Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (5): 75-81    DOI: 10.11868/j.issn.1001-4381.2020.000692
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
W18O49/C-TiO2直接Z型光催化剂的制备及光解水制氢性能
张坤, 杨玉蓉, 陈飞阳, 齐琪, 张春光, 高帆
黑河学院 理学院, 黑龙江 黑河 164300
Preparation of W18O49/C-TiO2 direct Z-scheme photocatalyst and photocatalytic water splitting for H2 production
ZHANG Kun, YANG Yu-rong, CHEN Fei-yang, QI Qi, ZHANG Chun-guang, GAO Fan
College of Science, Heihe University, Heihe 164300, Heilongjiang, China
全文: PDF(10764 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 采用水热法制备W18O49/C-TiO2直接Z型光催化剂。使用XRD,SEM,TEM,HRTEM,PL等测试手段对样品的结构、形貌、光生载流子的输运特性及能带结构进行表征。在模拟太阳光照射下,不添加任何牺牲剂,研究样品的光解水制氢性能及其量子效率。结果表明:W18O49/C-TiO2直接Z型光催化剂的构建显著提高催化剂的光吸收性能,加速光生电荷的分离和传输,使更多的光生电子参与光催化还原反应,从而使样品具有高效的光催化活性。光解水制氢测试显示,W18O49/C-TiO2直接Z型异质结在模拟太阳光照射下,在不添加任何牺牲剂的条件下,产氢速率达209 μmol·h-1·g-1,并具有较强的光催化稳定性,在24 h的循环测试中,产氢量保持不变。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张坤
杨玉蓉
陈飞阳
齐琪
张春光
高帆
关键词 W18O49C-TiO2Z型光解水制氢    
Abstract:W18O49/C-TiO2 direct Z-scheme photocatalyst was prepared by a simple hydrothermal method. The structure, morphology, transport properties of photogenerated carriers and energy band structure were characterized by XRD, SEM, TEM, HRTEM, PL and other measurements. Under simulated sunlight illumination, the photocatalytic water splitting performance for hydrogen (H2) production and quantum efficiency were studied without adding any sacrificial agent. The results show that the construction of W18O49/C-TiO2 direct Z-scheme photocatalyst can significantly improve light absorption, accelerate the separation and transport of photogenerated carriers, and enable more photogenerated electrons participate in the photocatalytic reduction reaction, so the sample possesses high efficient photocatalytic activity. The photocatalytic H2 production tests show that under simulated sunlight illumination, the W18O49/C-TiO2 direct Z-scheme heterojunction can achieve H2 production rate of 209 μmol·h-1·g-1 without adding any sacrificial agents. It also exhibits strong photocatalytic stability; the H2 production remains unchanged during the 24 h cycle test.
Key wordsW18O49    C-TiO2    Z-scheme    photocatalytic water splitting    H2 production
收稿日期: 2020-07-27      出版日期: 2021-05-21
中图分类号:  TB321  
基金资助:黑龙江省教育厅基本科研业务费科学研究创新专项基金项目(2019-KYYWF-0451)
通讯作者: 杨玉蓉(1979-),女,副教授,博士,研究方向为光电功能材料,联系地址:黑龙江省黑河市黑河学院理学院(164300),yangyu ronghhxy@126.com     E-mail: yangyu ronghhxy@126.com
引用本文:   
张坤, 杨玉蓉, 陈飞阳, 齐琪, 张春光, 高帆. W18O49/C-TiO2直接Z型光催化剂的制备及光解水制氢性能[J]. 材料工程, 2021, 49(5): 75-81.
ZHANG Kun, YANG Yu-rong, CHEN Fei-yang, QI Qi, ZHANG Chun-guang, GAO Fan. Preparation of W18O49/C-TiO2 direct Z-scheme photocatalyst and photocatalytic water splitting for H2 production. Journal of Materials Engineering, 2021, 49(5): 75-81.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000692      或      http://jme.biam.ac.cn/CN/Y2021/V49/I5/75
[1] SHI M, LI G N, LI J M, et al. Intrinsic facet-dependent reactivity of well-defined BiOBr nanosheets on photocatalytic water splitting[J]. Angewandte Chemie, 2020, 59:6590-6595.
[2] 杜晶晶, 赵军伟, 程晓民, 等. 高效光催化降解气相苯纳米TiO2微球的制备[J]. 材料工程, 2020, 48(5):100-105. DU J J, ZHAO J W, CHENG X M, et al. Preparation of nano-TiO2 microspheres with high efficiency in photocatalytic degradation of gaseous benzene[J]. Journal of Materials Engineering, 2020, 48(5):100-105.
[3] 田宇, 郑威, 何贵伟, 等. 一步水热法制备Sn2+掺杂TiO2及光催化产氢性能研究[J].精细化工, 2018, 7(35):1182-1187. TIAN Y, ZHENG W, HE G W, et al. Preparation of Sn2+ doped TiO2 by one-step hydrothermal method and its photocatalytic performance for hydrogen production[J]. Fine Chemicals, 2018, 7(35):1182-1187.
[4] MUKHERJEE K, ACHARYA K, BISWAS A, et al. TiO2 nano-particles co-doped with nitrogen and fluorine as visible-light-activated antifungal agents[J]. ACS Applied Nano Materials, 2020, 3(2):2016-2025.
[5] VEZIROGLU S, OBERMANN A L, ULLRICH M, et al. Photo-deposition of Au nanoclusters for enhanced photocatalytic dye degradation over TiO2 thin film[J]. ACS Applied Materials & Interfaces, 2020, 12(13):14983-14992.
[6] HASELMANN G M, BAUMGARTNER B, WANG J, et al. In situ Pt photodeposition and methanol photooxidation on Pt/TiO2:Pt-loading-dependent photocatalytic reaction pathways studied by liquid-phase infrared spectroscopy[J]. ACS Catalysis, 2020, 10(5):2964-2977.
[7] ZHANG X K, LI L, ZENG Y Q, et al. TiO2/graphitic carbon nitride nanosheets for the photocatalytic degradation of rhodamine B under simulated sunlight[J]. ACS Applied Nano Materials, 2019, 2(11):7255-7265.
[8] LUO J Q, WANG Z J, JIANG H X, et al. Localized building titania-graphene charge transfer interfaces for enhanced photocatalytic performance[J]. Langmuir, 2020, 36(17):4637-4644.
[9] XIA X, PENG S, BAO Y, et al. Control of interface between anatase TiO2 nanoparticles and rutile TiO2 nanorods for efficient photocatalytic H2 generation[J]. Journal of Power Sources, 2018, 376:11-17.
[10] VALVERDE-GONZÁLEZ A, LÓPEZ CALIXTO C G, BARAWI M, et al. Understanding charge transfer mechanism on effective truxene-based porous polymers-TiO2 hybrid photocatalysts for hydrogen evolution[J]. ACS Applied Energy Materials, 2020, 3(5):4411-4420.
[11] KIM K R, CHOI S H, YAVUZ C T, et al. Direct Z-scheme tannin-TiO2 heterostructure for photocatalytic gold ion recovery from electronic waste[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(19):7359-7370.
[12] QI K Z, CHENG B, YU J G, et al. A review on TiO2-based Z-scheme photocatalysts[J].Chinese Journal of Catalysis, 2017, 38(12):1936-1955.
[13] AGUIRRE M E, ZHOU R X, EUGENE A J, et al. Cu2O/TiO2 heterostructures for CO2 reduction through a direct Z-scheme:protecting Cu2O from photocorrosion[J]. Applied Catalysis B:Environmental, 2017, 217:485-493.
[14] LOW J X, DAI B Z, TONG T, et al. In situ irradiated X-ray photoelectron spectroscopy investigation on a direct Z-scheme TiO2/CdS composite film photocatalyst[J].Advanced Materials, 2018, 31(6):1802981.
[15] XUE Y T, WU Z S, HE X F, et al. Constructing a Z-scheme hetero-junction of egg-like core@shell CdS@TiO2 photocatalyst via a facile reflux method for enhanced photocatalytic performance[J]. Nanomaterials, 2019, 9:222.
[16] CHE W, CHENG W R, YAO T, et al. Fast photoelectron transfer in (C-ring)-C3N4 plane heterostructural nanosheets for overall water splitting[J]. Journal of American Chemical Society, 2017, 139(8):3021-3026.
[17] ZHANG Y, ZHAO Z Y, CHEN J R, et al. C-doped hollow TiO2 spheres:in situ synthesis, controlled shell thickness, and superior visible-light photocatalytic activity[J]. Applied Catalysis B:Environmental, 2015, 165:715-722.
[18] DI J, XIA J X, JI M X, et al. Nitrogen-doped carbon quantum dots/BiOBr ultrathin nanosheets:in situ strong coupling and improved molecular oxygen activation ability under visible light irradiation[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(1):136-146.
[19] YANG Y R, GAO P, WANG Y, et al. A direct charger transfer from interface to surface for the highly efficient spatial separation of electrons and holes:the construction of Ti-C bonded interfaces in TiO2-C composite as a touchstone for photocatalytic water splitting[J]. Nano Energy, 2017, 33:29-36.
[20] LIU J C, MARGEAT O, WALID D, et al. Gram-scale synthesis of ultrathin tungsten oxide nanowires and their aspect ratio-dependent photocatalytic activity[J]. Advanced Functional Materials, 2014, 24:6029-6037.
[21] 李海涛, 王茗. g-C3N4-W18O49复合光催化剂的制备及其光催化机理研究[J]. 人工晶体学报, 2018, 47(1):87-91. LI H T, WANG M. Preparation and photocatalytic mechanism of g-C3N4-W18O49 composite photocatalyst[J]. Journal of Synthetic Crystals, 2018, 47(1):87-91.
[22] LU N, ZHANG Z Y, WANG Y, et al. Direct evidence of IR-dri-ven hot electron transfer in metal-free plasmonic W18O49/carbon heterostructures for enhanced catalytic H2 production[J]. App-lied Catalysis B:Environmental, 2018, 233(5):19-25.
[1] 李鹏鹏, 苏复, 顾正桂. CeO2-Ag/AgBr复合微球的合成及光催化性能[J]. 材料工程, 2020, 48(9): 69-76.
[2] 李绵昆. 高压制氢瓶底破裂原因分析[J]. 材料工程, 1994, 0(6): 42-44,18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn