Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (4): 120-127    DOI: 10.11868/j.issn.1001-4381.2020.000632
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
低温炭化温度梯度对聚丙烯腈预氧纤维结构演变及碳纤维性能的影响
何沐, 王宇(), 徐樑华
北京化工大学 国家碳纤维工程技术研究中心碳纤维及功能高分子教育部重点实验室, 北京 100029
Effect of low-temperature carbonization temperature gradient on structural evolution of PAN stabilized fiber and properties of carbon fiber
Mu HE, Yu WANG(), Liang-hua XU
Cabon Fiber and Functional Polymer Key Laboratory(Ministry of Education), National Carbon Fiber Engineering Technology Research Center, Beijing University of Chemical Technology, Beijing 100029, China
全文: PDF(3044 KB)   HTML ( 1 )  
输出: BibTeX | EndNote (RIS)      
摘要 

聚丙烯腈(PAN)预氧纤维在低温炭化阶段经热裂解重组而转化为具有乱层石墨结构雏形的低温炭化纤维,此阶段的温度调控对最终碳纤维的结构与性能有着重要影响。采用13C固体核磁共振谱图(13C-NMR)、拉曼光谱(Raman)、X射线衍射(XRD)和力学性能分析等手段,研究预氧纤维在低温炭化阶段的反应进程、温度梯度调控对预氧纤维的结构演变和碳纤维结构及性能的影响。结果表明:PAN预氧纤维在低温炭化过程中,经450℃热处理后碳结构的支链化程度达到最大值0.99,当处理温度达到550℃后,以芳环链段的重组交联为主要反应。低温炭化温度梯度影响预氧纤维的结构演变进程,当采用350—450—650℃的梯度升温模式时,先经450℃处理的低碳纤维中—C=C基团的13C-NMR位移最大,表明纤维内的支化交联反应最多,再经650℃处理的纤维d002以及相应高碳纤维的IA/IG达到最大,说明其无定形碳相对含量最多,因而最终碳纤维的力学性能最差;当采用350—550—650℃的梯度升温模式时,纤维内裂解与重组交联反应有序开展,低碳和高碳纤维的碳结构更优,最终碳纤维的致密性及力学性能得到提升。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何沐
王宇
徐樑华
关键词 PAN预氧纤维低温炭化温度梯度无定形碳结构演变    
Abstract

In low-temperature carbonization stage, stabilized polyacrylonitrile (PAN) fibers are pyrolyzed and recombined to transform into low-temperature carbonized fiber with rudiment of turbostratic graphite structure. The temperature regulation of low-temperature carbonization has an important influence on the structure and performance of the final carbon fibers. The reaction process of stabilized fiber during low-temperature carbonization stage, the effect of the regulation of low-temperature carbonization temperature gradient on the structural evolution of stabilized fiber and the structure and performance of carbon fiber were studied through 13C-NMR, Raman, XRD and mechanical property analysis. The results indicate that: in the process of low-temperature carbonization heat treatment of stabilized fiber, the carbon structure shows the degree of branched chain reaches a maximum of 0.99, after heat treatment at 450 ℃. When the heat treatment temperature reaches 550 ℃, the main reaction is the recombination crosslinking reaction of stabilized fiber's aromatic chain segments. The low-temperature carbonization temperature gradients affect the structural evolution of stabilized fibers. When the temperature gradient is 350-450-650 ℃, the 13C-NMR shift of the —C C group in the low carbon fiber treated at 450 ℃ is the largest, the branching crosslinking reactions in fiber are the most, causing the d002 of the low carbon fiber treated at 650 ℃ and the IA/IG of the corresponding high-temperature carbon fiber are the largest, the relative content of amorphous carbon is the largest and the mechanical properties of the final carbon fiber are the worst. However, when the temperature gradient is 350-550-650 ℃, the cracking and recombination crosslinking reaction in fiber are carried out in an orderly manner, resulting in the structure of low-temperature carbonized fiber and carbon fiber more perfect, and the density and mechanical properties of carbon fiber are improved.

Key wordsPAN stabilized fiber    low-temperature carbonization    temperature gradient    amorphous carbon    structural evolution
收稿日期: 2020-07-14      出版日期: 2021-04-21
中图分类号:  TQ342  
基金资助:中央高校基本业务费项目(JD2012)
通讯作者: 王宇     E-mail: wangy@mail.buct.edu.cn
作者简介: 王宇(1981-), 女, 讲师, 研究方向为高性能碳纤维, 联系地址: 北京市朝阳区北三环东路15号北京化工大学34信箱(100029), E-mail: wangy@mail.buct.edu.cn
引用本文:   
何沐, 王宇, 徐樑华. 低温炭化温度梯度对聚丙烯腈预氧纤维结构演变及碳纤维性能的影响[J]. 材料工程, 2021, 49(4): 120-127.
Mu HE, Yu WANG, Liang-hua XU. Effect of low-temperature carbonization temperature gradient on structural evolution of PAN stabilized fiber and properties of carbon fiber. Journal of Materials Engineering, 2021, 49(4): 120-127.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000632      或      http://jme.biam.ac.cn/CN/Y2021/V49/I4/120
Sample No Low temperature carbonization
TNo.1/℃ TNo.2/℃ TNo.3/℃
SF
1# 350 350
2# 350 400
3# 350 450
4# 350 500
5# 350 550
6# 350 600
7# 350 650
8# 350 700
MF-1# 350 400 650
MF-2# 350 450 650
MF-3# 350 500 650
MF-4# 350 550 650
MF-5# 350 600 650
Table 1  低温炭化阶段工艺参数
Fig.1  预氧纤维和1#~8#低碳纤维的核磁谱图
Sample No Relative content of functional groups/%
—CH3 —CH/—CH2 —CCH —C≡N —C=C —CN —CO
SF 39.72 7.98 20.38 9.80 18.42 3.70
1# 1.32 19.08 26.11 6.01 17.86 24.54 5.08
2# 2.01 10.94 31.91 2.94 23.59 26.62 1.99
3# 3.64 3.68 36.80 0.64 26.82 27.59 0.83
4# 2.04 3.01 34.35 31.00 29.60
5# 33.95 32.79 33.26
6# 23.60 43.92 32.48
7# 18.63 49.47 31.90
8# 18.80 55.27 25.93
Table 2  预氧纤维和1#~8#低碳纤维核磁解析结果
Fig.2  —CH/—CH2的结构演变示意图
(a)形成支链甲基;(b)环结构的交联反应
Fig.3  不同热处理温度低碳纤维的支链化程度
Fig.4  不同热处理温度低碳纤维的R—CC/—CCH
Fig.5  不同温度梯度处理后低碳纤维的13C-NMR分析
(a)13C-NMR谱图;(b)—CC基团的13C-NMR化学位移
Fig.6  低碳纤维的Raman谱图(a)MF-1#;(b)MF-2#; (c)MF-3#; (d)MF-4#; (e)MF-5#
Fig.7  不同温度梯度处理后低碳纤维的IA/IG
Fig.8  不同温度梯度处理后低碳纤维的XRD谱图(a),d002Lc的变化趋势(b)
Fig.9  不同温度梯度处理所得碳纤维的Raman谱图(a)和IA/IG(b)
Low-temperature carbonized fiber Carbon fiber
Sample No IA/IG Sample No ρV/(g·cm-3) ρL/(g·m-1) σ/MPa E/GPa
MF-1# 0.62 CF1 1.762 0.171 3820 236
MF-2# 1.35 CF2 1.754 0.172 3540 224
MF-3# 0.53 CF3 1.760 0.169 4150 238
MF-4# 0.32 CF4 1.769 0.169 4400 240
MF-5# 0.94 CF5 1.764 0.166 3660 233
Table 3  低碳纤维结构及碳纤维性能
1 温月芳, 曹霞, 杨永岗, 等. PAN预氧化纤维的炭化过程[J]. 新型炭材料, 2008, 23 (2): 121- 126.
1 WEN Y F , CAO X , YANG Y G , et al. Carbonization of pre-oxidized polyacrylonitrile fibers[J]. New Carbon Materials, 2008, 23 (2): 121- 126.
2 KONG L , LIU H , XU L , et al. PAN fiber diameter effect on the structure of PAN-based carbon fibers[J]. Fibers and Polymers, 2014, 15, 2480- 2488.
doi: 10.1007/s12221-014-2480-1
3 许志献, 孙国方, 张力, 等. 聚丙烯腈分子链微观结构对聚丙烯腈基炭纤维性能的影响[J]. 高分子材料科学与工程, 2011, 27 (5): 100- 104.
3 XU Z X , SUN G F , ZHANG L , et al. The effect of molecular chain microstructure of PAN on properties of PAN-carbon fibers[J]. Polymer Materials Science and Engineering, 2011, 27 (5): 100- 104.
4 TANAKA F , OKABE T . Historical review of processing, microstructures, and mechanical properties of PAN-based carbon fibers[M]. Amsterdam: Elsevier, 2017.
5 RAHAMAN M S A , ISMAIL A F , MUSTAFA A . A review of heat treatment on polyacrylonitrile fiber[J]. Polymer Degradation and Stability, 2007, 92 (8): 1421.
doi: 10.1016/j.polymdegradstab.2007.03.023
6 WANG Y X , WANG Q . Evaluation of carbonization tar in making high performance polyacrylonitrile-based carbon fibers[J]. Journal of Applied Polymer Science, 2007, 104 (2): 1255- 1259.
doi: 10.1002/app.25754
7 王毓, 袁晓红, 沈志刚, 等. 聚丙烯腈纤维热稳定化过程光电离质谱研究[J]. 质谱学报, 2018, 39 (2): 159- 169.
7 WANG Y , YUAN X H , SHEN Z G , et al. Study of thermal stabilization process of polyacrylonitrile fiber with photoionization mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2018, 39 (2): 159- 169.
8 肖建文, 方静, 孙立, 等. 聚丙烯腈原丝炭化反应机理综述[J]. 高科技纤维与应用, 2005, 30 (1): 24- 27.
doi: 10.3969/j.issn.1007-9815.2005.01.006
8 XIAO J W , FANG J , SUN L , et al. PAN fiber carbonized reaction mechanism[J]. Hi-Tech Fiber & Application, 2005, 30 (1): 24- 27.
doi: 10.3969/j.issn.1007-9815.2005.01.006
9 JING M , WANG C , WANG Q , et al. Chemical structure evolution and mechanism during pre-carbonization of PAN-based stabilized fiber in the temperature range of 350-600℃[J]. Polymer Degradation and Stability, 2007, 92, 1737- 1742.
doi: 10.1016/j.polymdegradstab.2007.05.020
10 WANG T S , TONG Y J , LUO S , et al. Transformation of skeleton structures in stabilized PAN fiber during low temperature carbonization[J]. Materials Science and Technology, 2011, 19 (6): 133- 137.
11 武帅. 热力耦合作用下PAN碳纤维环结构形成与取向效率[D]. 北京: 北京化工大学, 2018.
11 WU S.Formation and orientation efficiency of cyclized structure of PAN-based carbon fibers under thermal stretching[D].Beijing: Beijing University of Chemical Technology, 2018.
12 王成国, 井敏, 武吉伟, 等. 碳纤维用聚丙烯腈基预氧丝炭化裂解过程研究进展[J]. 现代化工, 2008, 28 (7): 77- 81.
12 WANG C G , JING M , WU J W , et al. Advances in carbonization and pyrolysis of polyacrylonitrile-based stabilized fiber for preparing carbon fiber[J]. Modern Chemical Industry, 2008, 28 (7): 77- 81.
13 张琨, 赵震, 肖阳, 等. PAN纤维预氧结构高温演变及其对热稳定性的影响[J]. 化工新型材料, 2014, (8): 70- 72.
13 ZHANG K , ZHAO Z , XIAO Y , et al. Structural transformation of polyacrylonitrile fiber and the effect on thermal stability[J]. New Chemical Materials, 2014, (8): 70- 72.
14 李国丽, 彭公秋, 钟翔屿. 国产高性能碳纤维表征分析及复合材料力学性能研究[J]. 材料工程, 2020, 48 (10): 74- 81.
14 LI G L , PENG G Q , ZHONG X Y . Characterization of domestic high performance carbon fibers and mechanical properties of carbon fibers reinforced matrix composites[J]. Journal of Materials Engineering, 2020, 48 (10): 74- 81.
15 LIAO L M , HUANG X , LI J F . Modeling of 13C NMR chemical shifts in aromatic ethers[J]. Chinese Journal of Magnetic Resonance, 2016, 33 (3): 369- 376.
16 XUE Y , LIU J , LIANG J Y . Kinetic study of the dehydrogenation reaction in polyacrylonitrile-based carbon fiber precursors during thermal stabilization[J]. Journal of Applied Polymer Science, 2013, 127 (1): 237- 245.
doi: 10.1002/app.37878
17 相建华, 曾凡桂, 梁虎珍, 等. 不同变质程度煤的结构特征及其演化机制[J]. 煤炭学报, 2016, 41 (6): 1498- 1506.
17 XIANG J H , ZENG F G , LIANG H Z , et al. Carbon structure characteristics and evolution mechanism of different rank coals[J]. Journal of China Coal Society, 2016, 41 (6): 1498- 1506.
18 刘杰, 程志涛, 连峰, 等. 预炭化过程中升温速率对碳纤维结构与性能的影响[J]. 北京化工大学学报(自然科学版), 2011, 38 (4): 68- 72.
18 LIU J , CHENG Z T , LIAN F , et al. Effect of heating rate-induced microstructure changes during pre-carbonization on the mechanical properties of carbon fibers[J]. Journal of Beijing University of Chemical Technology (Natural Science), 2011, 38 (4): 68- 72.
19 曹伟伟, 朱波. PAN基碳纤维在表面处理中的拉曼光谱研究[J]. 光谱学与光谱分析, 2008, 28 (12): 2886- 2888.
19 CAO W W , ZHU B . Raman spectra of PAN-based carbon fibers during surface treatment[J]. Spectroscopy and Spectral Analysis, 2008, 28 (12): 2886- 2888.
20 FERRARI A C , ROBERTSON J . Interpretation of Raman spectra of disordered and amorphous carbon[J]. Physical Review B Condensed Matter, 2000, 61 (20): 14095- 14107.
doi: 10.1103/PhysRevB.61.14095
21 SADEZKY A , MUCKENHUBER H , GROTHE H , et al. Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information[J]. Carbon, 2005, 43 (8): 1731- 1742.
doi: 10.1016/j.carbon.2005.02.018
[1] 黄希, 李小燕, 方晓东, 熊子成, 彭奕超, 韦丽华. 容错事故燃料包壳用FeCrAl合金的研究进展[J]. 材料工程, 2020, 48(3): 19-33.
[2] 陈文龙, 刘敏, 张吉阜, 宋进兵. 燃气热循环下7YSZ热障涂层的微结构演变与阻抗谱特征[J]. 材料工程, 2017, 45(10): 79-87.
[3] 何箐, 吴鹏, 屈轶, 汪瑞军, 王伟平. 一种新型CMAS耦合条件下热障涂层热循环实验方法[J]. 材料工程, 2014, 0(12): 92-98.
[4] 司乃潮, 许能俊, 司松海, 李云达, 史剑. 温度梯度对定向凝固Al-4.5%Cu合金一次枝晶间距的影响[J]. 材料工程, 2011, 0(4): 75-79.
[5] 张修丽, 孙晓慧, 李明扬. 中温回复下疲劳Cu单晶体驻留滑移带的演变[J]. 材料工程, 2009, 0(1): 15-18.
[6] 杨治立, 陈登明, 廖道瀚. 铝镍钴定向凝固过程的模拟研究[J]. 材料工程, 2009, 0(1): 46-49.
[7] 侯乃先, 岳珠峰, 于庆民, 虞跨海, 朱振涛. 温度梯度下薄壁圆管试件拉伸性能的试验与理论研究[J]. 材料工程, 2008, 0(3): 36-39.
[8] 张贵锋, 张建宏, 耿东生, 刘正堂, 郑修麟. a-C:N膜的制备及结构分析[J]. 材料工程, 1997, 0(3): 10-12.
[9] 陈健, 郑启, 于洋, 唐亚俊, 胡壮麒. 一种测定定向凝固工艺参数的方法[J]. 材料工程, 1994, 0(10): 38-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn