Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (8): 169-177    DOI: 10.11868/j.issn.1001-4381.2020.000662
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
吸湿后碳纤维复合材料正交层板拉伸疲劳性能
张祥林1, 孟庆春2, 许名瑞2, 曾本银2, 程小全1,*(), 孙炜3
1 北京航空航天大学 航空科学与工程学院, 北京 100083
2 中航工业中国直升机设计研究所, 江西 景德镇 333001
3 中国航发北京航空材料研究院, 北京 100095
Tensile fatigue properties of carbon fiber reinforced composite orthogonal laminates after moisture absorption
Xiang-lin ZHANG1, Qing-chun MENG2, Ming-rui XU2, Ben-yin ZENG2, Xiao-quan CHENG1,*(), Wei SUN3
1 School of Aeronautic Science and Engineering, Beihang University, Beijing 100083, China
2 AVIC China Helicopter Research and Development Institute, Jingdezhen 333001, Jiangxi, China
3 AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(13291 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

湿环境下复合材料疲劳性能会严重退化,影响结构的使用安全,在确定复合材料结构寿命时须考虑湿环境的影响。对常温下湿态和干态下碳纤维复合材料正交层合板的拉伸疲劳性能进行实验,研究饱和吸湿对正交层合板拉伸疲劳性能的影响,获得了两种环境下层合板的S-N曲线。在此基础上,建立有限元模型,并对吸湿后正交层合板的疲劳寿命和损伤演化情况进行预测,计算结果与实验结构吻合较好,证明了模型的有效性。结果表明,饱和吸湿对正交层合板的拉伸疲劳性能影响很大。吸湿后正交层合板的拉伸疲劳寿命明显低于干态情况,而且S-N曲线的斜率稍低,层合板的纤维损伤起始与扩展情况与干态情况也有较大差别。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张祥林
孟庆春
许名瑞
曾本银
程小全
孙炜
关键词 复合材料正交层合板吸湿拉伸疲劳损伤    
Abstract

The fatigue performance of composite structures in wet environment will be degraded seriously, which will affect the structure safety. Therefore, the influence of wet environment should be taken into consideration when determining the structure life. The tensile fatigue properties of carbon fiber reinforced composite orthotropic laminates in wet and dry state at room temperature were tested. The influence of saturated moisture absorption on the tensile fatigue properties was studied. The S-N curves of two kinds of environments were obtained. On this basis, the finite element models were established, and the fatigue life and damage evolution of the orthotropic laminate after moisture absorption were predicted. The calculated results agree well with the test results, which prove the validity of the model. The results show that the saturated moisture absorption has a great influence on the tensile fatigue properties of orthogonal laminate. After moisture absorption, the tensile fatigue life of the laminates is significantly lower than that of the laminates in dry state, and the slope of S-N curve is slightly lower. The fiber damage initiation and propagation of laminate are also different from those in dry state.

Key wordscomposite    orthogonal laminate    humidity    tensile fatigue    damage
收稿日期: 2020-07-18      出版日期: 2021-08-12
中图分类号:  V214.8  
  TB332  
基金资助:快速扶持项目(61400020112)
通讯作者: 程小全     E-mail: xiaoquan_cheng@buaa.edu.cn
作者简介: 程小全(1966-), 男, 教授, 博导, 博士, 研究方向: 复合材料结构损伤容限分析与设计技术研究, 联系地址: 北京市海淀区学院路37号北航飞机系(100083), E-mail: xiaoquan_cheng@buaa.edu.cn
引用本文:   
张祥林, 孟庆春, 许名瑞, 曾本银, 程小全, 孙炜. 吸湿后碳纤维复合材料正交层板拉伸疲劳性能[J]. 材料工程, 2021, 49(8): 169-177.
Xiang-lin ZHANG, Qing-chun MENG, Ming-rui XU, Ben-yin ZENG, Xiao-quan CHENG, Wei SUN. Tensile fatigue properties of carbon fiber reinforced composite orthogonal laminates after moisture absorption. Journal of Materials Engineering, 2021, 49(8): 169-177.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000662      或      http://jme.biam.ac.cn/CN/Y2021/V49/I8/169
Load type Test environment Specimen number
Moisture absorption(without tabs) Pure water 3
Static tension(with tabs) RTD 3
RTW 3
Tension-tension fatigue(without tabs) RTDRTW 1613
Table 1  试件类型与数量
Fig.1  静力与疲劳试件构型
Fig.2  RTW环境下试件保湿与夹持方式
E11/GPa E22/GPa E33/GPa G12/GPa G13/GPa G23/GPa ν12 ν13 ν23
54.3 54.3 3.3 3.26 2.17 2.17 0.04 0.01 0.01
XT/MPa XC/MPa YT/MPa YC/MPa S12/MPa S13/MPa S23/MPa
680 614.29 680 614.29 115.98 73.5 73.5
Table 2  RTD环境下CF3052/3238A材料弹性常数和强度参数
Tg0/℃ T0/℃ g/℃ a b c d ρ/(g·cm-3) ρm/(g·cm-3) Vm/%
120 20 5 0.05 0.15 0.22 0.56 1.42 1.23 45
Table 3  CF3052/3238A材料力学性能衰减相关参数
Fig.3  有限元模型
Fig.4  疲劳分析过程
Specimen Width/mm Thickness/mm Maximum load/kN Tensile strength/MPa Elastic modulus/GPa Poisson ratio
1 25.04 2.858 47.44 662.97 52.3 0.0397
2 25.04 2.764 47.79 690.55 57.4 0.0505
3 25.05 2.909 49.93 685.21 53.2 0.0366
Average value 48.39 679.58 54.3 0.0423
Table 4  RTD环境下正交层合板的拉伸实验结果
Specimen Width/mm Thickness/mm Maximum load/kN Tensile strength/MPa Elastic modulus/GPa Poisson ratio
1 25.06 2.925 47.31 645.39 54.0 0.0531
2 25.08 2.880 46.85 648.59 54.4 0.0566
3 25.03 2.847 46.82 656.97 54.6 0.0583
Average value 46.99 650.32 54.3 0.0560
Table 5  RTW环境下正交层合板的拉伸实验结果
Fig.5  RTD和RTW环境下正交层合板疲劳S-N曲线
Fig.6  RTD(a)和RTW(b)环境下正交层合板疲劳破坏模式
Fig.7  RTD(a)和RTW(b)环境下正交层合板厚度方向损伤形貌
Fig.8  疲劳寿命模拟结果与线性拟合结果对比
Environment-stress level Life cycle number Logarithmic life cycle number
S-N curve number/cycle Simulation number/cycle Error/% S-N curve number/cycle Simulation number/cycle Error/%
RTD-87% 175058 124000 29.2 5.24 5.09 2.9
RTD-85% 1000000 1200000 20.0 6.00 6.08 1.3
RTW-85% 2614 2250 13.9 3.42 3.35 2.0
RTW-79% 169024 205000 21.3 5.23 5.31 1.5
RTW-77% 678385 800000 17.9 5.83 5.90 1.2
Table 6  疲劳寿命模拟结果及误差
Fig.9  RTD环境下面内和厚度方向纤维断裂损伤演化
Fig.10  RTW环境下面内和厚度方向纤维断裂损伤演化
1 王兴刚, 于洋, 李树茂, 等. 先进热塑性树脂基复合材料在航天航空上的应用[J]. 纤维复合材料, 2011, 28 (2): 44- 47.
doi: 10.3969/j.issn.1003-6423.2011.02.011
1 WANG X G , YU Y , LI S M , et al. The research on fiber reinforced thermoplastic composite[J]. Fiber Composites, 2011, 28 (2): 44- 47.
doi: 10.3969/j.issn.1003-6423.2011.02.011
2 朱晋生, 王卓, 欧峰. 先进复合材料在航空航天领域的应用[J]. 新技术新工艺, 2012, (10): 76- 79.
doi: 10.3969/j.issn.1003-5311.2012.10.025
2 ZHU J S , WANG Z , OU F . Applications of advanced composite materials in aerospace[J]. New Technology and New Process, 2012, (10): 76- 79.
doi: 10.3969/j.issn.1003-5311.2012.10.025
3 黄文俊, 何志平, 程小全. 直升机复合材料应用现状与发展[J]. 高科技纤维与应用, 2016, 41 (5): 7- 14.
doi: 10.3969/j.issn.1007-9815.2016.05.002
3 HUANG W J , HE Z P , CHENG X Q . Development and application analysis of high modulus glass fiber for helicopter blade[J]. High Technology Fiber Application, 2016, 41 (5): 7- 14.
doi: 10.3969/j.issn.1007-9815.2016.05.002
4 金晖. 碳纤维复合材料层板结构环境条件下的疲劳性能研究[J]. 科技创新导报, 2014, 11 (22): 76- 77.
doi: 10.3969/j.issn.1674-098X.2014.22.050
4 JIN H . Study on the fatigue properties of carbon fiber composite laminates under environmental conditions[J]. Science and Technology Innovation Herald, 2014, 11 (22): 76- 77.
doi: 10.3969/j.issn.1674-098X.2014.22.050
5 SETHI S , RAY B C . Environmental effects on fibre reinforced polymeric composites: evolving reasons and remarks on interfacial strength and stability[J]. Advances in Colloid and Interface Science, 2015, 217, 43- 67.
doi: 10.1016/j.cis.2014.12.005
6 KAWAI M , YAGIHASHI Y , HOSHI H , et al. Anisomorphic constant fatigue life diagrams for quasi-isotropic woven fabric carbon/epoxy laminates under different hygro-thermal environments[J]. Advanced Composite Materials, 2013, 22 (2): 79- 98.
doi: 10.1080/09243046.2013.777172
7 McBAGONLURI F , GARCIA K , HAYES M , et al. Characterization of fatigue and combined environment on durability performance of glass/vinyl ester composite for infrastructure applications[J]. International Journal of Fatigue, 2000, 22 (1): 53- 64.
doi: 10.1016/S0142-1123(99)00100-0
8 ARIF M F , MERAGHNI F , CHEMISKY Y , et al. In situ damage mechanisms investigation of PA66/GF30 composite: effect of relative humidity[J]. Composites: Part B, 2014, 58, 487- 495.
doi: 10.1016/j.compositesb.2013.11.001
9 DEXTER H B , BAKER D J . Flight service environmental effects on composite materials and structures[J]. Advanced Performance Materials, 1994, 1 (1): 51- 85.
doi: 10.1007/BF00705313
10 HU Y , LANG A W , LI X , et al. Hygrothermal aging effects on fatigue of glass fiber/polydicyclopentadiene composites[J]. Polymer Degradation and Stability, 2014, 110, 464- 472.
doi: 10.1016/j.polymdegradstab.2014.10.018
11 吕新颖, 江龙, 闫亮, 等. 碳纤维复合材料湿热性能研究进展[J]. 玻璃钢/复合材料, 2009, (3): 76- 80.
doi: 10.3969/j.issn.1003-0999.2009.03.020
11 LV X Y , JIANG L , YAN L , et al. Hygrothermal properties of carbon fiber reinforced plastics[J]. Fiber Reinforced Plastics/Composites, 2009, (3): 76- 80.
doi: 10.3969/j.issn.1003-0999.2009.03.020
12 MA B , FENG Y , HE Y T , et al. Effect of hygrothermal environment on the tension-tension fatigue performance and reliable fatigue life of T700/MTM46 composite laminates[J]. Journal of Zhejiang University Science A, 2019, 20 (7): 499- 514.
doi: 10.1631/jzus.A1900081
13 FENG Q , LI M , GU Y , et al. Experimental research on hygrothermal properties of carbon fiber/epoxy resin composite under different hygrothermal conditions[J]. Acta Materiae Compositae Sinica, 2010, 27 (6): 16- 20.
14 TUAL N , CARRERE N , DAVIES P , et al. Characterization of sea water ageing effects on mechanical properties of carbon/epoxy composites for tidal turbine blades[J]. Composites: Part A, 2015, 78, 380- 389.
doi: 10.1016/j.compositesa.2015.08.035
15 ZAFAR A , BERTOCCO F , SCHJØDT T J , et al. Investigation of the long term effects of moisture on carbon fibre and epoxy matrix composites[J]. Composites Science and Technology, 2012, 72 (6): 656- 666.
doi: 10.1016/j.compscitech.2012.01.010
16 沙勐, 熊欣, 许名瑞, 等. 湿热环境对复合材料疲劳性能的影响[J]. 高科技纤维与应用, 2017, 42 (4): 37- 43.
doi: 10.3969/j.issn.1007-9815.2017.04.007
16 SHA M , XIONG X , XU M R , et al. Effect of hygrothermal environment on fatigue properties of composite materials[J]. High Technology Fiber Application, 2017, 42 (4): 37- 43.
doi: 10.3969/j.issn.1007-9815.2017.04.007
17 李野, 陈业标, 盛国柱, 等. 飞机复合材料结构的湿热老化效应[C]//第十一届全国复合材料学术会议. 中国力学学会, 2000: 635-638.
17 LI Y, CHEN Y B, SHENG G Z, et al. Hygrothermal aging effect of aircraft composite structure[C]//The 11th National Conference on Composite Materials. The Chinese Society of Theoretical and Applied Mechanics, 2000: 635-638.
18 刘牧东. 航空复合材料疲劳性能研究[J]. 中国科技信息, 2019, (1): 29- 30.
doi: 10.3969/j.issn.1001-8972.2019.01.006
18 LIU M D . Study on fatigue properties of aviation composite[J]. China Science and Technology Information, 2019, (1): 29- 30.
doi: 10.3969/j.issn.1001-8972.2019.01.006
19 山美娟, 赵丽滨. 考虑湿热效应的先进复合材料结构渐进疲劳损伤方法研究[C]//数值计算和数据分析2019学术会议. 中国力学学会, 2019: 197-203.
19 SHAN M J, ZHAO L B. Study on progressive fatigue damage method of advanced composite structure considering hygrothermal effect[C]//2019 Academic Conference on Numerical Calculation and Data Analysis. The Chinese Society of Theoretical and Applied Mechanics, 2019: 197-203.
20 刘英芝. 复合材料层合板疲劳行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
20 LIU Y Z. Fatigue behavior of composite laminates[D]. Harbin: Harbin Institute of Technology, 2015.
21 SHOKRIEH M M , LESSARD L B . Progressive fatigue damage modeling of composite materials, part Ⅰ: modeling[J]. Journal of Composite Materials, 2000, 34 (13): 1056- 1080.
doi: 10.1177/002199830003401301
[1] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[2] 孔国强, 安振河, 魏化震, 李莹, 邵蒙, 于秋兵, 纪校君, 李居影, 王康. 碳纤维丝束结构对碳纤维/酚醛复合材料烧蚀性能的影响[J]. 材料工程, 2022, 50(9): 113-119.
[3] 米玉洁, 宋明明, 张存瑞, 张贵恩, 王月祥, 常志敏. 羰基铁室温硫化硅橡胶复合材料的吸波性能[J]. 材料工程, 2022, 50(9): 120-126.
[4] 邢宇, 张代军, 王成博, 倪洪江, 李军, 陈祥宝. PEEK复合材料用碳纤维上浆剂研究进展[J]. 材料工程, 2022, 50(8): 70-81.
[5] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[6] 倪洪江, 邢宇, 戴霄翔, 李军, 张代军, 陈祥宝. 航空发动机用聚酰亚胺树脂基复合材料固化工艺及热稳定性能[J]. 材料工程, 2022, 50(7): 102-109.
[7] 吕双祺, 黄佳, 孙燕涛, 付尧明, 杨晓光, 石多奇. 莫来石纤维增强SiO2气凝胶复合材料压缩回弹性能实验与建模研究[J]. 材料工程, 2022, 50(7): 119-127.
[8] 杨智勇, 臧家俊, 方丹琳, 李翔, 李志强, 李卫京. 城轨列车制动盘SiCp/A356复合材料热疲劳裂纹扩展机理[J]. 材料工程, 2022, 50(7): 165-175.
[9] 彭斌意, 刘洋, 郑晓董, 李治国, 李国平, 胡建波, 王永刚. 激光选区熔化颗粒增强钛基复合材料的抗压性能[J]. 材料工程, 2022, 50(6): 36-48.
[10] 李军, 刘燕峰, 倪洪江, 张代军, 陈祥宝. 航空发动机用树脂基复合材料应用进展与发展趋势[J]. 材料工程, 2022, 50(6): 49-60.
[11] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[12] 于永涛, 刘元军. 原位聚合法制备铁氧体/聚苯胺吸波复合材料的研究进展[J]. 材料工程, 2022, 50(5): 90-99.
[13] 程子敬, 王凯峰, 张连洪. 基于微观尺度X射线断层扫描技术的短切碳纤维SMC复合材料失效分析[J]. 材料工程, 2022, 50(5): 130-138.
[14] 杜宗波, 时双强, 陈宇滨, 褚海荣, 杨程. 介电型石墨烯吸波复合材料研究进展[J]. 材料工程, 2022, 50(4): 74-84.
[15] 任美娟, 王淼, 吴芳辉, 贾虎, 叶明富, 文国强. 氮掺杂多孔碳负载铜钴纳米复合材料的制备及其电催化性能[J]. 材料工程, 2022, 50(4): 104-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn