In order to make full use of the porous structure and overcome the shortcoming of low mechanical strength of nanofiber-based separators, polyacrylonitrile (PAN) separator was prepared directly on the surface of graphite anode by the electrospinning method. And an integrated separator/anode assembly (SAA) was formed. The microstructure, mechanical strength, electrolyte wettability, thermal resistance and battery performance were systematically investigated. The results show that the nanofibers in PAN separator are tightly bonded to the rough surface of graphite anode, resulting in a well-integrated interface structure (tensile strength higher than 200 MPa). Compared with polyolefin separators, SAA exhibits better electrolyte affinity and higher ion conductivity (1.9 mS/cm). The above advantages endow the LiCoO2/SAA full cell with better C-rate (capacity retention 44.3% at 32 C compared with that at 0.5 C) and cycling performances (capacity retention 98% after 200 cycles at 0.2 C) compared with those of LiCoO2/polyolefin separator/graphite battery. Consequently, this work provides an advanced separator/anode assembly and the corresponding fabrication method, which may be a new strategy for improving the charge-discharge performance and assembly efficiency of lithium-ion batteries.
GOODENOUGH J B , PARK K S . The Li-ion rechargeable battery: a perspective[J]. J Am Chem Soc, 2013, 135 (4): 1167- 1176.
doi: 10.1021/ja3091438
2
LEE H , YANILMAZ M , TOPRAKCI O , et al. A review of recent developments in membrane separators for rechargeable lithium-ion batteries[J]. Energy Environ Sci, 2014, 7 (12): 3857- 3886.
doi: 10.1039/C4EE01432D
3
XIANG Y Y , LI J S , LEI J H , et al. Advanced separators for lithium-ion and lithium-sulfur batteries: a review of recent progress[J]. ChemSusChem, 2016, 9 (21): 3023- 3039.
doi: 10.1002/cssc.201600943
XIAO W , GONG Y Q , WANG H , et al. Research progress of separators for lithium-ion batteries[J]. Energy Storage Science and Technology, 2016, 5 (2): 188- 196.
doi: 10.3969/j.issn.2095-4239.2016.02.010
5
CAI M , YUAN D , ZHANG X , et al. Lithium ion battery separator with improved performance via side-by-side bicomponent electrospinning of PVDF-HFP/PI followed by 3D thermal crosslinking[J]. J Power Sources, 2020, 461, 228123.
doi: 10.1016/j.jpowsour.2020.228123
ZHANG H T , HU H , GU B , et al. Preparation and performances of PVDF-zeolite composite separator for lithium-ion batteries[J]. Acta Materiae Compositae Sinica, 2017, 34 (3): 625- 631.
7
PENG L L , ZHU Y , CHEN D H , et al. Two-dimensional materials for beyond-lithium-ion batteries[J]. Adv Energy Mater, 2016, 6 (11): 1600025.
doi: 10.1002/aenm.201600025
8
DONG G Q , DONG N X , LIU B X , et al. Ultrathin inorganic-nanoshell encapsulation: TiO2 coated polyimide nanofiber membrane enabled by layer-by-layer deposition for advanced and safe high-power LIB separator[J]. J Membr Sci, 2020, 601, 117884.
doi: 10.1016/j.memsci.2020.117884
9
JEONG H S , HONG S C , LEE S Y , et al. Effect of microporous structure on thermal shrinkage and electrochemical performance of Al2O3/poly (vinylidene fluoride-hexafluoropropylene) composite separators for lithium-ion batteries[J]. J Membr Sci, 2010, 364 (1/2): 177- 182.
10
ZHU X , JIANG X , AI X P , et al. TiO2 ceramic-grafted polyethylene separators for enhanced thermostability and electrochemical performance of lithium-ion batteries[J]. J Membr Sci, 2016, 504, 97- 103.
doi: 10.1016/j.memsci.2015.12.059
11
MA Y , HU J P , WANG Z T , et al. Poly(vinylidene fluoride)/SiO2 composite membrane separators for high-performance lithium-ion batteries to provide battery capacity with improved separator properties[J]. J Power Sources, 2020, 451, 227759.
doi: 10.1016/j.jpowsour.2020.227759
12
XIAO W , GONG Y Q , WANG H , et al. Preparation and electrochemical performance of ZrO2 nanoparticle embedded nonwoven composite separator for lithium-ion batteries[J]. Ceramics International, 2015, 41 (10): 14223- 14229.
doi: 10.1016/j.ceramint.2015.07.048
13
CHERUVALLY G , KIM J K , CHOI L W , et al. Electrospun polymer membrane activated with room temperature ionic liquid: novel polymer electrolyte for lithium-ion batteries[J]. J Power Sources, 2007, 172, 863- 869.
doi: 10.1016/j.jpowsour.2007.07.057
LI K F , YIN X Y . Polyphenylene oxide-based nanofiber separator prepared by electrospinning method of lithium-ion batteries[J]. Journal of Materials Engineering, 2018, 46 (10): 120- 126.
doi: 10.11868/j.issn.1001-4381.2017.000464
GONG W Z , ZHOU J J , RUAN S L , et al. PPESK/PVDF lithium-ion battery composite separators fabricated by combination of electrospinning and electrospraying techniques[J]. Journal of Materials Engineering, 2018, 46 (3): 1- 6.
doi: 10.3969/j.issn.1673-1433.2018.03.001
16
PAN R , SUN R , WANG Z , et al. Sandwich-structured nano/micro fiber-based separators for lithium metal batteries[J]. Nano Energy, 2019, 55, 316- 326.
doi: 10.1016/j.nanoen.2018.11.005
17
GONG S , JEON H , LEE H , et al. Effects of an integrated separator/electrode assembly on enhanced thermal stability and rate capability of lithium-ion batteries[J]. ACS Appl Mater Interfaces, 2017, 9 (21): 17814- 17821.
doi: 10.1021/acsami.7b00044
18
LI Y F , LI Q H , TAN Z C , et al. A review of electrospun nanofiber-based separators for rechargeable lithium-ion batteries[J]. J Power Sources, 2019, 443, 227262.
19
CHOI N S , CHEN Z , FREUNBERGER S A , et al. Challenges facing lithium batteries and electrical double-layer capacitors[J]. Angew Chem Int Ed, 2012, 51 (40): 9994- 10024.
doi: 10.1002/anie.201201429
20
WEN J L , YUAN Z Z , ZHAO Y Y , et al. Porous membranes in secondary battery technologies[J]. Chem Soc Rev, 2017, 46 (8): 2199- 2236.