Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (9): 79-86    DOI: 10.11868/j.issn.1001-4381.2020.000719
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
钙钛矿太阳能电池用Ag/ZrO2/C柔性纳米纤维膜电极
辜宁霞, 荆婉如, 宁磊, 吕芳洁, 宋立新(), 熊杰
浙江理工大学 纺织科学与工程学院, 杭州 310018
Ag/ZrO2/C flexible nanofiber films-based counter electrode for perovskite solar cells
Ning-xia GU, Wan-ru JING, Lei NING, Fang-jie LYU, Li-xin SONG(), Jie XIONG
College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
全文: PDF(18513 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

钙钛矿太阳能电池(perovskite solar cells,PSCs)因其制备简单、光电转化效率较高等优点而备受关注。静电纺碳纳米纤维膜(carbon nanofiber films,CNFs)具有高比表面积、良好的电学性能和化学稳定性,但其脆性限制了它的应用。利用静电纺丝法结合水热法制备柔性导电Ag/ZrO2/C复合纳米纤维膜,然后将其应用于PSCs的对电极,研究不同Ag纳米颗粒添加量对柔性复合纳米纤维膜和电池的性能影响。结果表明:当银前驱体溶液质量浓度从0 g/mL增加至0.030 g/mL时,Ag/ZrO2/C复合纳米纤维表面的Ag纳米颗粒的包覆越来越好,薄膜显示良好的柔韧性,其抗弯弹性模量为0.479 MPa,电导率从866 S/m增加到4862 S/m,提高了薄膜的空穴电子传输能力,进而增强PSCs的性能。当溶液质量浓度为0.030 g/mL时,器件具备最优的光电转换效率(6.05%)和最大电流(18.44 mA/cm2)。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
辜宁霞
荆婉如
宁磊
吕芳洁
宋立新
熊杰
关键词 钙钛矿太阳能电池柔性复合纳米纤维膜电极二氧化锆    
Abstract

Perovskite solar cells(PSCs) are paid much attention due to simple preparation and high photoelectric conversion efficiency. Carbon nanofiber films(CNFs) prepared by electrospinning have high specific surface area, electrical properties and chemical stability, but the application in PSCs is limited due to their brittleness. The flexible and conductive Ag/ZrO2/C composite nanofiber films were prepared by electrospinning and hydrothermal method. After that, it was applied as the counter electrode of flexible PSCs and the effect of Ag nanoparticles with different concentrations on the performance of the composite nanofiber films and the PSCs were studied. The results show that when the concentration of precursor solution rises from 0 g/mL to 0.030 g/mL, the coating effect of Ag nanoparticles on the Ag/ZrO2/C composite nanofiber improves obviously and all the composite nanofiber films display the excellent flexibility and modulus of elasticity (0.479 MPa), meanwhile, the conductivity of the films increases from 866 S/m to 4862 S/m, so as to enhance the hole-electron transport capacity of the films and the performance of flexible PSCs. When the solution concentration is 0.030 g/mL, the PSCs have best photoelectric conversion efficiency(PCE) of 6.05% and optimal current density (18.44 mA/cm2). It is of great significance to further improve the performance of flexible PSCs and the application of flexible carbon nanofiber films.

Key wordsperovskite solar cell    flexible composite nanofiber films electrode    carbon    ZrO2    Ag
收稿日期: 2020-08-01      出版日期: 2021-09-17
中图分类号:  O649  
基金资助:浙江省自然科学基金项目(LQ19E030020)
通讯作者: 宋立新     E-mail: lxsong12@zstu.edu.cn
作者简介: 宋立新(1986-), 男, 讲师, 博士, 研究方向为能源纳米材料与器件, 联系地址: 浙江省杭州市江干区下沙高校园区2号大街928号浙江理工大学17号楼635(310018), E-mail: lxsong12@zstu.edu.cn
引用本文:   
辜宁霞, 荆婉如, 宁磊, 吕芳洁, 宋立新, 熊杰. 钙钛矿太阳能电池用Ag/ZrO2/C柔性纳米纤维膜电极[J]. 材料工程, 2021, 49(9): 79-86.
Ning-xia GU, Wan-ru JING, Lei NING, Fang-jie LYU, Li-xin SONG, Jie XIONG. Ag/ZrO2/C flexible nanofiber films-based counter electrode for perovskite solar cells. Journal of Materials Engineering, 2021, 49(9): 79-86.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000719      或      http://jme.biam.ac.cn/CN/Y2021/V49/I9/79
Fig.1  Ag/ZrO2/C复合纳米纤维膜基PSCs的制备过程示意图
Fig.2  复合纳米纤维膜的FESEM图
(a)纯碳纳米纤维膜;(b)ZrO2/C纳米纤维膜;(c)~(g)质量浓度分别为0.015,0.020,0.025,0.030 g/mL和0.040 g/mL的Ag纳米颗粒添加后Ag/ZrO2/C复合纳米纤维膜
Fig.3  ZrO2/C和Ag/ZrO2/C纳米纤维膜的TEM(1)和HRTEM图(2)
(a)ZrO2/C纳米纤维膜;(b)Ag/ZrO2/C纳米纤维膜
Fig.4  Ag/ZrO2/C纳米纤维膜的XPS全谱图(a),O1s(b),Ag3d(c)及C1s谱图(d)
Fig.5  ZrO2/C和Ag/ZrO2/C纳米纤维膜的XRD谱图
Fig.6  纯碳纳米纤维膜(a)和Ag/ZrO2/C纳米纤维膜(b)的弯曲断裂数码照片(1)和机理图(2)
Fig.7  Ag/ZrO2/C复合纳米纤维膜的电导率和抗弯弹性模量
Fig.8  Ag/ZrO2/C纳米纤维膜基PSCs的数码照片(a),截面SEM及局部放大图(b),PL图(c),EIS图(d)和J-V曲线(e)
Counter electrode/ (g·mL-1) Jsc/ (mA·cm-2) Voc/V FF/% PCE/%
0 7.66 0.73 42 2.13
0.015 8.18 0.76 42 2.63
0.020 9.29 0.79 42 3.02
0.025 9.89 0.87 48 3.80
0.030 18.44 0.74 44 6.05
Table 1  不同含量的Ag纳米颗粒下Ag/ZrO2/C纳米纤维膜基PSCs的光伏参数
1 KOJIMA A , TESHIMA K , SHIRAI Y , et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131 (17): 6050- 6051.
doi: 10.1021/ja809598r
2 SAHLI F , WERNER J , KAMINO B A , et al. Fully textured mo-nolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency[J]. Nature Materials, 2018, 17 (9): 820- 826.
doi: 10.1038/s41563-018-0115-4
3 EGGER D A , BERA A , CAHEN D , et al. What remains unexplained about the properties of halide perovskites[J]. Advanced Materials, 2018, 30 (20): 1800691.
doi: 10.1002/adma.201800691
4 刘晓东, 李永舫. 阴极界面修饰层改善平面p-i-n型钙钛矿太阳能电池的光伏性能[J]. 电化学, 2016, 22 (4): 315- 331.
4 LIU X D , LI Y F . Improvement of photovoltaic performance of planar p-i-n perovskite solar cells by cathode interface modification layer[J]. Electrochemistry, 2016, 22 (4): 315- 331.
5 LI H Y , XIA Q Y , WANG C . High-efficiency and stable perovskite solar cells prepared using chlorobenzene/acetonitrile antisolvent[J]. ACS Applied Materials & Interfaces, 2019, 11 (38): 34989- 34996.
6 YAN W B , LI Y , YE S , et al. Increasing open circuit voltage by adjusting work function of hole-transporting materials in perovskite solar cells[J]. Nano Research, 2016, 9 (6): 1600- 1608.
doi: 10.1007/s12274-016-1054-5
7 ABATE A , LEIJTENS T , PATHAK S , et al. Lithium salts as "redox active" p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells[J]. Physical Chemistry Chemical Physics, 2013, 15 (7): 2572- 2579.
doi: 10.1039/c2cp44397j
8 HOU F , SHI B , LI T , et al. Efficient and stable perovskite solar cell achieved with bifunctional interfacial layers[J]. ACS Applied Materials & Interfaces, 2019, 11 (28): 25218- 25226.
9 王艺蒙. 碳材料对电极的制备及其在染料敏化太阳能电池中的应用[D]. 沈阳: 沈阳师范大学, 2019.
9 WANG Y M. Preparation of carbon electrode and its application in dye-sensitized solar cells[D]. Shenyang: Shenyang Normal University, 2019.
10 应承展, 吕秋娟, 刘朝辉, 等. 碳材料在钙钛矿太阳能电池中的应用[J]. 材料工程, 2019, 47 (6): 1- 10.
10 YING C Z , LYU Q J , LIU Z H , et al. Application of carbon materials in perovskite solar cells[J]. Journal of Materials Engineering, 2019, 47 (6): 1- 10.
11 ZHANG F , YANG X , WANG H , et al. Structure engineering of hole-conductor free perovskite-based solar cells with low-tem-perature-processed commercial carbon paste as cathode[J]. ACS Applied Materials & Interfaces, 2014, 6 (18): 16140- 16146.
12 ZHENG X , CHEN H , LI Q , et al. Boron doping of multiwalled carbon nanotubes significantly enhances hole extraction in carbon-based perovskite solar cells[J]. Nano letters, 2017, 17 (4): 2496- 2505.
doi: 10.1021/acs.nanolett.7b00200
13 QIANG L , HE M , HOU Q , et al. All-carbon-electrode-based endurable flexible perovskite solar cells[J]. Advanced Functional Materials, 2018, 28 (11): 1706777.
doi: 10.1002/adfm.201706777
14 KU Z L , RONG Y G , XU M , et al. Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode[J]. Scientific Reports, 2013, 3 (11): 3132.
15 孙俊生. 碳材料在钙钛矿太阳能电池对电极中的应用研究[D]. 大连: 大连海事大学, 2019.
15 SUN J S. Application of carbon material in perovskite solar cell electrode[D]. Dalian: Dalian Maritime University, 2019.
16 NIE G , LU X , CHI M , et al. General synthesis of hierarchical C/MOx@MnO2 (M=Mn, Cu, Co) composite nanofibers for high-performance supercapacitor electrodes[J]. Journal of Colloid and Interface Science, 2017, 509, 235- 244.
17 SHEN J , ABDALLA I , YU J , et al. Nanofibrous membrane constructed wearable triboelectric nanogenerator for high perfor-mance biomechanical energy harvesting[J]. Nano Energy, 2017, 36, 341- 348.
doi: 10.1016/j.nanoen.2017.04.035
18 ZHANG L , LIU T , LIU L , et al. The effect of carbon counter electrodes on fully printable mesoscopic perovskite solar cells[J]. Journal of Materials Chemistry A, 2015, 3 (17): 9165- 9170.
doi: 10.1039/C4TA04647A
19 YIN X , XIE X , SONG L X , et al. The application of highly flexible ZrO2/C nanofiber films to flexible dye-sensitized solar cells[J]. Journal of Materials Science, 2017, 52 (18): 11025- 11035.
doi: 10.1007/s10853-017-1287-z
20 WAN T , RAMAKRISHNA S , LIU Y . Recent progress in electrospinning TiO2 nanostructured photo-anode of dye-sensitized solar cells[J]. Journal of Applied Polymer Science, 2018, 135, 1- 10.
21 YIN X , XIE X , SONG L X , et al. Enhanced performance of flexible dye-sensitized solar cells using flexible Ag@ZrO2/C nanofiber film as low-cost counter electrode[J]. Applied Surface Science, 2018, 440, 992- 1000.
doi: 10.1016/j.apsusc.2018.01.264
22 JEONG C , SUH Y W . Role of ZrO2 in Cu/ZnO/ZrO2 catalysts prepared from the precipitated Cu/Zn/Zr precursors[J]. Catalysis Today, 2015, 265, 254- 263.
23 OH J M , KUMBHAR A S , GEICULESCU O , et al. Mesoporous carbon/zirconia composites: a potential route to chemically functionalized electrically-conductive mesoporous materials[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2012, 28 (6): 3259- 3270.
24 SONG R , LI X , GU F , et al. An ultra-long and low junction-resistance Ag transparent electrode by electrospun nanofibers[J]. RSC Advances, 2016, 6 (94): 91641- 91648.
doi: 10.1039/C6RA19131B
25 ZHANG P , SHAO C , ZHANG Z , et al. Core/shell nanofibers of TiO2@carbon embedded by Ag nanoparticles with enhanced visible photocatalytic activity[J]. Journal of Materials Chemistry, 2011, 21 (44): 17746- 17753.
doi: 10.1039/c1jm12965a
26 LUO J , LUO X , CRITTENDEN J , et al. Removal of antimonite (Sb(Ⅲ)) and antimonate (Sb(Ⅴ)) from aqueous solution using carbon nanofibers that are decorated with zirconium oxide (ZrO2)[J]. Environmental Science & Technology, 2015, 49 (18): 11115- 11124.
27 LUO J , LUO X B , HU C , et al. Zirconia(ZrO2) embedded in carbon nanowires via electrospinning for efficient arsenic removal from water combined with DFT studies[J]. ACS Applied Materials & Interfaces, 2016, 8 (29): 18912.
28 CUI X , XU W , XIE Z , et al. High-performance dye-sensitized solar cells based on Ag-doped SnS2 counter electrodes[J]. Journal of Materials Chemistry A, 2016, 4 (5): 1908- 1914.
doi: 10.1039/C5TA10234K
29 XIN Y , SONG L X , XIE X , et al. Preparation of the flexible ZrO2/C composite nanofibrous film via electrospinning[J]. App-lied Physics A, 2016, 122 (7): 1- 7.
doi: 10.1007/s00339-016-0224-3
30 LIN J , HUANG Y , ZHANG H A , et al. Crack-healing and pre-oxidation behavior of ZrO2 fiber toughened ZrB2-based ceramics[J]. International Journal of Refractory Metals & Hard Materials, 2015, 48, 5- 10.
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 刘源, 赵华, 李会鹏, 蔡天凤, 王禹程. 碳氯共掺杂介孔g-C3N4的气泡模板法制备及光催化性能[J]. 材料工程, 2022, 50(9): 70-77.
[3] 孔国强, 安振河, 魏化震, 李莹, 邵蒙, 于秋兵, 纪校君, 李居影, 王康. 碳纤维丝束结构对碳纤维/酚醛复合材料烧蚀性能的影响[J]. 材料工程, 2022, 50(9): 113-119.
[4] 邢宇, 张代军, 王成博, 倪洪江, 李军, 陈祥宝. PEEK复合材料用碳纤维上浆剂研究进展[J]. 材料工程, 2022, 50(8): 70-81.
[5] 张铭泰, 余少彬, 李希成, 冯萃敏, 石梦童, 汪长征, 王强. 新型复合纳米材料用于光催化降解染料废水的研究进展[J]. 材料工程, 2022, 50(7): 59-68.
[6] 肖浩春, 丰义兵, 王继刚. 氮化碳在场发射冷阴极材料中的研究进展[J]. 材料工程, 2022, 50(6): 75-85.
[7] 陈宇宏, 李曦, 詹茂盛, 赵朋. 聚碳酸酯/聚(1, 4-环己烷二甲酸- 1, 4-环己烷二甲醇酯)共混物的光学特性及机理分析[J]. 材料工程, 2022, 50(6): 117-123.
[8] 程子敬, 王凯峰, 张连洪. 基于微观尺度X射线断层扫描技术的短切碳纤维SMC复合材料失效分析[J]. 材料工程, 2022, 50(5): 130-138.
[9] 李鑫, 王秋芬, 缪娟, 田会芳, 张成立, 张延磊, 张志林. 莴笋叶制备多孔碳材料的优化设计及储锂性能[J]. 材料工程, 2022, 50(4): 53-61.
[10] 任美娟, 王淼, 吴芳辉, 贾虎, 叶明富, 文国强. 氮掺杂多孔碳负载铜钴纳米复合材料的制备及其电催化性能[J]. 材料工程, 2022, 50(4): 104-111.
[11] 张婷, 李生娟, 吉莹, 于沺沺, 李田成, 薛裕华. 氮掺杂石墨烯原位生长碳纳米管复合过渡金属催化剂的制备及电催化性能[J]. 材料工程, 2022, 50(4): 123-131.
[12] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[13] 赵卫峰, 郝宁, 张改, 钱慧锦, 马爱洁, 周宏伟, 陈卫星. 苝四羧酸二酰亚胺修饰增强g-C3N4光催化性能[J]. 材料工程, 2022, 50(3): 98-106.
[14] 侯小鹏, 曾浩, 杜邵文, 李娜, 朱怡雯, 傅小珂, 李秀涛. 基于工业化碳材料的锂氟化碳电池正极材料制备及性能[J]. 材料工程, 2022, 50(3): 107-114.
[15] 阚侃, 王珏, 付东, 郑明明, 张晓臣. 氮掺杂碳纤维包覆石墨烯纳米片的构建及电容特性[J]. 材料工程, 2022, 50(2): 94-102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn