1 College of Materials Science and Engineering, North China University of Science and Technology, Tangshan 063210, Hebei, China 2 Hebei Provincial Laboratory of Inorganic Non-metallic Materials, Tangshan 063210, Hebei, China 3 Tangshan Key Laboratory of Environmental Functional Materials, Tangshan 063210, Hebei, China 4 Institute of New Materials Industry Technology, North China University of Science and Technology, Tangshan 063210, Hebei, China
Supercapacitors have become a new type of energy storage device widely used due to their high efficiency, fast speed and good cycle stability, and electrode material is a key issue restricting their development. The porous niobium nitride fibers were prepared by electrospinning combined with reduction nitride technology using pentachloride as raw material, and Nb4N5||Nb4N5 symmetrical button capacitance was prepared. In order to improve the electrochemical performance of electrode material, NaHCO3 was added into Na2SO4 electrolyte. The results show that the prepared niobium nitride fiber exhibits a tetragonal phase, continuous and porous on the surface. The porous niobium nitride electrode has two mechanisms of electric double layer and pseudocapacitive energy storage. The specific capacitance of the capacitor increases to 187 F·g-1 with the NaHCO3 addition of 15 mmol·dm-3. The buffering effect inhibits the dissolution of niobium nitride, effectively reduces the solution resistance, the solution impedance R1 and the diffusion impedance WR reduce to 1.22 Ω and 1.47 Ω respectively and the ionic conductivity improves. The carrier concentration increases to 6.58×1024 cm3, and the relaxation time of the capacitor is shortened to 0.24 s at the same time.
GAO B , HUANG C , LI Q W , et al. Flexible supercapacitors based on transitional metal nitride nanostructures[J]. Materials China, 2016, 35 (7): 552- 559.
2
CUI X , CHEN X L , CHEN S , et al. Dopamine adsorption precursor enables N-doped carbon sheathing of MoS2 nanoflowers for all-around enhancement of supercapacitor performance[J]. Journal of Alloys and Compounds, 2017, 693, 955- 963.
doi: 10.1016/j.jallcom.2016.09.173
3
WEI Z X , DING B , DOU H , et al. 2020 roadmap on pore materials for energy and environmental applications[J]. Chinese Chemical Letters, 2019, 30 (12): 2110- 2122.
doi: 10.1016/j.cclet.2019.11.022
4
商超群.同轴静电纺丝制备芯壳结构高能电容器电极材料及研究[D].青岛: 青岛科技大学, 2012.
4
SHANG C Q.Core-shell fibers prepare by coaxial electrospinning for high-performance capacitors[D].Qingdao: Qingdao University of Science & Technology, 2012.
5
LIAO J Q , NI W , WANG C Y , et al. Layer-structured niobium oxides and their analogues for advanced hybrid capacitors[J]. Chemical Engineering Journal, 2019, 391, 123489.
6
YI C Q , ZOU J P , YANG H Z , et al. Recent advances in pseudocapacitor electrode materials:transition metal oxides and nitrides[J]. Trans Nonferrous Met Soc China, 2018, 28 (10): 1980- 2001.
doi: 10.1016/S1003-6326(18)64843-5
7
DONG S M , CHEN X , GU L , et al. TiN/VN composites with core/shell structure for supercapacitors[J]. Materials Research Bulletin, 2011, 46 (6): 835- 839.
doi: 10.1016/j.materresbull.2011.02.028
8
CUI Z M , BURNS R G , DISALVO F J . Mesoporous Ti0.5Nb0.5N ternary nitride as a novel noncarbon support for oxygen reduction reaction in acid and alkaline electrolytes[J]. Chemistry of Materials, 2013, 25 (19): 3782- 3784.
doi: 10.1021/cm4027545
9
MA J Y , GUO X T , XUE H G , et al. Niobium/tantalum-based materials:synthesis and applications in electrochemical energy storage[J]. Chemical Engineering Journal, 2020, 380, 122428.
doi: 10.1016/j.cej.2019.122428
10
李霞.添加剂对锂硫电池电化学性能影响的研究[D].天津: 天津大学, 2016.
10
LI X.Research on the effects of additives on electrochemical performance of lithium sulfur batteries[D].Tianjin: Tianjin University, 2016.
11
KOMABA S , OGATA A , TSUCHIKAWA T . Enhanced supercapacitive behaviors of birnessite[J]. Electrochemistry Communications, 2008, 10 (10): 1435- 1437.
doi: 10.1016/j.elecom.2008.07.025
LI Y G , GAO L , ZHU M F . Synthesis of nanosized NbN powder with cubic structure by ammonolysis method[J]. Journal of Donghua University(Natural Science), 2005, 31 (1): 1- 5.
doi: 10.3969/j.issn.1671-0444.2005.01.001
13
CUI H L , ZHU G L , LIU X Y , et al. Niobium nitride Nb4N5 as a new high-performance electrode material for supercapacitors[J]. Advanced Science, 2015, 2 (12): 1500126.
doi: 10.1002/advs.201500126
14
JOUVE G , SÉEVRAC C , CANTACUZÉNE S . XPS study of NbN and (NbTi)N superconducting coatings[J]. Thin Solid Films, 1996, 287 (1/2): 146- 153.
15
LIU M , ZHANG L X , HAN P X , et al. Controllable formation of niobium nitride/nitrogen-doped graphene nanocomposites as ano-de materials for lithium-ion capacitors[J]. Particle & Particle Systems Characterization, 2016, 32 (11): 1006- 1011.
16
LU X H , WANG G M , ZHAI T , et al. Stabilized TiN nanowire arrays for high-performance and flexible supercapacitors[J]. Nano Letters, 2012, 12 (10): 5376- 5381.
doi: 10.1021/nl302761z
17
LU X H , YU M H , ZHAI T , et al. High energy density asy-mmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode[J]. Nano Letters, 2013, 13 (6): 2628- 2633.
doi: 10.1021/nl400760a
LV D F , BU J L , WEI H Y , et al. Synthesis of porous TiN fiber via reduction-nitridation based on electrospinning and its electrochemical performance[J]. Rare Metal Materials and Engineering, 2017, 46 (10): 387- 392.
19
CHOI D , KUMTA P N . Nanocrystalline TiN derived by a two-step halide approach for electrochemical capacitors[J]. Journal of the Electrochemical Society, 2006, 153 (12): 2298- 2303.
doi: 10.1149/1.2359692
20
GAO S S , TANG Y K , WANG L , et al. Coal-based hierarchical porous carbon synthesized with a soluble salt self-assembly-assisted method for high performance supercapacitors and Li-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6 (3): 3255- 3263.
21
王倩.电解液添加剂对柠檬酸盐基炭材料的超电容性能影响研究[D].合肥: 合肥工业大学, 2017.
21
WANG Q.Study on the effect of electrolyte additives on the supercapacitor of citrate-based carbon materials[D].Hefei: Hefei University of Technology, 2017.
CUI S , WEI H Y , LV D F , et al. Preparation and electrochemical properties of porous Nb4N5 fibers via microemulsion electrospi-nning[J]. Journal of Synthetic Crystals, 2019, 48 (12): 2289- 2296.
doi: 10.3969/j.issn.1000-985X.2019.12.021
23
李荻. 电化学原理[M]. 3版.北京: 北京航空航天大学出版社, 2008.
23
LI D . Principles of electrochemistry[M]. 3rd ed.Beijing: Beihang University Press, 2008.
ZHOU S Y , LI X H , WANG Z X , et al. Studies on neutral aqueous electrolyte for supercapacitor[J]. Chinese Battery Industry, 2008, 13 (1): 25- 29.
doi: 10.3969/j.issn.1008-7923.2008.01.007
25
CHEN Y C , LIN L Y . Investigating the redox behavior of activated carbon supercapacitors with hydroquinone and p-phenylenediamine dual redox additives in the electrolyte[J]. Journal of Colloid and Interface Science, 2019, 537, 295- 305.
doi: 10.1016/j.jcis.2018.11.026
26
LIU F Y , WANG Z X , ZHANG H T , et al. Nitrogen, oxygen and sulfur co-doped hierarchical porous carbons toward high-performance supercapacitors by direct pyrolysis of kraft lignin[J]. Carbon, 2019, 149, 105- 116.
doi: 10.1016/j.carbon.2019.04.023
27
刘浩.超级电容器隔膜与电解液的研究[D].长春: 吉林大学, 2015.
27
LIU H.Research of diaphragms and electrolyte for the super capacitor[D].Changchun: Jilin University, 2015.
28
ZHOU K , ZHOU W , YANG L J , et al. Ultrahigh-performance pseudocapacitor electrodes based on transition metal phosphide nanosheets array via phosphorization: a general and effective approach[J]. Adv Funct Mater, 2015, 25 (48): 7530- 7538.
doi: 10.1002/adfm.201503662
29
ZHANG Z J , ZHU Y Q , CHEN X Y , et al. Pronounced improvement of supercapacitor capacitance by using redox active electrolyte of p-phenylenediamine[J]. Electrochemical Acta, 2015, 176, 941- 948.
doi: 10.1016/j.electacta.2015.07.136
30
JAIN D , KANUNGO J , TRIPATHI S K . Enhanced performance of ultracapacitors using redox additive-based electrolytes[J]. Applied Physics A, 2018, 124 (5): 397.
doi: 10.1007/s00339-018-1814-z
31
EL-KADY M F , STRONG V , DUBIN S , et al. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors[J]. Science, 2012, 335 (6074): 1326- 1330.
doi: 10.1126/science.1216744
32
王玉成.无锡钢电镀过程中阳极腐蚀机理研究[D].沈阳: 东北大学, 2012.
32
WANG Y C.The study of corrosion mechanism of anode materials in the plating process of tin free steel (TES) [D].Shenyang: Northeastern University, 2012.
33
刘桐.介孔TiN纳米管阵列的制备及其性能研究[D].武汉: 武汉科技大学, 2013.
33
LIU T.Synthesis and properties of titanium nitride mesoporous nanotube arrays[D].Wuhan: Wuhan University of Science and Technology, 2013.
34
崔帅.多级结构氮化铌纤维制备及其电化学性能研究[D].唐山: 华北理工大学, 2020.
34
CUI S.Preparation and electrochemical performance of niobium nitride fibers with hierarchical structure[D].Tangshan: North China University of Science and Technology, 2020.
35
KOMABA S , TSUCHIKAWA T , TOMIRTA M , et al. Efficient electrolyte additives of phosphate, carbonate, and borate to improve redox capacitor performance of manganese oxide electrodes[J]. Journal of the Electrochemical Society, 2013, 160 (11): 1952- 1961.
doi: 10.1149/2.019311jes
CUI S , HU S L , LYU D F , et al. Preparation and electrochemical performance of mesoporous niobium nitride powders[J]. Materials Reports, 2020, 34 (7): 14009- 14015.