Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (4): 78-88    DOI: 10.11868/j.issn.1001-4381.2020.000617
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
一种细化AZ31镁合金的固液两相区复合挤压工艺
冯靖凯1,2, 张丁非1,2,*(), 陈霞1,2, 赵阳1,2, 蒋斌1,2, 潘复生2,3
1 重庆大学 材料科学与工程学院, 重庆 400045
2 重庆大学 国家镁合金材料工程技术研究中心, 重庆 400044
3 重庆市科学技术研究院, 重庆 401123
A fine microstructure of AZ31 magnesium alloy developed by composite extrusion in solid-liquid two-phase region
Jing-kai FENG1,2, Ding-fei ZHANG1,2,*(), Xia CHEN1,2, Yang ZHAO1,2, Bin JIANG1,2, Fu-sheng PAN2,3
1 College of Materials Science and Engineering, Chongqing University, Chongqing 400045, China
2 National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
3 Chongqing Academy of Science and Technology, Chongqing 401123, China
全文: PDF(2064 KB)   HTML ( 1 )  
输出: BibTeX | EndNote (RIS)      
摘要 

为了通过细化晶粒提高镁合金综合力学性能,基于"工艺耦合,缩短流程"的想法,提出固液两相区挤压剪切复合成形工艺。以AZ31镁合金为研究对象,结合Anycasting技术,对固液两相区成形过程的浇铸过程及凝固过程进行模拟研究;结合实际实验选取合适的挤压参数,从而有效细化AZ31的组织并提高综合性能。结果表明:AZ31在变形区中因枝晶破碎和压力对过冷度的影响等促进了形核,在有效细化晶粒的基础上保证了尺寸的均匀性;且液相的存在有助于协调挤压过程中的变形,减少滑移和孪生变形对织构的影响,显著降低挤压织构的强度,180°角的基面宏观织构极值强度仅为5.3。剪切角能进一步细化晶粒,并提高综合力学性能;当剪切角度为150°时,综合力学性能最优,屈服强度为222 MPa,抗拉强度为309 MPa,伸长率为8%。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯靖凯
张丁非
陈霞
赵阳
蒋斌
潘复生
关键词 AZ31镁合金半固态成形Anycasting模拟细化晶粒    
Abstract

A novel semi-solid extrusion shear process was proposed based on the idea of "process coupling and shortening process", which can improve the comprehensive mechanical properties by grain refinement. The casting process and solidification process of AZ31 semi-solid forming process were simulated via Anycasting software. The appropriate extrusion parameters were selected by comparing the results of simulation and experiment. The results show that in the deformation zone, the nucleation of AZ31 is promoted by dendrite fragmentation and pressure, leading to the achievement of a fine and uniform structure. The presence of the liquid phase is beneficial to coordinating the deformation during extrusion, reducing the effect of slip and twining on the texture, and thus the extrusion texture is weakened. The maximum basal texture strength is only 5.3 when the shear angle is 180°. Shear angle can further refine grains and improve comprehensive mechanical properties.The best mechanical properties are obtained at the shear angle of 150° with yield strength of 222 MPa, tensile strength of 309 MPa and elongation of 8%.

Key wordsAZ31 magnesium alloy    semi-solid forming    Anycasting    simulation    grain refinement
收稿日期: 2020-07-07      出版日期: 2021-04-21
中图分类号:  TG146.2+2  
基金资助:国家重点研发计划项目(2016YFB0301101);国家自然科学基金面上项目(51571040);国家自然科学基金重点项目(U1764253);国家自然科学基金重点项目(51531002)
通讯作者: 张丁非     E-mail: zhangdingfei@cqu.edu.cn
作者简介: 张丁非(1963-), 男, 教授, 博导, 主要从事轻合金材料及加工技术研究, 联系地址: 重庆市沙坪坝区重庆大学材料科学与工程学院(400045), E-mail: zhangdingfei@cqu.edu.cn
引用本文:   
冯靖凯, 张丁非, 陈霞, 赵阳, 蒋斌, 潘复生. 一种细化AZ31镁合金的固液两相区复合挤压工艺[J]. 材料工程, 2021, 49(4): 78-88.
Jing-kai FENG, Ding-fei ZHANG, Xia CHEN, Yang ZHAO, Bin JIANG, Fu-sheng PAN. A fine microstructure of AZ31 magnesium alloy developed by composite extrusion in solid-liquid two-phase region. Journal of Materials Engineering, 2021, 49(4): 78-88.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000617      或      http://jme.biam.ac.cn/CN/Y2021/V49/I4/78
Al Zn Mn Mg
2.5-3 0.7-1.3 ≤0.2 Bal
Table 1  AZ31合金实际成分(质量分数/%)
Fig.1  挤压模具及坐标系示意图
Fig.2  固液两相区挤压剪切过程示意图
No. φ/(°) ψ/(°) Extrusion speed/
(mm·s-1)
Extrusion ratio
1# 180 0
2# 150 30 50 9
3# 145 45
Table 2  不同剪切角度具体参数
Fig.3  观察部位分区示意图
(a)AZ31挤压棒材横截面;(b)复合挤压变形区
Fig.4  AZ31镁合金拉伸试样尺寸
Fig.5  不同充型率时的熔体充型模拟
Fig.6  不同固相率的铸件凝固模拟
Fig.7  温度-时间曲线
(a)Anycasting模拟的温度-时间曲线;(b)实测实验过程温度-时间曲线
Fig.8  18.03 s时的温度场分布
Fig.9  不同剪切角下AZ31棒材横截面不同区域的金相组织
(a)无转角边部;(b)无转角心部;(c)无转角边部;(d)150°转角内侧;(e)150°转角心部;(f)150°转角外侧;(g)135°转角内侧;(h)135°转角心部;(i)135°转角外侧
Fig.10  不同角度挤压AZ31棒材横截面各区域平均晶粒尺寸
Fig.11  图 3(b)中固液两相区挤压变形区不同部位EBSD数据
(a)A1区域;(b)B1区域;(c)A2区域;(d)B2区域;(e)A3区域;(f)B3区域
Fig.12  图 3(b)中固液两相区挤压变形区再结晶分布图
(a)A1区域;(b)B1区域;(c)A2区域;(d)B2区域;(e)A3区域;(f)B3区域
Fig.13  不同剪切角度下的宏观织构极图
(a)180°;(b)150°;(c)135°
Fig.14  不同角度下所得AZ31棒材室温拉伸性能
(a)室温拉伸曲线;(b)室温拉伸数据
1 YU J , ZHANG Z , XU P , et al. Deformation behavior and microstructure evolution of rare earth magnesium alloy during rotary extrusion[J]. Materials Letters, 2020, 265, 127384.
doi: 10.1016/j.matlet.2020.127384
2 WANG D , HU M , SUGIYAMA S , et al. Microstructure evolution and hot extrusion behavior of AZ31-Nd magnesium alloy adopting AZ31 chips and Mg-Nd chips[J]. Results in Physics, 2019, 15, 102622.
doi: 10.1016/j.rinp.2019.102622
3 WANG Y P , LI F , SHI W Y , et al. Microstructure, bending behavior and texture evolution of AZ31B magnesium alloy bending products processed by staggered extrusion (SE)[J]. Materials Characterization, 2019, 155, 109842.
doi: 10.1016/j.matchar.2019.109842
4 ZHAO L , XIN Y , WU Y , et al. The texture dependence of strength in slip and twinning predominant deformations of Mg-3Al-1Zn alloy[J]. Materials Science and Engineering: A, 2018, 717, 34- 40.
doi: 10.1016/j.msea.2018.01.064
5 UEMATSU Y , KAKIUCHI T , TAMADA K , et al. EBSD analysis of fatigue crack initiation behavior in coarse-grained AZ31 magnesium alloy[J]. International Journal of Fatigue, 2016, 84, 1- 8.
doi: 10.1016/j.ijfatigue.2015.11.010
6 YU H , XIN Y , WANG M , et al. Hall-Petch relationship in Mg alloys: a review[J]. Journal of Materials Science & Technology, 2018, 34 (2): 248- 256.
7 HU H , LIU Y , ZHANG D , et al. The influences of extrusion-shear process on microstructures evolution and mechanical properties of AZ31 magnesium alloy[J]. Journal of Alloys and Compounds, 2017, 695, 1088- 1095.
doi: 10.1016/j.jallcom.2016.10.234
8 MARTYNENKO N S , LUCKYANOVA E A , SEREBRYNAY V N , et al. Increasing strength and ductility of magnesium alloy WE43 by equal-channel angular pressing[J]. Materials Science and Engineering: A, 2018, 712, 625- 629.
doi: 10.1016/j.msea.2017.12.026
9 LU F M , MA A B , JIANG J H , et al. Formation of profuse long period stacking ordered microcells in Mg-Gd-Zn-Zr alloy during multipass ECAP process[J]. Journal of Alloys and Compounds, 2014, 601, 140- 145.
doi: 10.1016/j.jallcom.2014.02.175
10 MANSOOR P , DASHARATH S M . Microstructural and mechanical properties of magnesium alloy processed by severe plastic deformation (SPD)-a review[J]. Materials Today: Proceedings, 2020, 20, 145- 154.
doi: 10.1016/j.matpr.2019.10.088
11 SUWAS S , GOTTSTEIN G , KUMAR R . Evolution of crystallographic texture during equal channel angular extrusion (ECAE) and its effects on secondary processing of magnesium[J]. Materials Science and Engineering: A, 2007, 471 (1/2): 1- 14.
12 WU B L , WAN G , ZHANG Y D , et al. Fragmentation of large grains in AZ31 magnesium alloy during ECAE via route A[J]. Materials Science and Engineering: A, 2010, 527 (15): 3365- 3372.
doi: 10.1016/j.msea.2010.02.040
13 FIGUEIREDO R B , LANGDON T G . Grain refinement and mechanical behavior of a magnesium alloy processed by ECAP[J]. Journal of Materials Science, 2010, 45 (17): 4827- 4836.
doi: 10.1007/s10853-010-4589-y
14 ROBSON J D , HENRY D T , DAVIS B . Particle effects on recrystallization in magnesium-manganese alloys: particle pinning[J]. Materials Science and Engineering: A, 2011, 528 (12): 4239- 4247.
doi: 10.1016/j.msea.2011.02.030
15 潘帅, 李强, 于宝义, 等. 镁合金半固态研究进展[J]. 稀有金属材料与工程, 2019, 48 (7): 2379- 2385.
15 PAN S , LI Q , YU B Y , et al. Research progress of Mg alloy semisolid forming[J]. Rare Metal Materials and Engineering, 2019, 48 (7): 2379- 2385.
16 CHEN G , ZHANG S , ZHANG H , et al. Controlling liquid segregation of semi-solid AZ80 magnesium alloy by back pressure thixoextruding[J]. Journal of Materials Processing Technology, 2018, 259, 88- 95.
doi: 10.1016/j.jmatprotec.2018.04.023
17 MENG Y , FUKUSHIMA S , SUGIYAMA S , et al. Cold formability of AZ31 wrought magnesium alloy undergoing semisolid spheroidization treatment[J]. Materials Science and Engineering: A, 2015, 624, 148- 156.
doi: 10.1016/j.msea.2014.11.083
18 潘玉洪. 熔模铸造蜡模表面欠注等缺陷分析[J]. 凿岩机械气动工具, 2014, (2): 20- 22.
18 PAN Y H . Analysis of defects such as surface short shot of wax molds during investment casting[J]. Rock Drilling Machinery and Pneumatic Tools, 2014, (2): 20- 22.
19 刘东戎, 杨智鹏, 王丽萍, 等. 铸造充型过程数值模拟技术的发展及现状评述[J]. 哈尔滨理工大学学报, 2016, 21 (3): 96- 100.
19 LIU D R , YANG Z P , WANG L P , et al. Development of simulation of mould filling during casting: a review[J]. Journal of HARBIN University of Science and Technology, 2016, 21 (3): 96- 100.
20 WANG S , JI Z , SUGIYAMA S , et al. Segregation behavior of ADC12 alloy differential support formed by near-liquidus squeeze casting[J]. Materials & Design, 2015, 65, 591- 599.
21 GHOMASHCHI M R , VIKHROV A . Squeeze casting: an overview[J]. Journal of Materials Processing Technology, 2000, 101 (1): 1- 9.
22 SU C W , LU L , LAI M O . A model for the grain refinement mechanism in equal channel angular pressing of Mg alloy from microstructural studies[J]. Materials Science and Engineering: A, 2006, 434 (1/2): 227- 236.
23 何运斌, 潘清林, 刘晓艳, 等. 镁合金等通道转角挤压过程中的晶粒细化机制[J]. 中国有色金属学报, 2011, 21 (8): 1785- 1793.
23 HE Y B , PAN Q L , LIU X Y , et al. Grain refinement mechanism of magnesium alloy during equal channel angular pressing process[J]. The Chinese Journal of Nonferrous Metals, 2011, 21 (8): 1785- 1793.
24 冯靖凯, 张丁非, 袁圆, 等. 挤压-剪切转角对AZ31镁合金组织和性能的影响[J]. 材料热处理学报, 2019, 40 (12): 159- 168.
24 FENG J K , ZHANG D F , YUAN Y , et al. Effect of extrusion-shear angle on microstructure and properties of AZ31 magnesium alloy[J]. Transactions of Materials and Heat Treatment, 2019, 40 (12): 159- 168.
25 WANG Q , CHEN Y , LIU M , et al. Microstructure evolution of AZ series magnesium alloys during cyclic extrusion compression[J]. Materials Science and Engineering: A, 2010, 527 (9): 2265- 2273.
doi: 10.1016/j.msea.2009.11.065
26 FAN L , ZHOU M , ZHANG Y , et al. The semi-solid microstructural evolution and coarsening kinetics of AZ80-0.2Y-0.15Ca magnesium alloy[J]. Materials Characterization, 2009, 154, 116- 126.
27 YUAN W , PANIGRAHI S K , SU J Q , et al. Influence of grain size and texture on Hall-Petch relationship for a magnesium alloy[J]. Scripta Materialia, 2011, 65 (11): 994- 997.
doi: 10.1016/j.scriptamat.2011.08.028
[1] 吴鹏, 陈诚, 赵雪伶, 林东海. 纳米材料模拟酶应用进展[J]. 材料工程, 2022, 50(2): 62-72.
[2] 王浩, 肖纳敏, 李惠曲, 王晓. 7050铝合金结构件热处理与冷成形过程残余应力演化规律的数值模拟[J]. 材料工程, 2021, 49(8): 72-80.
[3] 陈海燕, 曾越, 李艺, 吴建新, 许世锬, 邹燕成. 基于非线性超声空化效应的铝合金热浸镀工艺[J]. 材料工程, 2021, 49(7): 133-140.
[4] 李晓宇, 姜良宝, 刘家希, 王敏博, 李佳明, 颜悦. 化学强化铝硅酸盐玻璃表面微观力学行为的有限元模拟[J]. 材料工程, 2021, 49(7): 148-157.
[5] 杨鑫, 王犇, 谷文萍, 张兆洋, 刘世锋, 武涛. 金属激光3D打印过程数值模拟应用及研究现状[J]. 材料工程, 2021, 49(4): 52-62.
[6] 赵家祥, 李建, 梁志鸿, 邱博, 阚前华. 超弹性NiTi合金率相关相变图案演化模拟[J]. 材料工程, 2021, 49(4): 102-110.
[7] 陈利, 焦伟, 王心淼, 刘俊岭. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8): 62-72.
[8] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[9] 高禹, 刘京, 王进, 王柏臣, 崔旭, 包建文. 真空热循环对碳/双马来酰亚胺复合材料低速冲击性能的影响[J]. 材料工程, 2020, 48(7): 154-161.
[10] 朱晓东, 王尘茜, 雷佳浩, 裴玲秀, 朱然苒, 冯威, 孔清泉. 锐钛矿型银掺杂二氧化钛紫外光及模拟太阳光光催化性能[J]. 材料工程, 2020, 48(2): 59-64.
[11] 廖向娜, 贺雍律, 张鉴炜, 鞠苏, 江大志, 刘佳音, 刘钧. CNTs-纤维增强树脂基复合材料纳米-介观尺度数值模拟研究进展[J]. 材料工程, 2020, 48(12): 1-11.
[12] 项瑶, 卢立伟, 吴木义, 马旻, 康伟, 刘欢, 唐伦圆. 6061铝合金膨胀-连续剪切变形行为[J]. 材料工程, 2020, 48(12): 111-118.
[13] 张景祺, 林健, 雷永平, 许海亮, 王细波. 316L超薄板激光焊接的失稳变形规律[J]. 材料工程, 2020, 48(12): 126-134.
[14] 张钦库, 胡大伟, 闫翻辽, 左安志, 赵强. 米粒状CaIn2O4/In2O3的静电纺丝法制备及其光催化性能[J]. 材料工程, 2020, 48(11): 25-31.
[15] 蔡庄立, 赵伶玲, 虞兮凡, 陈超. 模拟聚乙烯块体相变和导热的粗粒化模型和势场建立[J]. 材料工程, 2020, 48(1): 34-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn