Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (9): 60-68    DOI: 10.11868/j.issn.1001-4381.2020.000703
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
石墨电极表面聚丙烯腈纳米纤维膜的制备及性能
肖伟(), 杨占旭, 乔庆东
辽宁石油化工大学 石油化工学院, 辽宁 抚顺 113001
Preparation and performance of polyacrylonitrile-based nanofiber separator on surface of graphite electrode
Wei XIAO(), Zhan-xu YANG, Qing-dong QIAO
School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, Liaoning, China
全文: PDF(16796 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

为了充分利用纳米纤维膜的多孔特性,同时克服其低机械强度的缺陷,以聚丙烯腈(PAN)为主要原料,采用静电纺丝法在石墨电极表面制备PAN纳米纤维膜,形成隔膜-电极一体化结构单元(SAA),并对SAA的孔道结构、力学性能、电解液性能、热尺寸稳定性及电池性能进行系统研究。结果表明:SAA中PAN隔膜与石墨电极的粗糙表面结合紧密,PAN隔膜呈现出发达的孔道结构,电解液亲和性良好;在150℃热处理0.5 h,SAA表面隔膜的热收缩率小于2%,显著优于市售聚烯烃隔膜。基于良好的理化特性,SAA装配的钴酸锂全电池表现出优异的循环容量和倍率容量保持性,如在0.2 C下,经历200次循环后电池的放电容量保持率为98%,在32 C下电池的放电容量为0.5 C下的44.3%。因此,电极表面直接制备纳米纤维膜可形成完整的隔膜-电极一体化单元,在充分发挥纳米纤维膜优势的同时,可优化电极与隔膜的界面相容性、改善电池的充放电性能,并能够提高电池的装配效率。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖伟
杨占旭
乔庆东
关键词 锂离子电池纳米纤维膜一体化单元界面相容性力学性能充放电性能    
Abstract

In order to make full use of the porous structure and overcome the shortcoming of low mechanical strength of nanofiber-based separators, polyacrylonitrile (PAN) separator was prepared directly on the surface of graphite anode by the electrospinning method. And an integrated separator/anode assembly (SAA) was formed. The microstructure, mechanical strength, electrolyte wettability, thermal resistance and battery performance were systematically investigated. The results show that the nanofibers in PAN separator are tightly bonded to the rough surface of graphite anode, resulting in a well-integrated interface structure (tensile strength higher than 200 MPa). Compared with polyolefin separators, SAA exhibits better electrolyte affinity and higher ion conductivity (1.9 mS/cm). The above advantages endow the LiCoO2/SAA full cell with better C-rate (capacity retention 44.3% at 32 C compared with that at 0.5 C) and cycling performances (capacity retention 98% after 200 cycles at 0.2 C) compared with those of LiCoO2/polyolefin separator/graphite battery. Consequently, this work provides an advanced separator/anode assembly and the corresponding fabrication method, which may be a new strategy for improving the charge-discharge performance and assembly efficiency of lithium-ion batteries.

Key wordslithium-ion battery    nanofiber separator    integrated assembly    interface compatibility    mechanical property    charge-discharge performance
收稿日期: 2020-07-29      出版日期: 2021-09-17
中图分类号:  TM912  
  O646  
基金资助:国家自然科学基金项目(21676282);国家自然科学基金项目(21671092)
通讯作者: 肖伟     E-mail: nuaaxiaowei@163.com
作者简介: 肖伟(1982-), 男, 副教授, 博士, 主要从事化学电源用膜材料及分离膜材料的基础和应用研究, 联系地址: 辽宁省抚顺市望花区丹东路西段1号辽宁石油化工大学石油化工学院(113001), E-mail: nuaaxiaowei@163.com
引用本文:   
肖伟, 杨占旭, 乔庆东. 石墨电极表面聚丙烯腈纳米纤维膜的制备及性能[J]. 材料工程, 2021, 49(9): 60-68.
Wei XIAO, Zhan-xu YANG, Qing-dong QIAO. Preparation and performance of polyacrylonitrile-based nanofiber separator on surface of graphite electrode. Journal of Materials Engineering, 2021, 49(9): 60-68.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000703      或      http://jme.biam.ac.cn/CN/Y2021/V49/I9/60
Fig.1  隔膜-负极一体化单元制备过程示意图及相应的实物照片
Fig.2  石墨负极(a)、SAA06(b)及SAA40(c)表面(1)和截面(2)SEM照片
Fig.3  不同厚度PAN纳米纤维膜的拉伸强度
Fig.4  不同样品的平均孔径、孔隙率(a)和拉伸强度(b)
Fig.5  隔膜-石墨负极(SAA40)和隔膜-铜箔(PC40)的剥离强度曲线
Sample Contact angle/(°) Electrolyte uptake/%
0 min 10 min 20 min 40 min 80 min 160 min 200 min
PE 43.6 0 53 62 78 108 110 111
P40 0 0 349 367 391 409 415 417
SAA40 0
Table 1  不同样品的电解液性能比较
Fig.6  电解液沿不同样品的爬升高度与时间的关系
(a)5 s;(b)30 s;(c)60 s;(d)120 s
Fig.7  热处理(150 ℃/0.5 h)前后不同样品的照片
(a)PE; (b)P40;(c)SAA40
Fig.8  不同隔膜的Nyquist曲线(a)及LSV曲线(b)
Fig.9  PE膜(a)和SAA40(b)装配电池的首次充放电性能
Fig.10  PE膜和SAA40装配电池的倍率容量保持率(a)和循环容量保持率(b)
1 GOODENOUGH J B , PARK K S . The Li-ion rechargeable battery: a perspective[J]. J Am Chem Soc, 2013, 135 (4): 1167- 1176.
doi: 10.1021/ja3091438
2 LEE H , YANILMAZ M , TOPRAKCI O , et al. A review of recent developments in membrane separators for rechargeable lithium-ion batteries[J]. Energy Environ Sci, 2014, 7 (12): 3857- 3886.
doi: 10.1039/C4EE01432D
3 XIANG Y Y , LI J S , LEI J H , et al. Advanced separators for lithium-ion and lithium-sulfur batteries: a review of recent progress[J]. ChemSusChem, 2016, 9 (21): 3023- 3039.
doi: 10.1002/cssc.201600943
4 肖伟, 巩亚群, 王红, 等. 锂离子电池隔膜技术进展[J]. 储能科学与技术, 2016, 5 (2): 188- 196.
doi: 10.3969/j.issn.2095-4239.2016.02.010
4 XIAO W , GONG Y Q , WANG H , et al. Research progress of separators for lithium-ion batteries[J]. Energy Storage Science and Technology, 2016, 5 (2): 188- 196.
doi: 10.3969/j.issn.2095-4239.2016.02.010
5 CAI M , YUAN D , ZHANG X , et al. Lithium ion battery separator with improved performance via side-by-side bicomponent electrospinning of PVDF-HFP/PI followed by 3D thermal crosslinking[J]. J Power Sources, 2020, 461, 228123.
doi: 10.1016/j.jpowsour.2020.228123
6 张红涛, 胡昊, 顾波, 等. 聚偏氟乙烯-沸石复合锂电隔膜的制备及性能[J]. 复合材料学报, 2017, 34 (3): 625- 631.
6 ZHANG H T , HU H , GU B , et al. Preparation and performances of PVDF-zeolite composite separator for lithium-ion batteries[J]. Acta Materiae Compositae Sinica, 2017, 34 (3): 625- 631.
7 PENG L L , ZHU Y , CHEN D H , et al. Two-dimensional materials for beyond-lithium-ion batteries[J]. Adv Energy Mater, 2016, 6 (11): 1600025.
doi: 10.1002/aenm.201600025
8 DONG G Q , DONG N X , LIU B X , et al. Ultrathin inorganic-nanoshell encapsulation: TiO2 coated polyimide nanofiber membrane enabled by layer-by-layer deposition for advanced and safe high-power LIB separator[J]. J Membr Sci, 2020, 601, 117884.
doi: 10.1016/j.memsci.2020.117884
9 JEONG H S , HONG S C , LEE S Y , et al. Effect of microporous structure on thermal shrinkage and electrochemical performance of Al2O3/poly (vinylidene fluoride-hexafluoropropylene) composite separators for lithium-ion batteries[J]. J Membr Sci, 2010, 364 (1/2): 177- 182.
10 ZHU X , JIANG X , AI X P , et al. TiO2 ceramic-grafted polyethylene separators for enhanced thermostability and electrochemical performance of lithium-ion batteries[J]. J Membr Sci, 2016, 504, 97- 103.
doi: 10.1016/j.memsci.2015.12.059
11 MA Y , HU J P , WANG Z T , et al. Poly(vinylidene fluoride)/SiO2 composite membrane separators for high-performance lithium-ion batteries to provide battery capacity with improved separator properties[J]. J Power Sources, 2020, 451, 227759.
doi: 10.1016/j.jpowsour.2020.227759
12 XIAO W , GONG Y Q , WANG H , et al. Preparation and electrochemical performance of ZrO2 nanoparticle embedded nonwoven composite separator for lithium-ion batteries[J]. Ceramics International, 2015, 41 (10): 14223- 14229.
doi: 10.1016/j.ceramint.2015.07.048
13 CHERUVALLY G , KIM J K , CHOI L W , et al. Electrospun polymer membrane activated with room temperature ionic liquid: novel polymer electrolyte for lithium-ion batteries[J]. J Power Sources, 2007, 172, 863- 869.
doi: 10.1016/j.jpowsour.2007.07.057
14 李可峰, 尹晓燕. 聚苯醚纳米纤维锂电隔膜的制备[J]. 材料工程, 2018, 46 (10): 120- 126.
doi: 10.11868/j.issn.1001-4381.2017.000464
14 LI K F , YIN X Y . Polyphenylene oxide-based nanofiber separator prepared by electrospinning method of lithium-ion batteries[J]. Journal of Materials Engineering, 2018, 46 (10): 120- 126.
doi: 10.11868/j.issn.1001-4381.2017.000464
15 龚文正, 周晶晶, 阮诗伦, 等. 静电纺丝与静电喷雾技术共纺制备PPESK/PVDF复合锂电池隔膜[J]. 材料工程, 2018, 46 (3): 1- 6.
doi: 10.3969/j.issn.1673-1433.2018.03.001
15 GONG W Z , ZHOU J J , RUAN S L , et al. PPESK/PVDF lithium-ion battery composite separators fabricated by combination of electrospinning and electrospraying techniques[J]. Journal of Materials Engineering, 2018, 46 (3): 1- 6.
doi: 10.3969/j.issn.1673-1433.2018.03.001
16 PAN R , SUN R , WANG Z , et al. Sandwich-structured nano/micro fiber-based separators for lithium metal batteries[J]. Nano Energy, 2019, 55, 316- 326.
doi: 10.1016/j.nanoen.2018.11.005
17 GONG S , JEON H , LEE H , et al. Effects of an integrated separator/electrode assembly on enhanced thermal stability and rate capability of lithium-ion batteries[J]. ACS Appl Mater Interfaces, 2017, 9 (21): 17814- 17821.
doi: 10.1021/acsami.7b00044
18 LI Y F , LI Q H , TAN Z C , et al. A review of electrospun nanofiber-based separators for rechargeable lithium-ion batteries[J]. J Power Sources, 2019, 443, 227262.
19 CHOI N S , CHEN Z , FREUNBERGER S A , et al. Challenges facing lithium batteries and electrical double-layer capacitors[J]. Angew Chem Int Ed, 2012, 51 (40): 9994- 10024.
doi: 10.1002/anie.201201429
20 WEN J L , YUAN Z Z , ZHAO Y Y , et al. Porous membranes in secondary battery technologies[J]. Chem Soc Rev, 2017, 46 (8): 2199- 2236.
[1] 韩富娟, 常增花, 赵金玲, 王仁念, 丁海洋, 卢世刚. 高镍三元锂离子电池低温放电性能研究进展[J]. 材料工程, 2022, 50(9): 1-17.
[2] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[3] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[4] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[5] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[6] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[7] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[8] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[9] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[10] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[11] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[12] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[13] 史晓岩, 马磊磊, 常增花, 王建涛. 化成制度对富锂锰基/硅碳体系电池产气及电化学性能影响[J]. 材料工程, 2022, 50(5): 112-121.
[14] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[15] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn