Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (9): 60-68    DOI: 10.11868/j.issn.1001-4381.2020.000703
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
石墨电极表面聚丙烯腈纳米纤维膜的制备及性能
肖伟, 杨占旭, 乔庆东
辽宁石油化工大学 石油化工学院, 辽宁 抚顺 113001
Preparation and performance of polyacrylonitrile-based nanofiber separator on surface of graphite electrode
XIAO Wei, YANG Zhan-xu, QIAO Qing-dong
School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, Liaoning, China
全文: PDF(16796 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 为了充分利用纳米纤维膜的多孔特性,同时克服其低机械强度的缺陷,以聚丙烯腈(PAN)为主要原料,采用静电纺丝法在石墨电极表面制备PAN纳米纤维膜,形成隔膜-电极一体化结构单元(SAA),并对SAA的孔道结构、力学性能、电解液性能、热尺寸稳定性及电池性能进行系统研究。结果表明:SAA中PAN隔膜与石墨电极的粗糙表面结合紧密,PAN隔膜呈现出发达的孔道结构,电解液亲和性良好;在150℃热处理0.5 h,SAA表面隔膜的热收缩率小于2%,显著优于市售聚烯烃隔膜。基于良好的理化特性,SAA装配的钴酸锂全电池表现出优异的循环容量和倍率容量保持性,如在0.2 C下,经历200次循环后电池的放电容量保持率为98%,在32 C下电池的放电容量为0.5 C下的44.3%。因此,电极表面直接制备纳米纤维膜可形成完整的隔膜-电极一体化单元,在充分发挥纳米纤维膜优势的同时,可优化电极与隔膜的界面相容性、改善电池的充放电性能,并能够提高电池的装配效率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖伟
杨占旭
乔庆东
关键词 锂离子电池纳米纤维膜一体化单元界面相容性力学性能充放电性能    
Abstract:In order to make full use of the porous structure and overcome the shortcoming of low mechanical strength of nanofiber-based separators, polyacrylonitrile (PAN) separator was prepared directly on the surface of graphite anode by the electrospinning method. And an integrated separator/anode assembly (SAA) was formed. The microstructure, mechanical strength, electrolyte wettability, thermal resistance and battery performance were systematically investigated. The results show that the nanofibers in PAN separator are tightly bonded to the rough surface of graphite anode, resulting in a well-integrated interface structure (tensile strength higher than 200 MPa). Compared with polyolefin separators, SAA exhibits better electrolyte affinity and higher ion conductivity (1.9 mS/cm). The above advantages endow the LiCoO2/SAA full cell with better C-rate (capacity retention 44.3% at 32 C compared with that at 0.5 C) and cycling performances (capacity retention 98% after 200 cycles at 0.2 C) compared with those of LiCoO2/polyolefin separator/graphite battery. Consequently, this work provides an advanced separator/anode assembly and the corresponding fabrication method, which may be a new strategy for improving the charge-discharge performance and assembly efficiency of lithium-ion batteries.
Key wordslithium-ion battery    nanofiber separator    integrated assembly    interface compatibility    mechanical property    charge-discharge performance
收稿日期: 2020-07-29      出版日期: 2021-09-17
中图分类号:  TM912  
  O646  
基金资助:国家自然科学基金项目(21676282,21671092)
通讯作者: 肖伟(1982-),男,副教授,博士,主要从事化学电源用膜材料及分离膜材料的基础和应用研究,联系地址:辽宁省抚顺市望花区丹东路西段1号辽宁石油化工大学石油化工学院(113001),E-mail:nuaaxiaowei@163.com     E-mail: nuaaxiaowei@163.com
引用本文:   
肖伟, 杨占旭, 乔庆东. 石墨电极表面聚丙烯腈纳米纤维膜的制备及性能[J]. 材料工程, 2021, 49(9): 60-68.
XIAO Wei, YANG Zhan-xu, QIAO Qing-dong. Preparation and performance of polyacrylonitrile-based nanofiber separator on surface of graphite electrode. Journal of Materials Engineering, 2021, 49(9): 60-68.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000703      或      http://jme.biam.ac.cn/CN/Y2021/V49/I9/60
[1] GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: a perspective[J]. J Am Chem Soc, 2013, 135(4): 1167-1176.
[2] LEE H, YANILMAZ M, TOPRAKCI O, et al. A review of recent developments in membrane separators for rechargeable lithium-ion batteries[J]. Energy Environ Sci, 2014, 7(12): 3857-3886.
[3] XIANG Y Y, LI J S, LEI J H, et al. Advanced separators for lithium-ion and lithium-sulfur batteries: a review of recent progress[J]. ChemSusChem, 2016, 9(21): 3023-3039.
[4] 肖伟, 巩亚群, 王红, 等. 锂离子电池隔膜技术进展[J]. 储能科学与技术, 2016, 5(2): 188-196. XIAO W, GONG Y Q, WANG H, et al. Research progress of separators for lithium-ion batteries[J]. Energy Storage Science and Technology, 2016, 5(2): 188-196.
[5] CAI M, YUAN D, ZHANG X, et al. Lithium ion battery separator with improved performance via side-by-side bicomponent electrospinning of PVDF-HFP/PI followed by 3D thermal crosslinking[J]. J Power Sources, 2020, 461: 228123.
[6] 张红涛, 胡昊, 顾波, 等. 聚偏氟乙烯-沸石复合锂电隔膜的制备及性能[J]. 复合材料学报, 2017, 34(3): 625-631. ZHANG H T, HU H, GU B, et al. Preparation and performances of PVDF-zeolite composite separator for lithium-ion batteries[J]. Acta Materiae Compositae Sinica, 2017, 34(3): 625-631.
[7] PENG L L, ZHU Y, CHEN D H, et al. Two-dimensional materials for beyond-lithium-ion batteries[J]. Adv Energy Mater, 2016, 6(11): 1600025.
[8] DONG G Q, DONG N X, LIU B X, et al. Ultrathin inorganic-nanoshell encapsulation: TiO2 coated polyimide nanofiber membrane enabled by layer-by-layer deposition for advanced and safe high-power LIB separator[J]. J Membr Sci, 2020, 601: 117884.
[9] JEONG H S, HONG S C, LEE S Y, et al. Effect of microporous structure on thermal shrinkage and electrochemical performance of Al2O3/poly (vinylidene fluoride-hexafluoropropylene) composite separators for lithium-ion batteries[J]. J Membr Sci, 2010, 364(1/2): 177-182.
[10] ZHU X, JIANG X, AI X P, et al. TiO2 ceramic-grafted polyethylene separators for enhanced thermostability and electrochemical performance of lithium-ion batteries[J]. J Membr Sci, 2016, 504: 97-103.
[11] MA Y, HU J P, WANG Z T, et al. Poly(vinylidene fluoride)/SiO2 composite membrane separators for high-performance lithium-ion batteries to provide battery capacity with improved separator properties[J] J Power Sources, 2020, 451: 227759.
[12] XIAO W, GONG Y Q, WANG H, et al. Preparation and electrochemical performance of ZrO2 nanoparticle embedded nonwoven composite separator for lithium-ion batteries[J]. Ceramics International, 2015, 41(10): 14223-14229.
[13] CHERUVALLY G, KIM J K, CHOI L W, et al. Electrospun polymer membrane activated with room temperature ionic liquid: novel polymer electrolyte for lithium-ion batteries[J]. J Power Sources, 2007, 172: 863-869.
[14] 李可峰, 尹晓燕. 聚苯醚纳米纤维锂电隔膜的制备[J]. 材料工程, 2018, 46(10):120-126. LI K F, YIN X Y. Polyphenylene oxide-based nanofiber separator prepared by electrospinning method of lithium-ion batteries[J]. Journal of Materials Engineering, 2018, 46(10):120-126.
[15] 龚文正, 周晶晶, 阮诗伦, 等. 静电纺丝与静电喷雾技术共纺制备PPESK/PVDF复合锂电池隔膜[J]. 材料工程, 2018, 46(3):1-6. GONG W Z, ZHOU J J, RUAN S L, et al. PPESK/PVDF lithium-ion battery composite separators fabricated by combination of electrospinning and electrospraying techniques [J]. Journal of Materials Engineering, 2018, 46(3):1-6.
[16] PAN R, SUN R, WANG Z, et al. Sandwich-structured nano/micro fiber-based separators for lithium metal batteries[J]. Nano Energy, 2019, 55: 316-326.
[17] GONG S, JEON H, LEE H, et al. Effects of an integrated separator/electrode assembly on enhanced thermal stability and rate capability of lithium-ion batteries[J]. ACS Appl Mater Interfaces, 2017, 9(21): 17814-17821.
[18] LI Y F, LI Q H, TAN Z C, et al. A review of electrospun nanofiber-based separators for rechargeable lithium-ion batteries[J]. J Power Sources, 2019, 443: 227262.
[19] CHOI N S, CHEN Z, FREUNBERGER S A, et al. Challenges facing lithium batteries and electrical double-layer capacitors[J]. Angew Chem Int Ed, 2012, 51(40): 9994-10024.
[20] WEN J L, YUAN Z Z, ZHAO Y Y, et al. Porous membranes in secondary battery technologies[J]. Chem Soc Rev, 2017, 46(8): 2199-2236.
[1] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[2] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
[3] 陈帅, 陶凤和, 贾长治, 孙河洋. 成形角度对选区激光熔化4Cr5MoSiV1钢组织和性能的影响[J]. 材料工程, 2022, 50(3): 122-130.
[4] 唐鹏钧, 房立家, 王兴元, 李沛勇, 张学军. 人工时效对激光选区熔化AlMg4.5Sc0.55Mn0.5Zr0.2合金显微组织和力学性能的影响[J]. 材料工程, 2022, 50(2): 84-93.
[5] 邵震, 崔雷, 王东坡, 陈永亮, 胡正根, 王非凡. 几何参数对2219铝合金拉拔式摩擦塞补焊接头微观组织及力学性能的影响[J]. 材料工程, 2022, 50(1): 25-32.
[6] 吴程浩, 刘涛, 高嵩, 石磊, 刘洪涛. 铝/钢异种金属的超声振动强化搅拌摩擦焊接工艺[J]. 材料工程, 2022, 50(1): 33-42.
[7] 汪晨阳, 张安邦, 常增花, 吴帅锦, 刘智, 庞静. 锂离子电池用多孔电极结构设计及制备技术进展[J]. 材料工程, 2022, 50(1): 67-79.
[8] 徐学宏, 郑义珠, 陈吉平, 宁博, 刘晓忱. 缝合参数对泡沫夹层结构复合材料力学性能的影响[J]. 材料工程, 2022, 50(1): 132-137.
[9] 杨夕馨, 常增花, 邵泽超, 吴帅锦, 王仁念, 王建涛, 卢世刚. 富锂锰基正极材料在不同温度下的极化行为[J]. 材料工程, 2021, 49(9): 69-78.
[10] 辜宁霞, 荆婉如, 宁磊, 吕芳洁, 宋立新, 熊杰. 钙钛矿太阳能电池用Ag/ZrO2/C柔性纳米纤维膜电极[J]. 材料工程, 2021, 49(9): 79-86.
[11] 王庆娟, 吴金城, 王伟, 杜忠泽, 尹仁锟. 超高强β钛合金等温相转变特性及力学性能[J]. 材料工程, 2021, 49(9): 94-100.
[12] 孙昊飞, 肖志, 韦凯, 杨旭静, 齐军. 预弯曲变形对CP800复相钢力学性能的影响[J]. 材料工程, 2021, 49(8): 81-88.
[13] 姜卓钰, 束小文, 吕晓旭, 高晔, 周怡然, 董禹飞, 焦健. SiC晶须增强SiCf/SiC复合材料的力学性能[J]. 材料工程, 2021, 49(8): 89-96.
[14] 欧阳丽霞, 武兆辉, 王建涛. 锂离子电池浆料的制备技术及其影响因素[J]. 材料工程, 2021, 49(7): 21-34.
[15] 张海连, 段淼, 李四中, 林志勇. 催化炭化-原位反应/反应熔体浸渗法制备C/C-SiC复合材料[J]. 材料工程, 2021, 49(7): 85-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn