , et al. MOFs derived metallic cobalt-zinc oxide@nitrogen-doped carbon/carbon nanotubes as a highly-efficient electrocatalyst for oxygen reduction reaction[J]. App-lied Surface Science, 2019, 487, 1049- 1057.
doi: 10.1016/j.apsusc.2019.05.182
78 DOU S , LI X , TAO L , et al. Cobalt nanoparticle-embedded carbon nanotube/porous carbon hybrid derived from MOF-encapsulated Co3O4 for oxygen electrocatalysis[J]. Chemical Communications, 2016, 52 (62): 9727- 9730.
doi: 10.1039/C6CC05244D
79 BAN J , XU G , ZHANG L , et al. Efficient Co-N/PC@CNT bifunctional electrocatalytic materials for oxygen reduction and oxygen evolution reactions based on metal-organic frameworks[J]. Nanoscale, 2018, 10 (19): 9077- 9086.
doi: 10.1039/C8NR01457D
80 YANG S J , CHO J H , NAHM K S , et al. Enhanced hydrogen storage capacity of Pt-loaded CNT@MOF-5 hybrid composites[J]. International Journal of Hydrogen Energy, 2010, 35 (23): 13062- 13067.
doi: 10.1016/j.ijhydene.2010.04.066
81 YOO J T , LEE S H , LEE C K , et al. Homogeneous decoration of zeolitic imidazolate framework-8 (ZIF-8) with core-shell structures on carbon nanotubes[J]. RSC Advances, 2014, 4 (91): 49614- 49619.
82 LIN R , GE L , LIU S , et al. Mixed-matrix membranes with me-talorganic framework-decorated CNT fillers for efficient CO2 separation[J]. ACS Applied Materials & Interfaces, 2015, 7 (27): 14750- 14757.
83 LIN R , GE L , DIAO H , et al. Propylene/propane selective mixed matrix membranes with grape-branched MOFs/CNTs filler[J]. Journal of Materials Chemistry A, 2016, 4 (16): 6084- 6090.
84 ULLAH S , BUSTAM M A , ELKHALIFAH A L I E I , et al. Synthesis, CO2 adsorption performance of modified MIL-101 with multi-wall carbon nanotubes[J]. Advanced Materials Research, 2016, 1133, 486- 490.
85 JABBARI V , VELETA J M , ZAREI-CHALESHTORI M , et al. Green synthesis of magnetic MOF@GO and MOF@CNT hybrid nanocomposites with high adsorption capacity towards organic pollutants[J]. Chemical Engineering Journal, 2016, 304, 774- 783.
86 AHSAN M A , JABBARI V , ISLAM M T , et al. Sustainable synthesis and remarkable adsorption capacity of MOF/graphene oxide and MOF/CNT based hybrid nanocomposites for the removal of bisphenol a from water[J]. Science of the Total Environment, 2019, 673, 306- 317.
87 ZHANG K , WU F , LI J , et al. Networks constructed by metal organic frameworks (MOFs) and multiwall carbon nanotubes (MCNTs) for excellent electromagnetic waves absorption[J]. Materials Chemistry and Physics, 2018, 208, 198- 206.
88 SHEN Y , BAI J . A new kind CO2/CH4 separation material: open ended nitrogen doped carbon nanotubes formed by direct pyrolysis of metal organic frameworks[J]. Chemical Communications, 2010, 46 (8): 1308- 1310.
89 WANG M Q , YE C , BAO S J , et al. Carbon nanotubes implanted manganese-based MOFs for simultaneous detection of biomolecules in body fluids[J]. Analyst, 2016, 141 (4): 1279- 1285.
90 CHAPPANDA K N , SHEKHAH O , YASSINE O , et al. The quest for highly sensitive QCM humidity sensors: the coating of CNT/MOF composite sensing films as case study[J]. Sensors and Actuators B: Chemical, 2018, 257, 609- 619.
91 ZHANG X , XU Y , YE B . An efficient electrochemical glucose sensor based on porous nickel-based metal organic framework/carbon nanotubes composite (Ni-MOF/CNTs)[J]. Journal of Alloys and Compounds, 2018, 767, 651- 656.
92 YIN H , ZHU J , CHEN J , et al. MOF-derived in situ growth of carbon nanotubes entangled Ni/NiO porous polyhedrons for high performance glucose sensor[J]. Materials Letters, 2018, 221, 267- 270.
[1] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[2] 孔国强, 安振河, 魏化震, 李莹, 邵蒙, 于秋兵, 纪校君, 李居影, 王康. 碳纤维丝束结构对碳纤维/酚醛复合材料烧蚀性能的影响[J]. 材料工程, 2022, 50(9): 113-119.
[3] 米玉洁, 宋明明, 张存瑞, 张贵恩, 王月祥, 常志敏. 羰基铁室温硫化硅橡胶复合材料的吸波性能[J]. 材料工程, 2022, 50(9): 120-126.
[4] 邢宇, 张代军, 王成博, 倪洪江, 李军, 陈祥宝. PEEK复合材料用碳纤维上浆剂研究进展[J]. 材料工程, 2022, 50(8): 70-81.
[5] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[6] 倪洪江, 邢宇, 戴霄翔, 李军, 张代军, 陈祥宝. 航空发动机用聚酰亚胺树脂基复合材料固化工艺及热稳定性能[J]. 材料工程, 2022, 50(7): 102-109.
[7] 吕双祺, 黄佳, 孙燕涛, 付尧明, 杨晓光, 石多奇. 莫来石纤维增强SiO2气凝胶复合材料压缩回弹性能实验与建模研究[J]. 材料工程, 2022, 50(7): 119-127.
[8] 杨智勇, 臧家俊, 方丹琳, 李翔, 李志强, 李卫京. 城轨列车制动盘SiCp/A356复合材料热疲劳裂纹扩展机理[J]. 材料工程, 2022, 50(7): 165-175.
[9] 彭斌意, 刘洋, 郑晓董, 李治国, 李国平, 胡建波, 王永刚. 激光选区熔化颗粒增强钛基复合材料的抗压性能[J]. 材料工程, 2022, 50(6): 36-48.
[10] 李军, 刘燕峰, 倪洪江, 张代军, 陈祥宝. 航空发动机用树脂基复合材料应用进展与发展趋势[J]. 材料工程, 2022, 50(6): 49-60.
[11] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[12] 于永涛, 刘元军. 原位聚合法制备铁氧体/聚苯胺吸波复合材料的研究进展[J]. 材料工程, 2022, 50(5): 90-99.
[13] 程子敬, 王凯峰, 张连洪. 基于微观尺度X射线断层扫描技术的短切碳纤维SMC复合材料失效分析[J]. 材料工程, 2022, 50(5): 130-138.
[14] 杜宗波, 时双强, 陈宇滨, 褚海荣, 杨程. 介电型石墨烯吸波复合材料研究进展[J]. 材料工程, 2022, 50(4): 74-84.
[15] 任美娟, 王淼, 吴芳辉, 贾虎, 叶明富, 文国强. 氮掺杂多孔碳负载铜钴纳米复合材料的制备及其电催化性能[J]. 材料工程, 2022, 50(4): 104-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn