Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (9): 51-59    DOI: 10.11868/j.issn.1001-4381.2020.000733
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
碳布负载的PI-MWCNTs柔性电极材料的合成及其电容性能
王瑶, 么贺祥, 俞娟, 王晓东, 黄培()
南京工业大学 材料化学工程国家重点实验室, 南京 211800
Synthesis of PI-MWCNTs flexible electrode material loaded on carbon cloth and its capacitive performance
Yao WANG, He-xiang YAO, Juan YU, Xiao-dong WANG, Pei HUANG()
State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, Nanjing 211800, China
全文: PDF(13307 KB)   HTML ( 3 )  
输出: BibTeX | EndNote (RIS)      
摘要 

以超级电容器的电极材料制备、性质研究及对组装非对称超级电容器的性能研究为核心内容,提高超级电容器电化学性能为主要目的,采用原位聚合法制备羧基化多壁碳纳米管(PI-MWCNTs)接枝的聚酰亚胺溶液,将其作为氮掺杂碳的前驱体,实现复合物在碳布表面的生长,并作为电极材料。以二氧化锰-碳布(MnO2-CC)为正极,多壁碳纳米管接枝的聚酰亚胺-碳布为负极(PI-MWCNTs-CC),构建非对称超级电容器。采用扫描电子显微镜、拉曼光谱、X射线衍射、比表面积及孔径测试、循环伏安、恒电流充放电及电化学阻抗谱对电极材料的结构和电化学性能进行表征。结果表明:当扫描速率为20 mV/s时,非对称电容器的电势窗口可增至1.3 V,其体积比容量为1.80 F/cm3;当功率密度为14.08 mW/cm3时,能量密度可达到0.423 mWh/cm3

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王瑶
么贺祥
俞娟
王晓东
黄培
关键词 聚酰亚胺碳布碳纳米管二氧化锰非对称超级电容器    
Abstract

Taking the preparation of electrode materials of supercapacitors, the study of properties and the performance of assembled asymmetric supercapacitors as the core contents, and improving the electrochemical performance of supercapacitors as the main purpose, the in-situ polymerization method was used to prepare carboxylated multi-walled carbon nanotubes (PI-MWCNTs) grafted polyimide solution, which is used as the precursor of nitrogen-doped carbon to realize the growth of composites on the surface of carbon cloth and as electrode material.Manganese dioxide-carbon cloth (MnO2-CC) as the positive electrode, Polyimide-carbon cloth grafted with multi-walled carbon nanotubes as negative electrode (PI-MWCNTs-CC), build asymmetric supercapacitors. The structure and electrochemical properties of the electrode materials were characterized by scanning electron microscopy, raman spectroscopy, surface area and pore size testing, X line photoelectron spectroscopy, cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy. According to the study, when the scan rate is 20 mV/s, asymmetric capacitor potential window can be increased to 1.3 V and its volume specific capacity is 1.80 F/cm3.When the power density is 14.08 mW/cm3, the energy density can reach up to 0.423 mWh/cm3.

Key wordspolyimide    carbon cloth    carbon nanotube    manganese dioxide    asymmetric supercapacitor
收稿日期: 2020-08-05      出版日期: 2021-09-17
中图分类号:  TQ152  
通讯作者: 黄培     E-mail: phuang@njut.edu.cn
作者简介: 黄培(1967-), 男, 教授, 博士, 主要从事功能材料的合成及应用研究, 联系地址: 江苏省南京市浦口区浦珠南路30号南京工业大学先进聚合物研究所(211800), E-mail: phuang@njut.edu.cn
引用本文:   
王瑶, 么贺祥, 俞娟, 王晓东, 黄培. 碳布负载的PI-MWCNTs柔性电极材料的合成及其电容性能[J]. 材料工程, 2021, 49(9): 51-59.
Yao WANG, He-xiang YAO, Juan YU, Xiao-dong WANG, Pei HUANG. Synthesis of PI-MWCNTs flexible electrode material loaded on carbon cloth and its capacitive performance. Journal of Materials Engineering, 2021, 49(9): 51-59.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000733      或      http://jme.biam.ac.cn/CN/Y2021/V49/I9/51
Fig.1  电化学沉积制备MnO2-CC(a),非对称超级电容器的组装(b)和前驱体溶液PAA/MWCNTs的制备(c)
Fig.2  电极材料的SEM图
(a),(b)纯碳布;(c),(d)PI-MWCNTs-CC;(e),(f)MnO2-CC
Fig.3  PI-MWCNTs-CC的EDS能谱元素分析图
(a)C; (b)N; (c)O; (d)元素能谱图
Fig.4  CC, PI-MWCNTs-CC的拉曼图谱(a)及生长在碳布上的MnO2-CC电极材料的XRD图谱(b)
Fig.5  吸脱附曲线和孔径分布图
(a)碳布; (b)PI-MWCNTs-CC; (c)MnO2-CC
Fig.6  PI-MWCNTs-CC电极的电化学性能测试分析图
(a)CC和PI-MWCNTs-CC的CV曲线对比图; (b)PI-MWCNTs-CC在不同扫描速率下的CV曲线图;(c)CC和PI-MWCNTs-CC的GCD曲线对比图;(d)PI-MWCNTs-CC在不同电流密度下的GCD曲线图;(e)PI-MWCNTs-CC质量比电容图;(f)PI-MWCNTs-CC的EIS谱图
Fig.7  MnO2-CC电极的电化学性能测试分析图
(a)不同扫描速率下的CV曲线图;(b)不同电流密度下的GCD曲线图;(c)不同电流密度下质量比电容图;(d)EIS谱图
Fig.8  非对称柔性超级电容器的电化学性能测试分析图
(a)不同电压下的CV曲线图; (b)不同扫描速率下的CV曲线图; (c)不同电流密度下的GCD曲线图; (d)体积比电容图; (e)EIS谱图; (f)Ragone图
1 HUANGL , YAO B , SUN J , et al. Highly conductive and flexible molybdenum oxide nanopaper for high volumetric supercapacitor electrode[J]. Journal of Materials Chemistry A, 2017, 5 (6): 2897- 2903.
doi: 10.1039/C6TA10433A
2 亢敏霞, 周帅, 熊凌亨, 等. 金属有机骨架在超级电容器方面的研究进展[J]. 材料工程, 2019, 47 (8): 1- 12.
2 KANG M X , ZHOU S , XIONG L H , et al. Research progress of metal organic framework in supercapacitors[J]. Journal of Materials Engineering, 2019, 47 (8): 1- 12.
3 LU X , YU M , WANG G , et al. Flexible solid-state supercapacitors: design, fabrication and applications[J]. Energy & Environmental Science, 2014, 7 (7): 2160- 2181.
4 YAN X , YOU H , LIU W , et al. Free-standing and heteroatoms-doped carbon nanofiber networks as a binder-free flexible electrode for high-performance supercapacitors[J]. Nanomaterials, 2019, 9 (9): 1189.
doi: 10.3390/nano9091189
5 ZHANG Z Y , XIAO F , XIAO J , et al. Functionalized carbonaceous fibers for high performance flexible all-solid-state asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2015, 3 (22): 11817- 11823.
doi: 10.1039/C5TA01990G
6 ZHANG Z , CHI K , XIAO F , et al. Advanced solid-state asymmetric supercapacitors based on 3D graphene/MnO2 and graphene/polypyrrole hybrid architectures[J]. Journal of Materials Chemistry A, 2015, 3 (24): 12828- 12835.
doi: 10.1039/C5TA02685G
7 LYU L , SEONG K D , KIM J M , et al. CNT/high mass loading MnO2/graphene-grafted carbon cloth electrodes for high-energy asymmetric supercapacitors[J]. Nano Micro Letters, 2019, 11 (1): 88.
doi: 10.1007/s40820-019-0316-7
8 HUANG G X , ZHANG Y , WANG L , et al. Fiber-based MnO2/carbon nanotube/polyimide asymmetric supercapacitor[J]. Carbon, 2017, 125, 595- 604.
doi: 10.1016/j.carbon.2017.09.103
9 KIM D K , BONG S , JIN X , et al. Facile in situ synthesis of multiple-heteroatom-doped carbons derived from polyimide precursors for flexible all-solid-state supercapacitors[J]. ACS Applied Materials & Interfaces, 2018, 11 (2): 1996- 2005.
10 杜双双, 何颖, 徐晨辉, 等. 碳布负载的MnO2-PANI复合材料的控制合成及其不对称超级电容器[J]. 功能高分子学报, 2015, 28 (4): 353- 359.
10 DU S S , HE Y , XU C H , et al. Controlable synthesis of MnO2-PANI composition carbon cloth and its asymmetric supercapacitor[J]. Journal of Functional Polymers, 2015, 28 (4): 353- 359.
11 WANG D W , FANG H T , LI F , et al. Aligned titania nanotubes as an intercalation anode material for hybrid electrochemical energy storage[J]. Advanced Functional Materials, 2008, 18 (23): 3787- 3793.
doi: 10.1002/adfm.200800635
12 张德懿, 雷龙艳, 尚永花, 等. 氮掺杂对碳材料性能的影响研究进展[J]. 化工进展, 2016, (3): 831- 836.
12 ZHANG D Y , LEI L Y , SHANG Y H , et al. Effect of the nitrogen doping on the performance of nano-structure carbon materials[J]. Chemical Industry and Engineering Progress, 2016, (3): 831- 836.
13 WANG C , ZHOU Y , SUN L , et al. Sustainable synthesis of phosphorus- and nitrogen-co-doped porous carbons with tunable surface properties for supercapacitors[J]. Journal of Power Sources, 2013, 239, 81- 88.
doi: 10.1016/j.jpowsour.2013.03.126
14 XIAO K , DING L X , LIU G , et al. Freestanding, hydrophilic nitrogen-doped carbon foams for highly compressible all solid-state supercapacitors[J]. Advanced Materials, 2016, 28 (28): 5997- 6002.
doi: 10.1002/adma.201601125
15 KIM N D , KIM W , JOO J B , et al. Electrochemical capacitor performance of N-doped mesoporous carbons prepared by ammoxidation[J]. Journal of Power Sources, 2008, 180 (1): 671- 675.
doi: 10.1016/j.jpowsour.2008.01.055
16 俞娟, 姜恒, 王晓东, 等. 高性能聚酰亚胺/纳米石墨烯复合薄膜的制备[J]. 南京工业大学学报(自然科学版), 2015, 37 (3): 19- 24.
doi: 10.3969/j.issn.1671-7627.2015.03.004
16 YU J , JIANG H , WANG X D , et al. Preparation of high performance polyimide/nano-graphene composite film[J]. Journal of Nanjing Tech University(Natural Science Edition), 2015, 37 (3): 19- 24.
doi: 10.3969/j.issn.1671-7627.2015.03.004
17 LI Y Z , DONG J , ZHANG J X , et al. Nitrogen-doped carbon membrane derived from polyimide as free-standing electrodes for flexible supercapacitors[J]. Small, 2015, 11 (28): 3476- 3484.
doi: 10.1002/smll.201403575
18 INAGAKI M , OHTA N , HISHIYAMA Y . Aromatic polyimides as carbon precursors[J]. Carbon, 2013, 61, 1- 21.
doi: 10.1016/j.carbon.2013.05.035
19 HAN X , HAN P , YAO J , et al. Nitrogen-doped carbonized polyimide microsphere as a novel anode material for high performance lithium ion capacitors[J]. Electrochimica Acta, 2016, 196, 603- 610.
doi: 10.1016/j.electacta.2016.02.185
20 赵冬梅, 李振伟, 刘领弟, 等. 石墨烯/碳纳米管复合材料的制备及应用进展[J]. 化学学报, 2014, 72 (2): 185- 200.
20 ZHAO D M , LI Z W , LIU L D , et al. Progress of preparation and application of graphene/carbon nanotube composite materials[J]. Acta Chimica Sinica, 2014, 72 (2): 185- 200.
21 YU Z Y , CHEN L F , YU S H . Growth of NiFe2O4 nanoparticles on carbon cloth for high performance flexible supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2 (28): 10889- 10894.
doi: 10.1039/c4ta00492b
22 黄子龙. 碳布基纳米复合材料的制备及其电化学特性[D]. 上海: 东华大学, 2015.
22 HUANG Z L. Preparation and electrochemical properties of carbon cloth based nanocomposites[D]. Shanghai: Donghua University, 2015.
23 QIAN Z , NI W , PENG Z , et al. N-doped mesoporous carbon integrated on carbon cloth for flexible supercapacitors with remarkable performance[J]. Journal of Materials Science, 2018, 20 (53): 114573- 14585.
doi: 10.1007/s10853-018-2654-0
24 陈玮, 孙晓刚, 蔡满园, 等. 碳纳米管/纤维素复合纸为电极的超级电容器性能[J]. 材料工程, 2018, 46 (10): 117- 123.
24 CHEN W , SUN X G , CAI M Y , et al. Carbon nanotubes/cellulose composite paper as electrodes for supercapacitor[J]. Journal of Materials Engineering, 2018, 46 (10): 117- 123.
25 俞娟, 杨帅, 孔伟. LiFePO4改性聚酰亚胺凝胶碳化材料的制备及其电化学性能[J]. 南京工业大学学报(自然科学版), 2019, 41 (4): 403- 410.
doi: 10.3969/j.issn.1671-7627.2019.04.001
25 YU J , YANG S , KONG W , et al. Preparation and electrochemical performance of LiFePO4 modified polyimide gel carbonized material[J]. Journal of Nanjing University of Technology(Natural Science Edition), 2019, 41 (4): 403- 410.
doi: 10.3969/j.issn.1671-7627.2019.04.001
26 FENG J X , YE S H , LU X F , et al. Asymmetric paper supercapacitor based on amorphous porous Mn3O4negative electrode and Ni(OH)2 positive electrode: a novel and high-performance flexible electrochemical energy storage device[J]. ACS Applied Materials & Interfaces, 2015, 7 (21): 11444- 11451.
27 YANG P , XIAO X , LI Y , et al. Hydrogenated ZnO core-shell nanocables for flexible supercapacitors and self-powered systems[J]. ACS Nano, 2013, 7, 2617- 2626.
doi: 10.1021/nn306044d
28 WANG Z L , ZHU Z L , QIU J H , et al. High performance flexible solid-state asymmetric supercapacitors from MnO2/ZnO core-shell nanorods//specially reduced graphene oxide[J]. Journal of Materials Chemistry C, 2014, 2 (7): 1331- 1336.
doi: 10.1039/C3TC31476F
29 ZHENG H M , ZHAI T , YU M H , et al. TiO2@C core-shell nanowires for high-performance and flexible solid-state supercapacitors[J]. Journal of Materials Chemistry C, 2013, 1 (2): 225- 229.
doi: 10.1039/C2TC00047D
30 LU X H , WANG G M , ZHAI T , et al. Stabilized TiN nanowire arrays for high-performance and flexible supercapacitors[J]. Nano Letters, 2012, 12 (10): 5376- 5381.
doi: 10.1021/nl302761z
[1] 唐婧缘, 龙依婷, 黄旭, 蒲琳钰. 核-双壳BT@TiO2@PDA纳米粒子的制备及其复合薄膜的介电性能[J]. 材料工程, 2022, 50(9): 59-69.
[2] 倪洪江, 邢宇, 戴霄翔, 李军, 张代军, 陈祥宝. 航空发动机用聚酰亚胺树脂基复合材料固化工艺及热稳定性能[J]. 材料工程, 2022, 50(7): 102-109.
[3] 宋永智, 毕松, 侯根良, 李浩, 赵彦凯, 刘朝辉. MnO2纳米棒的吸波性能及其超构表面设计[J]. 材料工程, 2022, 50(7): 110-118.
[4] 张婷, 李生娟, 吉莹, 于沺沺, 李田成, 薛裕华. 氮掺杂石墨烯原位生长碳纳米管复合过渡金属催化剂的制备及电催化性能[J]. 材料工程, 2022, 50(4): 123-131.
[5] 刘旺冠, 蒋兴华, 郭建华. 氮化铝/氮化硼/碳纳米管/硅橡胶复合材料的力致填料取向对导热性能的影响[J]. 材料工程, 2022, 50(2): 127-134.
[6] 崔超, 袁莉莉, 尹亮, 黄玉东, 孟令辉, 杨念群, 杨士勇. 低热膨胀聚(苯并噁唑-酰亚胺)薄膜与铜黏结性能[J]. 材料工程, 2022, 50(10): 128-138.
[7] 章玲, 王雪, 李家强, 罗楚养, 张威, 张礼颖. 碳纳米纤维增强聚酰亚胺复合气凝胶的合成与性能[J]. 材料工程, 2022, 50(1): 125-131.
[8] 乔俊宇, 李秀涛. 基于MOFs的碳纳米管复合材料的制备和应用进展[J]. 材料工程, 2021, 49(9): 27-40.
[9] 戴远哲, 唐波, 张振宇, 任首龙. 碳纳米管/石蜡相变复合材料研究进展[J]. 材料工程, 2021, 49(12): 91-99.
[10] 顾善群, 张代军, 刘燕峰, 邹齐, 陈祥宝, 李军, 付善龙. 聚酰亚胺纤维/双马树脂复合材料抗高速冲击性能[J]. 材料工程, 2021, 49(1): 119-125.
[11] 张淑娴, 邓凌峰, 连晓辉, 谭洁慧, 李金磊. 微量CNTs包覆对LiNi0.8Co0.1Mn0.1O2正极材料电化学性能的影响[J]. 材料工程, 2020, 48(5): 68-74.
[12] 李旭, 孙晓刚, 王杰, 陈玮, 黄雅盼, 梁国东, 魏成成, 胡浩. 无黏结剂柔性Si/CNT/纤维素复合阳极及其电化学性能[J]. 材料工程, 2020, 48(4): 139-144.
[13] 杨斌, 李云龙, 王世杰, 聂瑞, 王照智. 拉应力下碳纳米管增强高分子基复合材料的应力分布[J]. 材料工程, 2020, 48(2): 79-86.
[14] 殷小春, 尹有华, 成迪, 杨智韬. 正应力支配下混合顺序对PA6/HDPE/CNTs体系结构及性能的影响[J]. 材料工程, 2020, 48(2): 87-93.
[15] 陈玮, 孙晓刚, 胡浩, 王杰, 李旭, 梁国东, 黄雅盼, 魏成成. AC+Li(NiCoMn)O2/Li4Ti5O12+MWCNTs混合型电容器[J]. 材料工程, 2020, 48(1): 128-135.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn