Perovskite solar cells(PSCs) are paid much attention due to simple preparation and high photoelectric conversion efficiency. Carbon nanofiber films(CNFs) prepared by electrospinning have high specific surface area, electrical properties and chemical stability, but the application in PSCs is limited due to their brittleness. The flexible and conductive Ag/ZrO2/C composite nanofiber films were prepared by electrospinning and hydrothermal method. After that, it was applied as the counter electrode of flexible PSCs and the effect of Ag nanoparticles with different concentrations on the performance of the composite nanofiber films and the PSCs were studied. The results show that when the concentration of precursor solution rises from 0 g/mL to 0.030 g/mL, the coating effect of Ag nanoparticles on the Ag/ZrO2/C composite nanofiber improves obviously and all the composite nanofiber films display the excellent flexibility and modulus of elasticity (0.479 MPa), meanwhile, the conductivity of the films increases from 866 S/m to 4862 S/m, so as to enhance the hole-electron transport capacity of the films and the performance of flexible PSCs. When the solution concentration is 0.030 g/mL, the PSCs have best photoelectric conversion efficiency(PCE) of 6.05% and optimal current density (18.44 mA/cm2). It is of great significance to further improve the performance of flexible PSCs and the application of flexible carbon nanofiber films.
KOJIMA A , TESHIMA K , SHIRAI Y , et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131 (17): 6050- 6051.
doi: 10.1021/ja809598r
2
SAHLI F , WERNER J , KAMINO B A , et al. Fully textured mo-nolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency[J]. Nature Materials, 2018, 17 (9): 820- 826.
doi: 10.1038/s41563-018-0115-4
3
EGGER D A , BERA A , CAHEN D , et al. What remains unexplained about the properties of halide perovskites[J]. Advanced Materials, 2018, 30 (20): 1800691.
doi: 10.1002/adma.201800691
LIU X D , LI Y F . Improvement of photovoltaic performance of planar p-i-n perovskite solar cells by cathode interface modification layer[J]. Electrochemistry, 2016, 22 (4): 315- 331.
5
LI H Y , XIA Q Y , WANG C . High-efficiency and stable perovskite solar cells prepared using chlorobenzene/acetonitrile antisolvent[J]. ACS Applied Materials & Interfaces, 2019, 11 (38): 34989- 34996.
6
YAN W B , LI Y , YE S , et al. Increasing open circuit voltage by adjusting work function of hole-transporting materials in perovskite solar cells[J]. Nano Research, 2016, 9 (6): 1600- 1608.
doi: 10.1007/s12274-016-1054-5
7
ABATE A , LEIJTENS T , PATHAK S , et al. Lithium salts as "redox active" p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells[J]. Physical Chemistry Chemical Physics, 2013, 15 (7): 2572- 2579.
doi: 10.1039/c2cp44397j
8
HOU F , SHI B , LI T , et al. Efficient and stable perovskite solar cell achieved with bifunctional interfacial layers[J]. ACS Applied Materials & Interfaces, 2019, 11 (28): 25218- 25226.
YING C Z , LYU Q J , LIU Z H , et al. Application of carbon materials in perovskite solar cells[J]. Journal of Materials Engineering, 2019, 47 (6): 1- 10.
11
ZHANG F , YANG X , WANG H , et al. Structure engineering of hole-conductor free perovskite-based solar cells with low-tem-perature-processed commercial carbon paste as cathode[J]. ACS Applied Materials & Interfaces, 2014, 6 (18): 16140- 16146.
12
ZHENG X , CHEN H , LI Q , et al. Boron doping of multiwalled carbon nanotubes significantly enhances hole extraction in carbon-based perovskite solar cells[J]. Nano letters, 2017, 17 (4): 2496- 2505.
doi: 10.1021/acs.nanolett.7b00200
13
QIANG L , HE M , HOU Q , et al. All-carbon-electrode-based endurable flexible perovskite solar cells[J]. Advanced Functional Materials, 2018, 28 (11): 1706777.
doi: 10.1002/adfm.201706777
14
KU Z L , RONG Y G , XU M , et al. Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode[J]. Scientific Reports, 2013, 3 (11): 3132.
15
孙俊生. 碳材料在钙钛矿太阳能电池对电极中的应用研究[D]. 大连: 大连海事大学, 2019.
15
SUN J S. Application of carbon material in perovskite solar cell electrode[D]. Dalian: Dalian Maritime University, 2019.
16
NIE G , LU X , CHI M , et al. General synthesis of hierarchical C/MOx@MnO2 (M=Mn, Cu, Co) composite nanofibers for high-performance supercapacitor electrodes[J]. Journal of Colloid and Interface Science, 2017, 509, 235- 244.
17
SHEN J , ABDALLA I , YU J , et al. Nanofibrous membrane constructed wearable triboelectric nanogenerator for high perfor-mance biomechanical energy harvesting[J]. Nano Energy, 2017, 36, 341- 348.
doi: 10.1016/j.nanoen.2017.04.035
18
ZHANG L , LIU T , LIU L , et al. The effect of carbon counter electrodes on fully printable mesoscopic perovskite solar cells[J]. Journal of Materials Chemistry A, 2015, 3 (17): 9165- 9170.
doi: 10.1039/C4TA04647A
19
YIN X , XIE X , SONG L X , et al. The application of highly flexible ZrO2/C nanofiber films to flexible dye-sensitized solar cells[J]. Journal of Materials Science, 2017, 52 (18): 11025- 11035.
doi: 10.1007/s10853-017-1287-z
20
WAN T , RAMAKRISHNA S , LIU Y . Recent progress in electrospinning TiO2 nanostructured photo-anode of dye-sensitized solar cells[J]. Journal of Applied Polymer Science, 2018, 135, 1- 10.
21
YIN X , XIE X , SONG L X , et al. Enhanced performance of flexible dye-sensitized solar cells using flexible Ag@ZrO2/C nanofiber film as low-cost counter electrode[J]. Applied Surface Science, 2018, 440, 992- 1000.
doi: 10.1016/j.apsusc.2018.01.264
22
JEONG C , SUH Y W . Role of ZrO2 in Cu/ZnO/ZrO2 catalysts prepared from the precipitated Cu/Zn/Zr precursors[J]. Catalysis Today, 2015, 265, 254- 263.
23
OH J M , KUMBHAR A S , GEICULESCU O , et al. Mesoporous carbon/zirconia composites: a potential route to chemically functionalized electrically-conductive mesoporous materials[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2012, 28 (6): 3259- 3270.
24
SONG R , LI X , GU F , et al. An ultra-long and low junction-resistance Ag transparent electrode by electrospun nanofibers[J]. RSC Advances, 2016, 6 (94): 91641- 91648.
doi: 10.1039/C6RA19131B
25
ZHANG P , SHAO C , ZHANG Z , et al. Core/shell nanofibers of TiO2@carbon embedded by Ag nanoparticles with enhanced visible photocatalytic activity[J]. Journal of Materials Chemistry, 2011, 21 (44): 17746- 17753.
doi: 10.1039/c1jm12965a
26
LUO J , LUO X , CRITTENDEN J , et al. Removal of antimonite (Sb(Ⅲ)) and antimonate (Sb(Ⅴ)) from aqueous solution using carbon nanofibers that are decorated with zirconium oxide (ZrO2)[J]. Environmental Science & Technology, 2015, 49 (18): 11115- 11124.
27
LUO J , LUO X B , HU C , et al. Zirconia(ZrO2) embedded in carbon nanowires via electrospinning for efficient arsenic removal from water combined with DFT studies[J]. ACS Applied Materials & Interfaces, 2016, 8 (29): 18912.
28
CUI X , XU W , XIE Z , et al. High-performance dye-sensitized solar cells based on Ag-doped SnS2 counter electrodes[J]. Journal of Materials Chemistry A, 2016, 4 (5): 1908- 1914.
doi: 10.1039/C5TA10234K
29
XIN Y , SONG L X , XIE X , et al. Preparation of the flexible ZrO2/C composite nanofibrous film via electrospinning[J]. App-lied Physics A, 2016, 122 (7): 1- 7.
doi: 10.1007/s00339-016-0224-3
30
LIN J , HUANG Y , ZHANG H A , et al. Crack-healing and pre-oxidation behavior of ZrO2 fiber toughened ZrB2-based ceramics[J]. International Journal of Refractory Metals & Hard Materials, 2015, 48, 5- 10.