Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (6): 122-131    DOI: 10.11868/j.issn.1001-4381.2020.000655
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
电解液添加剂NaHCO3对多孔氮化铌纤维电化学性能的影响
崔静轩1,2,3,4, 吕东风1,2,3,4,*(), 张学凤1,2, 郭鑫鑫1,2, 刘洁1,2, 张澳寒1,2, 崔帅1,2, 魏恒勇1,2,3,4,*(), 卜景龙1,2,3,4
1 华北理工大学 材料科学与工程学院, 河北 唐山 063210
2 河北省无机非金属材料实验室, 河北 唐山 063210
3 唐山市环境功能材料重点实验室, 河北 唐山 063210
4 华北理工大学 新材料产业技术研究院, 河北 唐山 063210
Effect of electrolyte additive NaHCO3 on electrochemical performance of porous niobium nitride fibers
Jing-xuan CUI1,2,3,4, Dong-feng LYU1,2,3,4,*(), Xue-feng ZHANG1,2, Xin-xin GUO1,2, Jie LIU1,2, Ao-han ZHANG1,2, Shuai CUI1,2, Heng-yong WEI1,2,3,4,*(), Jing-long BU1,2,3,4
1 College of Materials Science and Engineering, North China University of Science and Technology, Tangshan 063210, Hebei, China
2 Hebei Provincial Laboratory of Inorganic Non-metallic Materials, Tangshan 063210, Hebei, China
3 Tangshan Key Laboratory of Environmental Functional Materials, Tangshan 063210, Hebei, China
4 Institute of New Materials Industry Technology, North China University of Science and Technology, Tangshan 063210, Hebei, China
全文: PDF(9362 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

超级电容器因其高效、快捷和循环稳定性好等因素成为应用广泛的新型储能装置,而电极材料是制约其发展的关键性问题。采用五氯化铌为原料,利用静电纺丝结合氨气还原氮化技术制备多孔氮化铌纤维,将其作为电极材料制备成Nb4N5||Nb4N5对称型扣式电容,并在Na2SO4水系电解液中加入NaHCO3以提升电极材料的电化学性能。结果表明:制备的氮化铌纤维呈四方相,连续且表面呈现多孔化。多孔氮化铌电极存在双电层及赝电容储能两种机制,当添加15 mmol·dm-3的NaHCO3时,超级电容器比电容提高到187 F·g-1,其中,阻抗R1和扩散阻抗WR分别缩小为1.22 Ω和1.47 Ω,同时体系离子电导率提高,载流子浓度增大到6.58×1024 cm3,弛豫时间缩短至0.24 s。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
崔静轩
吕东风
张学凤
郭鑫鑫
刘洁
张澳寒
崔帅
魏恒勇
卜景龙
关键词 能源危机超级电容器氮化铌纤维电解液电化学    
Abstract

Supercapacitors have become a new type of energy storage device widely used due to their high efficiency, fast speed and good cycle stability, and electrode material is a key issue restricting their development. The porous niobium nitride fibers were prepared by electrospinning combined with reduction nitride technology using pentachloride as raw material, and Nb4N5||Nb4N5 symmetrical button capacitance was prepared. In order to improve the electrochemical performance of electrode material, NaHCO3 was added into Na2SO4 electrolyte. The results show that the prepared niobium nitride fiber exhibits a tetragonal phase, continuous and porous on the surface. The porous niobium nitride electrode has two mechanisms of electric double layer and pseudocapacitive energy storage. The specific capacitance of the capacitor increases to 187 F·g-1 with the NaHCO3 addition of 15 mmol·dm-3. The buffering effect inhibits the dissolution of niobium nitride, effectively reduces the solution resistance, the solution impedance R1 and the diffusion impedance WR reduce to 1.22 Ω and 1.47 Ω respectively and the ionic conductivity improves. The carrier concentration increases to 6.58×1024 cm3, and the relaxation time of the capacitor is shortened to 0.24 s at the same time.

Key wordsenergy crisis    supercapacitor    niobium nitride fiber    electrolyte    electrochemistry
收稿日期: 2020-07-15      出版日期: 2021-06-22
中图分类号:  O469  
  TM911.3  
  TQ152  
基金资助:国家自然科学基金(51272066);国家自然科学基金(51472072);华北理工大学杰出青年基金(JQ201712);华北理工大学2019年度创新创业训练项目(X2019083)
通讯作者: 吕东风,魏恒勇     E-mail: 18232596467@163.com;why_why2000@163.com
作者简介: 魏恒勇(1981-), 男, 教授, 博士, 研究方向:电化学储能和仿生结构, 联系地址:河北省唐山市曹妃甸新城渤海大道21号华北理工大学材料科学与工程学院(063210), E-mail:why_why2000@163.com
吕东风(1990-), 男, 助教, 博士研究生, 联系地址:河北省唐山市曹妃甸新城渤海大道21号华北理工大学材料科学与工程学院(063210), E-mail:18232596467@163.com
引用本文:   
崔静轩, 吕东风, 张学凤, 郭鑫鑫, 刘洁, 张澳寒, 崔帅, 魏恒勇, 卜景龙. 电解液添加剂NaHCO3对多孔氮化铌纤维电化学性能的影响[J]. 材料工程, 2021, 49(6): 122-131.
Jing-xuan CUI, Dong-feng LYU, Xue-feng ZHANG, Xin-xin GUO, Jie LIU, Ao-han ZHANG, Shuai CUI, Heng-yong WEI, Jing-long BU. Effect of electrolyte additive NaHCO3 on electrochemical performance of porous niobium nitride fibers. Journal of Materials Engineering, 2021, 49(6): 122-131.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000655      或      http://jme.biam.ac.cn/CN/Y2021/V49/I6/122
Fig.1  纤维的XRD谱图
Fig.2  纤维的元素分析
(a)XPS全谱图; (b)Nb3d高分辨光谱; (c)O1s高分辨光谱; (d)N1s高分辨光谱
Fig.3  纤维的SEM图
Fig.4  扣式电容器在NaHCO3添加量为0(a),15(b),30(c),45 mmol·dm-3(d)时的CV测试曲线及倍率性曲线(e)
Fig.5  500 mV/s扫描速率下电容器在NaHCO3添加量为0(a),15(b),30(c),45 mmol·dm-3(d)时的电容电荷存储作用图及不同电容电荷存储比例图(e)
Fig.6  扣式电容器在NaHCO3添加量为0(a),15(b),30(c),45 mmol·dm-3(d)时的GCD测试曲线
Fig.7  不同扣式电容器的比电容曲线
Fig.8  不同扣式电容器的EIS测试曲线
Sample R1 R2 WR Specific capacitance/(F·g-1)
Nb4N5-0 3.24 0.59 5.60 70
Nb4N5-15 1.22 0.81 1.47 187
Nb4N5-30 1.38 0.28 7.41 164
Nb4N5-45 1.28 0.92 1.28 133
Table 1  不同扣式电容器的拟合电阻值
Fig.9  不同扣式电容器的Bode图
Fig.10  扣式电容器在NaHCO3添加量为0(a),15(b),30(c),45 mmol·dm-3(d)时的莫特肖特基曲线
NaHCO3 addition/(mmol·dm-3) Carrier concentration/cm3 Slope
0 4.41×1024 7.93×105
15 6.58×1024 5.32×105
30 3.8×1024 9.10×105
45 2.38×1025 1.47×105
Table 2  电极的载流子浓度及斜率
Fig.11  Nb4N5-0和Nb4N5-15扣式电容器的循环性能曲线
1 高标, 黄超, 李庆伟, 等. 金属氮化物纳米储能材料及其柔性超级电容器[J]. 中国材料进展, 2016, 35 (7): 552- 559.
1 GAO B , HUANG C , LI Q W , et al. Flexible supercapacitors based on transitional metal nitride nanostructures[J]. Materials China, 2016, 35 (7): 552- 559.
2 CUI X , CHEN X L , CHEN S , et al. Dopamine adsorption precursor enables N-doped carbon sheathing of MoS2 nanoflowers for all-around enhancement of supercapacitor performance[J]. Journal of Alloys and Compounds, 2017, 693, 955- 963.
doi: 10.1016/j.jallcom.2016.09.173
3 WEI Z X , DING B , DOU H , et al. 2020 roadmap on pore materials for energy and environmental applications[J]. Chinese Chemical Letters, 2019, 30 (12): 2110- 2122.
doi: 10.1016/j.cclet.2019.11.022
4 商超群.同轴静电纺丝制备芯壳结构高能电容器电极材料及研究[D].青岛: 青岛科技大学, 2012.
4 SHANG C Q.Core-shell fibers prepare by coaxial electrospinning for high-performance capacitors[D].Qingdao: Qingdao University of Science & Technology, 2012.
5 LIAO J Q , NI W , WANG C Y , et al. Layer-structured niobium oxides and their analogues for advanced hybrid capacitors[J]. Chemical Engineering Journal, 2019, 391, 123489.
6 YI C Q , ZOU J P , YANG H Z , et al. Recent advances in pseudocapacitor electrode materials:transition metal oxides and nitrides[J]. Trans Nonferrous Met Soc China, 2018, 28 (10): 1980- 2001.
doi: 10.1016/S1003-6326(18)64843-5
7 DONG S M , CHEN X , GU L , et al. TiN/VN composites with core/shell structure for supercapacitors[J]. Materials Research Bulletin, 2011, 46 (6): 835- 839.
doi: 10.1016/j.materresbull.2011.02.028
8 CUI Z M , BURNS R G , DISALVO F J . Mesoporous Ti0.5Nb0.5N ternary nitride as a novel noncarbon support for oxygen reduction reaction in acid and alkaline electrolytes[J]. Chemistry of Materials, 2013, 25 (19): 3782- 3784.
doi: 10.1021/cm4027545
9 MA J Y , GUO X T , XUE H G , et al. Niobium/tantalum-based materials:synthesis and applications in electrochemical energy storage[J]. Chemical Engineering Journal, 2020, 380, 122428.
doi: 10.1016/j.cej.2019.122428
10 李霞.添加剂对锂硫电池电化学性能影响的研究[D].天津: 天津大学, 2016.
10 LI X.Research on the effects of additives on electrochemical performance of lithium sulfur batteries[D].Tianjin: Tianjin University, 2016.
11 KOMABA S , OGATA A , TSUCHIKAWA T . Enhanced supercapacitive behaviors of birnessite[J]. Electrochemistry Communications, 2008, 10 (10): 1435- 1437.
doi: 10.1016/j.elecom.2008.07.025
12 李耀刚, 高濂, 朱美芳. 氨解法制备立方相氮化铌纳米粉体[J]. 东华大学学报(自然科学版), 2005, 31 (1): 1- 5.
doi: 10.3969/j.issn.1671-0444.2005.01.001
12 LI Y G , GAO L , ZHU M F . Synthesis of nanosized NbN powder with cubic structure by ammonolysis method[J]. Journal of Donghua University(Natural Science), 2005, 31 (1): 1- 5.
doi: 10.3969/j.issn.1671-0444.2005.01.001
13 CUI H L , ZHU G L , LIU X Y , et al. Niobium nitride Nb4N5 as a new high-performance electrode material for supercapacitors[J]. Advanced Science, 2015, 2 (12): 1500126.
doi: 10.1002/advs.201500126
14 JOUVE G , SÉEVRAC C , CANTACUZÉNE S . XPS study of NbN and (NbTi)N superconducting coatings[J]. Thin Solid Films, 1996, 287 (1/2): 146- 153.
15 LIU M , ZHANG L X , HAN P X , et al. Controllable formation of niobium nitride/nitrogen-doped graphene nanocomposites as ano-de materials for lithium-ion capacitors[J]. Particle & Particle Systems Characterization, 2016, 32 (11): 1006- 1011.
16 LU X H , WANG G M , ZHAI T , et al. Stabilized TiN nanowire arrays for high-performance and flexible supercapacitors[J]. Nano Letters, 2012, 12 (10): 5376- 5381.
doi: 10.1021/nl302761z
17 LU X H , YU M H , ZHAI T , et al. High energy density asy-mmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode[J]. Nano Letters, 2013, 13 (6): 2628- 2633.
doi: 10.1021/nl400760a
18 吕东风, 卜景龙, 魏恒勇, 等. 静电纺丝结合还原氮化法制备多孔TiN纤维及其电化学性能[J]. 稀有金属材料与工程, 2017, 46 (10): 387- 392.
18 LV D F , BU J L , WEI H Y , et al. Synthesis of porous TiN fiber via reduction-nitridation based on electrospinning and its electrochemical performance[J]. Rare Metal Materials and Engineering, 2017, 46 (10): 387- 392.
19 CHOI D , KUMTA P N . Nanocrystalline TiN derived by a two-step halide approach for electrochemical capacitors[J]. Journal of the Electrochemical Society, 2006, 153 (12): 2298- 2303.
doi: 10.1149/1.2359692
20 GAO S S , TANG Y K , WANG L , et al. Coal-based hierarchical porous carbon synthesized with a soluble salt self-assembly-assisted method for high performance supercapacitors and Li-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6 (3): 3255- 3263.
21 王倩.电解液添加剂对柠檬酸盐基炭材料的超电容性能影响研究[D].合肥: 合肥工业大学, 2017.
21 WANG Q.Study on the effect of electrolyte additives on the supercapacitor of citrate-based carbon materials[D].Hefei: Hefei University of Technology, 2017.
22 崔帅, 魏恒勇, 吕东风, 等. 微乳液静电纺丝制备多孔Nb4N5纤维及其电化学性能[J]. 人工晶体学报, 2019, 48 (12): 2289- 2296.
doi: 10.3969/j.issn.1000-985X.2019.12.021
22 CUI S , WEI H Y , LV D F , et al. Preparation and electrochemical properties of porous Nb4N5 fibers via microemulsion electrospi-nning[J]. Journal of Synthetic Crystals, 2019, 48 (12): 2289- 2296.
doi: 10.3969/j.issn.1000-985X.2019.12.021
23 李荻. 电化学原理[M]. 3版.北京: 北京航空航天大学出版社, 2008.
23 LI D . Principles of electrochemistry[M]. 3rd ed.Beijing: Beihang University Press, 2008.
24 周邵云, 李新海, 王志兴, 等. 超级电容器水系中性电解液的研究[J]. 电池工业, 2008, 13 (1): 25- 29.
doi: 10.3969/j.issn.1008-7923.2008.01.007
24 ZHOU S Y , LI X H , WANG Z X , et al. Studies on neutral aqueous electrolyte for supercapacitor[J]. Chinese Battery Industry, 2008, 13 (1): 25- 29.
doi: 10.3969/j.issn.1008-7923.2008.01.007
25 CHEN Y C , LIN L Y . Investigating the redox behavior of activated carbon supercapacitors with hydroquinone and p-phenylenediamine dual redox additives in the electrolyte[J]. Journal of Colloid and Interface Science, 2019, 537, 295- 305.
doi: 10.1016/j.jcis.2018.11.026
26 LIU F Y , WANG Z X , ZHANG H T , et al. Nitrogen, oxygen and sulfur co-doped hierarchical porous carbons toward high-performance supercapacitors by direct pyrolysis of kraft lignin[J]. Carbon, 2019, 149, 105- 116.
doi: 10.1016/j.carbon.2019.04.023
27 刘浩.超级电容器隔膜与电解液的研究[D].长春: 吉林大学, 2015.
27 LIU H.Research of diaphragms and electrolyte for the super capacitor[D].Changchun: Jilin University, 2015.
28 ZHOU K , ZHOU W , YANG L J , et al. Ultrahigh-performance pseudocapacitor electrodes based on transition metal phosphide nanosheets array via phosphorization: a general and effective approach[J]. Adv Funct Mater, 2015, 25 (48): 7530- 7538.
doi: 10.1002/adfm.201503662
29 ZHANG Z J , ZHU Y Q , CHEN X Y , et al. Pronounced improvement of supercapacitor capacitance by using redox active electrolyte of p-phenylenediamine[J]. Electrochemical Acta, 2015, 176, 941- 948.
doi: 10.1016/j.electacta.2015.07.136
30 JAIN D , KANUNGO J , TRIPATHI S K . Enhanced performance of ultracapacitors using redox additive-based electrolytes[J]. Applied Physics A, 2018, 124 (5): 397.
doi: 10.1007/s00339-018-1814-z
31 EL-KADY M F , STRONG V , DUBIN S , et al. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors[J]. Science, 2012, 335 (6074): 1326- 1330.
doi: 10.1126/science.1216744
32 王玉成.无锡钢电镀过程中阳极腐蚀机理研究[D].沈阳: 东北大学, 2012.
32 WANG Y C.The study of corrosion mechanism of anode materials in the plating process of tin free steel (TES) [D].Shenyang: Northeastern University, 2012.
33 刘桐.介孔TiN纳米管阵列的制备及其性能研究[D].武汉: 武汉科技大学, 2013.
33 LIU T.Synthesis and properties of titanium nitride mesoporous nanotube arrays[D].Wuhan: Wuhan University of Science and Technology, 2013.
34 崔帅.多级结构氮化铌纤维制备及其电化学性能研究[D].唐山: 华北理工大学, 2020.
34 CUI S.Preparation and electrochemical performance of niobium nitride fibers with hierarchical structure[D].Tangshan: North China University of Science and Technology, 2020.
35 KOMABA S , TSUCHIKAWA T , TOMIRTA M , et al. Efficient electrolyte additives of phosphate, carbonate, and borate to improve redox capacitor performance of manganese oxide electrodes[J]. Journal of the Electrochemical Society, 2013, 160 (11): 1952- 1961.
doi: 10.1149/2.019311jes
36 崔帅, 呼世磊, 吕东风, 等. 介孔氮化铌粉体的制备及电化学性能[J]. 材料导报, 2020, 34 (7): 14009- 14015.
36 CUI S , HU S L , LYU D F , et al. Preparation and electrochemical performance of mesoporous niobium nitride powders[J]. Materials Reports, 2020, 34 (7): 14009- 14015.
[1] 韩富娟, 常增花, 赵金玲, 王仁念, 丁海洋, 卢世刚. 高镍三元锂离子电池低温放电性能研究进展[J]. 材料工程, 2022, 50(9): 1-17.
[2] 马锐, 张宇雨, 王菲菲, 刘琪瑶, 李嘉琪, 魏金枝. Ni-BTC/RGO复合材料的制备及其电化学性能[J]. 材料工程, 2022, 50(6): 124-130.
[3] 史晓岩, 马磊磊, 常增花, 王建涛. 化成制度对富锂锰基/硅碳体系电池产气及电化学性能影响[J]. 材料工程, 2022, 50(5): 112-121.
[4] 陈达, 石宇晴, 张伟, 练美玲. 基于MXene的电化学传感研究进展[J]. 材料工程, 2022, 50(4): 85-95.
[5] 任美娟, 王淼, 吴芳辉, 贾虎, 叶明富, 文国强. 氮掺杂多孔碳负载铜钴纳米复合材料的制备及其电催化性能[J]. 材料工程, 2022, 50(4): 104-111.
[6] 李茂辉, 杨智, 潘廷仙, 同鑫, 胡长刚, 田娟. 铁氮掺杂活性炭载体增强碳载铂基催化剂氧还原反应稳定性[J]. 材料工程, 2022, 50(4): 132-138.
[7] 侯小鹏, 曾浩, 杜邵文, 李娜, 朱怡雯, 傅小珂, 李秀涛. 基于工业化碳材料的锂氟化碳电池正极材料制备及性能[J]. 材料工程, 2022, 50(3): 107-114.
[8] 吴鹏, 陈诚, 赵雪伶, 林东海. 纳米材料模拟酶应用进展[J]. 材料工程, 2022, 50(2): 62-72.
[9] 阚侃, 王珏, 付东, 郑明明, 张晓臣. 氮掺杂碳纤维包覆石墨烯纳米片的构建及电容特性[J]. 材料工程, 2022, 50(2): 94-102.
[10] 张安邦, 汪晨阳, 赵尚骞, 常增花, 王建涛. 固态电池中的正极/电解质界面性质研究进展[J]. 材料工程, 2022, 50(11): 46-62.
[11] 孙辉, 武会宾, 张游游, 袁睿, 张志慧. Cr含量对CrMnFeNi系高熵合金腐蚀行为的影响[J]. 材料工程, 2022, 50(11): 127-134.
[12] 郭亚飞, 陶益杰, 梁高勇, 董梦杰, 王美慧, 郝新敏. 基于噻吩-蒽单元的无规共聚物电化学制备及其电致变色性能研究[J]. 材料工程, 2022, 50(11): 165-172.
[13] 朱陈杰, 陈海权, 于有海. 静电喷雾法/原位洗脱法结合制备电致变色薄膜[J]. 材料工程, 2022, 50(1): 109-116.
[14] 王瑶, 么贺祥, 俞娟, 王晓东, 黄培. 碳布负载的PI-MWCNTs柔性电极材料的合成及其电容性能[J]. 材料工程, 2021, 49(9): 51-59.
[15] 杨夕馨, 常增花, 邵泽超, 吴帅锦, 王仁念, 王建涛, 卢世刚. 富锂锰基正极材料在不同温度下的极化行为[J]. 材料工程, 2021, 49(9): 69-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn