Taking the preparation of electrode materials of supercapacitors, the study of properties and the performance of assembled asymmetric supercapacitors as the core contents, and improving the electrochemical performance of supercapacitors as the main purpose, the in-situ polymerization method was used to prepare carboxylated multi-walled carbon nanotubes (PI-MWCNTs) grafted polyimide solution, which is used as the precursor of nitrogen-doped carbon to realize the growth of composites on the surface of carbon cloth and as electrode material.Manganese dioxide-carbon cloth (MnO2-CC) as the positive electrode, Polyimide-carbon cloth grafted with multi-walled carbon nanotubes as negative electrode (PI-MWCNTs-CC), build asymmetric supercapacitors. The structure and electrochemical properties of the electrode materials were characterized by scanning electron microscopy, raman spectroscopy, surface area and pore size testing, X line photoelectron spectroscopy, cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy. According to the study, when the scan rate is 20 mV/s, asymmetric capacitor potential window can be increased to 1.3 V and its volume specific capacity is 1.80 F/cm3.When the power density is 14.08 mW/cm3, the energy density can reach up to 0.423 mWh/cm3.
HUANGL , YAO B , SUN J , et al. Highly conductive and flexible molybdenum oxide nanopaper for high volumetric supercapacitor electrode[J]. Journal of Materials Chemistry A, 2017, 5 (6): 2897- 2903.
doi: 10.1039/C6TA10433A
KANG M X , ZHOU S , XIONG L H , et al. Research progress of metal organic framework in supercapacitors[J]. Journal of Materials Engineering, 2019, 47 (8): 1- 12.
3
LU X , YU M , WANG G , et al. Flexible solid-state supercapacitors: design, fabrication and applications[J]. Energy & Environmental Science, 2014, 7 (7): 2160- 2181.
4
YAN X , YOU H , LIU W , et al. Free-standing and heteroatoms-doped carbon nanofiber networks as a binder-free flexible electrode for high-performance supercapacitors[J]. Nanomaterials, 2019, 9 (9): 1189.
doi: 10.3390/nano9091189
5
ZHANG Z Y , XIAO F , XIAO J , et al. Functionalized carbonaceous fibers for high performance flexible all-solid-state asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2015, 3 (22): 11817- 11823.
doi: 10.1039/C5TA01990G
6
ZHANG Z , CHI K , XIAO F , et al. Advanced solid-state asymmetric supercapacitors based on 3D graphene/MnO2 and graphene/polypyrrole hybrid architectures[J]. Journal of Materials Chemistry A, 2015, 3 (24): 12828- 12835.
doi: 10.1039/C5TA02685G
7
LYU L , SEONG K D , KIM J M , et al. CNT/high mass loading MnO2/graphene-grafted carbon cloth electrodes for high-energy asymmetric supercapacitors[J]. Nano Micro Letters, 2019, 11 (1): 88.
doi: 10.1007/s40820-019-0316-7
8
HUANG G X , ZHANG Y , WANG L , et al. Fiber-based MnO2/carbon nanotube/polyimide asymmetric supercapacitor[J]. Carbon, 2017, 125, 595- 604.
doi: 10.1016/j.carbon.2017.09.103
9
KIM D K , BONG S , JIN X , et al. Facile in situ synthesis of multiple-heteroatom-doped carbons derived from polyimide precursors for flexible all-solid-state supercapacitors[J]. ACS Applied Materials & Interfaces, 2018, 11 (2): 1996- 2005.
DU S S , HE Y , XU C H , et al. Controlable synthesis of MnO2-PANI composition carbon cloth and its asymmetric supercapacitor[J]. Journal of Functional Polymers, 2015, 28 (4): 353- 359.
11
WANG D W , FANG H T , LI F , et al. Aligned titania nanotubes as an intercalation anode material for hybrid electrochemical energy storage[J]. Advanced Functional Materials, 2008, 18 (23): 3787- 3793.
doi: 10.1002/adfm.200800635
ZHANG D Y , LEI L Y , SHANG Y H , et al. Effect of the nitrogen doping on the performance of nano-structure carbon materials[J]. Chemical Industry and Engineering Progress, 2016, (3): 831- 836.
13
WANG C , ZHOU Y , SUN L , et al. Sustainable synthesis of phosphorus- and nitrogen-co-doped porous carbons with tunable surface properties for supercapacitors[J]. Journal of Power Sources, 2013, 239, 81- 88.
doi: 10.1016/j.jpowsour.2013.03.126
14
XIAO K , DING L X , LIU G , et al. Freestanding, hydrophilic nitrogen-doped carbon foams for highly compressible all solid-state supercapacitors[J]. Advanced Materials, 2016, 28 (28): 5997- 6002.
doi: 10.1002/adma.201601125
15
KIM N D , KIM W , JOO J B , et al. Electrochemical capacitor performance of N-doped mesoporous carbons prepared by ammoxidation[J]. Journal of Power Sources, 2008, 180 (1): 671- 675.
doi: 10.1016/j.jpowsour.2008.01.055
YU J , JIANG H , WANG X D , et al. Preparation of high performance polyimide/nano-graphene composite film[J]. Journal of Nanjing Tech University(Natural Science Edition), 2015, 37 (3): 19- 24.
doi: 10.3969/j.issn.1671-7627.2015.03.004
17
LI Y Z , DONG J , ZHANG J X , et al. Nitrogen-doped carbon membrane derived from polyimide as free-standing electrodes for flexible supercapacitors[J]. Small, 2015, 11 (28): 3476- 3484.
doi: 10.1002/smll.201403575
18
INAGAKI M , OHTA N , HISHIYAMA Y . Aromatic polyimides as carbon precursors[J]. Carbon, 2013, 61, 1- 21.
doi: 10.1016/j.carbon.2013.05.035
19
HAN X , HAN P , YAO J , et al. Nitrogen-doped carbonized polyimide microsphere as a novel anode material for high performance lithium ion capacitors[J]. Electrochimica Acta, 2016, 196, 603- 610.
doi: 10.1016/j.electacta.2016.02.185
ZHAO D M , LI Z W , LIU L D , et al. Progress of preparation and application of graphene/carbon nanotube composite materials[J]. Acta Chimica Sinica, 2014, 72 (2): 185- 200.
21
YU Z Y , CHEN L F , YU S H . Growth of NiFe2O4 nanoparticles on carbon cloth for high performance flexible supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2 (28): 10889- 10894.
doi: 10.1039/c4ta00492b
22
黄子龙. 碳布基纳米复合材料的制备及其电化学特性[D]. 上海: 东华大学, 2015.
22
HUANG Z L. Preparation and electrochemical properties of carbon cloth based nanocomposites[D]. Shanghai: Donghua University, 2015.
23
QIAN Z , NI W , PENG Z , et al. N-doped mesoporous carbon integrated on carbon cloth for flexible supercapacitors with remarkable performance[J]. Journal of Materials Science, 2018, 20 (53): 114573- 14585.
doi: 10.1007/s10853-018-2654-0
CHEN W , SUN X G , CAI M Y , et al. Carbon nanotubes/cellulose composite paper as electrodes for supercapacitor[J]. Journal of Materials Engineering, 2018, 46 (10): 117- 123.
YU J , YANG S , KONG W , et al. Preparation and electrochemical performance of LiFePO4 modified polyimide gel carbonized material[J]. Journal of Nanjing University of Technology(Natural Science Edition), 2019, 41 (4): 403- 410.
doi: 10.3969/j.issn.1671-7627.2019.04.001
26
FENG J X , YE S H , LU X F , et al. Asymmetric paper supercapacitor based on amorphous porous Mn3O4negative electrode and Ni(OH)2 positive electrode: a novel and high-performance flexible electrochemical energy storage device[J]. ACS Applied Materials & Interfaces, 2015, 7 (21): 11444- 11451.
27
YANG P , XIAO X , LI Y , et al. Hydrogenated ZnO core-shell nanocables for flexible supercapacitors and self-powered systems[J]. ACS Nano, 2013, 7, 2617- 2626.
doi: 10.1021/nn306044d
28
WANG Z L , ZHU Z L , QIU J H , et al. High performance flexible solid-state asymmetric supercapacitors from MnO2/ZnO core-shell nanorods//specially reduced graphene oxide[J]. Journal of Materials Chemistry C, 2014, 2 (7): 1331- 1336.
doi: 10.1039/C3TC31476F
29
ZHENG H M , ZHAI T , YU M H , et al. TiO2@C core-shell nanowires for high-performance and flexible solid-state supercapacitors[J]. Journal of Materials Chemistry C, 2013, 1 (2): 225- 229.
doi: 10.1039/C2TC00047D
30
LU X H , WANG G M , ZHAI T , et al. Stabilized TiN nanowire arrays for high-performance and flexible supercapacitors[J]. Nano Letters, 2012, 12 (10): 5376- 5381.
doi: 10.1021/nl302761z