Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (9): 94-100    DOI: 10.11868/j.issn.1001-4381.2020.000682
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
超高强β钛合金等温相转变特性及力学性能
王庆娟(), 吴金城, 王伟, 杜忠泽, 尹仁锟
西安建筑科技大学 冶金工程学院, 西安 710055
Isothermal phase transformation characteristics and mechanical properties of ultra-high strength β titanium alloy
Qing-juan WANG(), Jin-cheng WU, Wei WANG, Zhong-ze DU, Ren-kun YIN
School of Metallurgy Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
全文: PDF(15147 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

近β钛合金的等温相转变具有多样性和复杂性的特点,对温度敏感性强,直接影响其时效后的力学性能。本工作所用合金为自主研发的Ti-Al-V-Mo-Cr-Zr-Fe-Nb超高强β钛合金,采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、硬度计等分析表征手段对等温处理后合金的微观组织演变及力学性能进行系统研究。结果表明,合金300℃时效时只析出等温ω相,等温ω相随时效时间的延长发生长大。合金400℃时效时先析出等温ω相,随着时效时间的延长,α相依附于ω/β界面处形核。合金500℃时效时无ω相析出,针状α相直接从β基体中析出,呈"V"字形均匀分布在β基体中。400℃时效12 h时抗拉强度为1716.1 MPa,伸长率为2%。500℃时效12 h时抗拉强度为1439.8 MPa,伸长率为9.84%,具有良好的强塑性匹配。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王庆娟
吴金城
王伟
杜忠泽
尹仁锟
关键词 β钛合金ω相析出相转变硬化特性力学性能    
Abstract

Near β titanium alloy is widely used in automotive and aerospace industries due to their high strength-to-weight ratio and high corrosion resistance. The near β titanium alloy can precipitate ω phase and α phase after solution and ageing treatment, the strength of which can be remarkably increased, usually at the expense of ductility. It is one of the most important structural components of load-bearing that usually as aircraft skin, shell plating, main frame, linker and special fastener. The alloy used in this paper is a self-developed Ti-Al-V-Mo-Cr-Zr-Fe-Nb ultra-high-strength β titanium alloy, which is a typical near β titanium alloy. The characteristic of isothermal phase transformation of near β titanium alloys is diversity and complexity, which is sensitive to temperature and directly affects the mechanical properties after ageing. In this paper, the microstructural evolution and mechanical properties of a Ti-Al-V-Mo-Cr-Zr-Fe-Nb ultra-high strength β titanium alloy after isothermal treatment were investigated by scanning electron microscopy(SEM), transmission electron microscopy(TEM) and micro-hardness tester. The results show that only the isothermal ω precipitates are formed during ageing at 300℃, and the size of isothermal ω phases increase with the ageing time. The isothermal ω precipitates are first precipitated during ageing at 400℃. With the extension of the ageing time, the α phase nucleation occurs near the ω/β interface. No α precipitates are obtained in the alloy aged at 500℃, and needle-like α precipitates are directly precipitated from the β matrix, which is evenly distributed in the β matrix in a "V" shape. Tensile test shows that the tensile strength of the alloy is 1716.1 MPa and the elongation is 2% after ageing at 400℃ for 12 h. The tensile strength of the alloy is 1439.8 MPa and the elongation is 9.84% after ageing at 500℃ for 12 h, and has a good combination of strength and toughness.

Key wordsβ titanium alloy    ω-precipitates    phase transformation    harding characteristics    mechanical property
收稿日期: 2020-07-27      出版日期: 2021-09-17
中图分类号:  TG166.5  
基金资助:陕西省国际合作项目(2019KW-064);西安市科技局项目(2020KJRC0051);陕西省教育厅服务地方专项(19JC025)
通讯作者: 王庆娟     E-mail: jiandawqj@163.com
作者简介: 王庆娟(1973-), 女, 教授, 博士, 主要从事高强β钛合金和高性能铜合金的研究, 联系地址: 西安市碑林区雁塔路中段13号西安建筑科技大学冶金工程学院(710055), E-mail: jiandawqj@163.com
引用本文:   
王庆娟, 吴金城, 王伟, 杜忠泽, 尹仁锟. 超高强β钛合金等温相转变特性及力学性能[J]. 材料工程, 2021, 49(9): 94-100.
Qing-juan WANG, Jin-cheng WU, Wei WANG, Zhong-ze DU, Ren-kun YIN. Isothermal phase transformation characteristics and mechanical properties of ultra-high strength β titanium alloy. Journal of Materials Engineering, 2021, 49(9): 94-100.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000682      或      http://jme.biam.ac.cn/CN/Y2021/V49/I9/94
Al V Mo Cr Zr Fe Nb Ti
3.38 8.48 4.15 2.16 1.99 0.53 0.45 Bal
Table 1  Ti-Al-V-Mo-Cr-Zr-Fe-Nb超高强β钛合金的化学成分(质量分数/%)
Fig.1  实验过程示意图
Fig.2  合金固溶处理后显微组织(a)及XRD谱图(b)
Fig.3  合金固溶后300 ℃时效4 h的显微组织
(a)TEM图;(b)选区衍射图;(c)HAADF-STEM图
Fig.4  等温ω相转变示意图
(a)β相;(b)ω1相;(c)ω2相
Fig.5  合金固溶后300 ℃时效50 h的显微组织
(a)选区衍射图;(b)TEM图;(c)HAADF-STEM图
Fig.6  合金固溶后400 ℃时效8 h的显微组织
(a)选区衍射图;(b)DF1暗场像;(c)DF2暗场像
Fig.7  合金固溶后400 ℃ (a)和500 ℃ (b)时效不同时间的XRD谱图
Fig.8  合金时效后SEM显微组织
(a)400 ℃, 12 h; (b)500 ℃, 12 h
Fig.9  合金不同温度时效时硬度-等温时间关系曲线
Fig.10  固溶及不同温度时效后合金的拉伸性能
1 WILLIAMS J C , STARKE E A . Process in structural materials for aerospace[J]. Acta Materialia, 2003, 51 (19): 5775- 5799.
doi: 10.1016/j.actamat.2003.08.023
2 CHEN Y Y , DU Z X , XIAO S L , et al. Effect of aging heat treatment on microstructure and tensile properties of a new β high strength titanium alloy[J]. Journal of Alloys and Compounds, 2014, 586, 588- 592.
doi: 10.1016/j.jallcom.2013.10.096
3 LI T , DAMON K , GANG S , et al. Nucleation driving force for ω-assisted formation of α and associated ω morphology in β-Ti alloys[J]. Scripta Materialia, 2018, 155, 149- 154.
doi: 10.1016/j.scriptamat.2018.06.039
4 HUI Q , XUE X Y , KOU H C , et al. Phase transformation and microstructure evolution in near-β Ti-7333 titanium alloy during aging[J]. Materials Science Forum, 2013, 747/748, 904- 911.
doi: 10.4028/www.scientific.net/MSF.747-748.904
5 JONES N G , DASHWOOD R J , JACKSON M , et al. β phase decomposition in Ti-5Al-5Mo-5V-3Cr[J]. Acta Materialia, 2009, 57 (13): 3830- 3839.
doi: 10.1016/j.actamat.2009.04.031
6 AHMED M , LI T , CASILLAS G , et al. The evolution of microstructure and mechanical properties of Ti-5Al-5Mo-5V-2Cr-1Fe during ageing[J]. Journal of Alloys and Compounds, 2015, 629, 260- 273.
doi: 10.1016/j.jallcom.2015.01.005
7 BANERJEE D , WILLIAMS J C . Perspectives on titanium science and technology[J]. Acta Materialia, 2013, 61 (3): 844- 879.
doi: 10.1016/j.actamat.2012.10.043
8 何涛, 冯勇, 罗文忠, 等. 近β钛合金中ω相的研究进展[J]. 稀有金属材料与工程, 2018, 47 (2): 705- 710.
8 HE T , FENG Y , LUO W Z , et al. Research progress of ω phase in near-β titanium alloys[J]. Rare Metal Materials and Engineering, 2018, 47 (2): 705- 710.
9 GAO J H , KNOWLES A J , GUAN D K , et al. ω phase strengthened 1.2 GPa metastable β titanium alloy with high ductility[J]. Scripta Materialia, 2018, 162, 77- 81.
10 NAG S , BANERJEE R , SRINIVASAN R , et al. ω-Assisted nucleation and growth of α precipitates in the Ti-5Al-5Mo-5V-3Cr-0.5Fe β titanium alloy[J]. Acta Materialia, 2009, 57 (7): 2136- 2147.
doi: 10.1016/j.actamat.2009.01.007
11 HE T , FENG Y , LUO W Z , et al. Microstructural evolution of ω assisted α precipitates in β-CEZ alloy during ageing process[J]. Materials Characterization, 2018, 138, 19- 25.
doi: 10.1016/j.matchar.2018.01.056
12 LI T , KENT D , SHA G , et al. The role of ω in the precipitation of α in near-β Ti alloys[J]. Scripta Materialia, 2016, 117, 92- 95.
doi: 10.1016/j.scriptamat.2016.02.026
13 LI T , KENT D , SHA G , et al. The mechanism of ω-assisted α phase formation in near β-Ti alloys[J]. Scripta Materialia, 2015, 104, 75- 78.
doi: 10.1016/j.scriptamat.2015.04.007
14 何涛, 冯勇, 刘向宏, 等. β-CEZ钛合金在固溶时效时ω相与α相的组织演化规律[J]. 稀有金属材料与工程, 2018, 47 (9): 2711- 2716.
14 HE T , FENG Y , LIU X H , et al. Microstructure evolution of ω and α phase of β-CEZ alloy during the solution treatment and aging process[J]. Rare Metal Materials and Engineering, 2018, 47 (9): 2711- 2716.
15 CHEN W , CAO S , KOU W J , et al. Origin of the ductile-to-brittle transition of metastable β-titanium alloys: self-hardening of ω-precipitates[J]. Acta Materialia, 2019, 170, 187- 204.
doi: 10.1016/j.actamat.2019.03.034
16 LI T , KENT D , SHA G , et al. New insights into the phase transformations to isothermal ω and ω-assisted α in near β-Ti alloys[J]. Acta Materialia, 2016, 106, 353- 366.
doi: 10.1016/j.actamat.2015.12.046
17 王庆娟, 高颀, 王快社, 等. 一种多元合金复合强化高强钛合金及其制备方法: CN201310040063.5[P]. 2013-05-22.
17 WANG Q J, GAO X, WANG K S, et al. Multi-component alloy composite strengthening high strength titanium alloy and preparation method thereof: CN201310040063.5[P]. 2013-05-22.
18 王庆娟, 双翼翔, 孙亚玲, 等. 锻造工艺对BTi20合金组织和力学性能的影响[J]. 稀有金属, 2019, 43 (1): 32- 37.
18 WANG Q J , SHUANG Y X , SUN Y L , et al. Process on microstructure and mechanical properties of BTi20 titanium alloy with two forging processes[J]. Rare Metals, 2019, 43 (1): 32- 37.
19 陈强, 王庆娟, 王鼎春, 等. 锻件组织不均匀性对新型近β钛合金组织与力学性能的影响[J]. 中国有色金属学报, 2018, 28 (1): 87- 96.
19 CHEN Q , WANG Q J , WANG D C , et al. Effect of microstructure inhomogeneity of forgings on microstructure and mechanical properties of new near β titanium alloy[J]. The Chinese Journal of Nonferrous Metals, 2018, 28 (1): 87- 96.
20 尹仁锟. 新型超高强β钛合金相析出特性研究[D]. 西安: 西安建筑科技大学, 2016.
20 YIN R K. Study on phase precipitation characteristics of new type ultra-high strength β titanium alloy [D]. Xi'an: Xi'an University of Architecture and Technology, 2016.
21 李强. 高强β钛合金热处理工艺优化及疲劳性能研究[D]. 西安: 西安建筑科技大学, 2018.
21 LI Q. Study on heat treatment process optimization and fatigue properties of high-strength beta titanium alloy [D]. Xi'an: Xi'an University of Architecture and Technology, 2018.
22 秦冬阳, 卢亚锋, 刘茜, 等. 近β马氏体钛合金中的β→ω相变[J]. 材料导报, 2012, 26 (5): 101- 104.
doi: 10.3969/j.issn.1005-023X.2012.05.023
22 QIN D Y , LU Y F , LIU Q , et al. Beta to omega transformation in near beta metastable titanium alloys[J]. Materials Review, 2012, 26 (5): 101- 104.
doi: 10.3969/j.issn.1005-023X.2012.05.023
23 PRIMA F , VERMAUT P , TEXIER G , et al. Evidence of α-nanophase heterogeneous nucleation from ω particles in a β-metastable Ti-based alloy by high-resolution electron microscopy[J]. Scripta Materialia, 2006, 54 (4): 645- 648.
doi: 10.1016/j.scriptamat.2005.10.024
24 AZIMZADEH S , RACK H J . Phase transformations in Ti-6.8Mo-4.5Fe-1.5Al[J]. Metallurgical & Materials Transactions A, 1998, 29 (10): 2455- 2467.
doi: 10.1007/s11661-998-0217-8
25 ZHANG X , KOU H C , LI J S , et al. Evolution of the secondary α phase morphologies during isothermal heat treatment in Ti-7333 alloy[J]. Journal of Alloys and Compounds, 2013, 577, 516- 522.
doi: 10.1016/j.jallcom.2013.06.180
26 DONG R F , LI J S , KOU H C , et al. ω-assisted refinement of α phase and its effect on the tensile properties of a near β titanium alloy[J]. Journal of Materials Science & Technology, 2020, 44, 24- 30.
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[3] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[4] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[5] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[6] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[7] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[8] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[9] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[10] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[11] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[12] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[13] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[14] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
[15] 陈帅, 陶凤和, 贾长治, 孙河洋. 成形角度对选区激光熔化4Cr5MoSiV1钢组织和性能的影响[J]. 材料工程, 2022, 50(3): 122-130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn