Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (5): 122-129    DOI: 10.11868/j.issn.1001-4381.2020.000735
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
2195铝锂合金超声振动辅助搅拌摩擦焊接工艺研究
石磊1,2, 戴翔1, 武传松1, 傅莉2
1. 山东大学 材料液固结构演变与加工教育部重点实验室, 济南 250061;
2. 西北工业大学 凝固技术国家重点实验室, 西安 710072
Process investigation on ultrasonic vibration enhanced friction stir welding of 2195 aluminum-lithium alloy
SHI Lei1,2, DAI Xiang1, WU Chuan-song1, FU Li2
1. Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China;
2. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
全文: PDF(16375 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 采用新型超声振动辅助搅拌摩擦焊接设备实现了4 mm厚的2195铝锂合金轧制板的焊接,比较和分析了施加超声对焊缝宏观金相组织、显微硬度与接头拉伸性能的影响,研究了工艺参数对铝锂合金超声振动辅助搅拌摩擦焊缝成形及接头力学性能的影响规律。结果表明:在相同工艺参数条件下,施加超声振动能量能够改善2195铝锂合金搅拌摩擦焊接成形性,促使焊核区塑性材料流动增强,同时减少甚至消除常规搅拌摩擦焊接头内部的孔洞缺陷;在焊缝的上部及中部,由于超声的作用,焊核区的显微硬度得以提高,而焊缝底部变化不大;接头的断口均呈现出韧性断裂模式,施加超声振动能量后的接头的伸长率得以提高,其断口韧窝更加细小均匀;在所研究的工艺参数范围内,接头的最高抗拉强度为282.8 MPa,最大伸长率为11.5%。在转速为600 r/min,焊接速率为225 mm/min条件下,施加超声使接头抗拉强度提高了17.5 MPa,伸长率提高了3.7%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
石磊
戴翔
武传松
傅莉
关键词 铝锂合金搅拌摩擦焊接超声振动力学性能    
Abstract:A novel ultrasonic vibration enhanced friction stir welding (UVeFSW) process was employed to join the rolled 2195 aluminium-lithium alloy of 4 mm thickness. The effects of superimposing ultrasonic on the macro metallograph,microhardness and tensile properties of welded joints were compared and analyzed. The effect of process parameters on the weld formation and joint mechanical properties of aluminium-lithium alloy by ultrasonic vibration enhanced friction stir welding was investigated. The results show that under the same process parameters superimposing ultrasonic energy in friction stir welding can improve the formability of 2195 aluminium-lithium alloy and enhance the plastic material flow in the weld nugget zone, which can reduce or even eliminate the void defect in the conventional friction stir welding joint. The microhardness at the top and middle of the nugget zone increases due to the ultrasonic effect, while the bottom of the weld does not change much. The fracture surfaces of the joints show a ductile fracture mode, and the elongation of the joints increases after ultrasonic vibration energy is applied, and the fracture dimples are more fine and uniform. Under the welding parameters studied the maximum tensile strength and elongation of the joint are 282.8 MPa and 11.5%, respectively. Under the conditions with rotational speed of 600 r/min and welding rate of 225 mm/min, the application of ultrasound can improve the tensile strength and the elongation of the joint by 17.5 MPa and 3.7% respectively.
Key wordsaluminium-lithium alloy    friction stir welding    ultrasonic vibration    mechanical property
收稿日期: 2020-08-10      出版日期: 2021-05-21
中图分类号:  TG453  
基金资助:国家自然科学基金项目(51905309);西北工业大学凝固技术国家重点实验室开放课题(SKLSP201912)
通讯作者: 石磊(1987-),男,教授,博士生导师,从事搅拌摩擦焊接与加工研究,联系地址:山东省济南市经十路17923号山东大学材料科学与工程学院焊接研究所(250061),lei.shi@sdu.edu.cn     E-mail: lei.shi@sdu.edu.cn
引用本文:   
石磊, 戴翔, 武传松, 傅莉. 2195铝锂合金超声振动辅助搅拌摩擦焊接工艺研究[J]. 材料工程, 2021, 49(5): 122-129.
SHI Lei, DAI Xiang, WU Chuan-song, FU Li. Process investigation on ultrasonic vibration enhanced friction stir welding of 2195 aluminum-lithium alloy. Journal of Materials Engineering, 2021, 49(5): 122-129.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000735      或      http://jme.biam.ac.cn/CN/Y2021/V49/I5/122
[1] STEUWER A, DUMONT M, ALTENKIRCH J, et al. A combined approach to microstructure mapping of an Al-Li AA2199 friction stir weld[J]. Acta Materialia, 2011, 59(8):3002-3011.
[2] TAO Y, ZHANG Z, YU B H, et al. Friction stir welding of 2060-T8 Al-Li alloy part Ⅰ:microstructure evolution mechanism and mechanical properties[J]. Materials Characterization, 2020, 168:110524.
[3] ZHANG J, FENG X S, GAO J S, et al. Effects of welding parameters and post-heat treatment on mechanical properties of friction stir welded AA2195-T8 Al-Li alloy[J]. Journal of Materials Science & Technology, 2018, 34(1):219-227.
[4] MA Y E, XIA Z C, JIANG R R, et al. Effect of welding parameters on mechanical and fatigue properties of friction stir welded 2198 T8 aluminum-lithium alloy joints[J]. Engineering Fracture Mechanics, 2013, 114:1-11.
[5] CHEN Q, GE H, YANG C, et al. Study on pores in ultrasonic-assisted TIG weld of aluminum alloy[J]. Metals, 2017, 7(2):53.
[6] 邓运来, 邓舒浩, 叶凌英, 等.焊后热处理对AA7204-T4铝合金搅拌摩擦焊接头组织与力学性能的影响[J].材料工程, 2020, 48(4):131-138. DENG Y L, DENG S H, YE L Y, et al. Effects of post-weld heat treatment on microstructures and mechanical properties of AA7204-T4 aluminum alloy FSW joint[J]. Journal of Materials Engineering, 2020, 48(4):131-138.
[7] 王文, 李天麒, 乔柯, 等.转速对水下搅拌摩擦焊接7A04-T6铝合金组织与性能的影响[J].材料工程, 2017, 45(10):32-38. WANG W, LI T Q, QIAO K, et al. Effect of rotation rate on microstructure and properties of underwater friction stir welded 7A04-T6 aluminum alloy[J]. Journal of Materials Engineering, 2017, 45(10):32-38.
[8] LIU H J, HU Y Y, DOU C, et al. An effect of the rotation speed on microstructure and mechanical properties of the friction stir welded 2060-T8 Al-Li alloy[J]. Materials Characterization, 2017, 123:9-19.
[9] 冯吉才, 王大勇, 王攀峰.锥形光头搅拌针搅拌摩擦焊接铝锂合金接头组织及力学性能[J].中国机械工程, 2004, 15(10):932-935. FENG J C, WANG D Y, WANG P F. Microstructures and mechanical properties of Al-Li alloy friction stir welds with a cone-shape and non-whorl pin[J]. China Mechanical Engineering, 2004, 15(10):932-935.
[10] QIN H L, ZHANG H, WU H Q. The evolution of precipitation and microstructure in friction stir welded 2195-T8 Al-Li alloy[J]. Materials Science and Engineering:A, 2015, 626:322-329.
[11] TAYON W A, DOMACK M S, HOFFMAN E K, et al. Texture evolution within the thermomechanically affected zone of an Al-Li alloy 2195 friction stir weld[J]. Metallurgical and Materials Transactions A, 2013, 44(11):4906-4913.
[12] LI J F, CHEN Y L, ZHANG X H, et al. Structure and mechanical property of friction-stir weld joint of 2195-T8 Al-Li alloy plate[J]. Rare Metal Materials and Engineering, 2018, 47(3):780-787.
[13] 束彪, 国旭明, 张春旭.2195铝锂合金搅拌摩擦焊接头组织及性能[J].航空材料学报, 2010, 30(4):12-15. SHU B, GUO X M, ZHANG C X. Microstructures and properties of friction stir welded joint of 2195 Al-Li alloy[J]. Journal of Aeronautical Materials, 2010, 30(4):12-15.
[14] MOREIRA P, De JESUS A M P, De FIGUEIREDO M A V, et al. Fatigue and fracture behaviour of friction stir welded aluminium-lithium 2195[J]. Theoretical and Applied Fracture Mechanics, 2012, 60(1):1-9.
[15] CHU Q, YANG X W, LI W Y, et al. On visualizing material flow and precipitate evolution during probeless friction stir spot welding of an Al-Li alloy[J]. Materials Characterization, 2018, 144:336-344.
[16] MENG X, XU Z, HUANG Y, et al. Interface characteristic and tensile property of friction stir lap welding of dissimilar aircraft 2060-T8 and 2099-T83 Al-Li alloys[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(1/4):1253-1261.
[17] MAO Y Q, KE L M, LIU F C, et al. Effect of welding parameters on microstructure and mechanical properties of friction stir welded joints of 2060 aluminum lithium alloy[J]. The International Journal of Advanced Manufacturing Technology, 2015, 81(5/8):1419-1431.
[18] TAO Y, NI D R, XIAO B L, et al. Origin of unusual fracture in stirred zone for friction stir welded 2198-T8 Al-Li alloy joints[J]. Materials Science and Engineering:A, 2017, 693:1-13.
[19] WANG F F, LI W Y, SHEN J J, et al. Effect of tool rotational speed on the microstructure and mechanical properties of bobbin tool friction stir welding of Al-Li alloy[J]. Materials & Design, 2015, 86:933-940.
[20] SHI L, WU C S, GAO S, et al. Modified constitutive equation for use in modeling the ultrasonic vibration enhanced friction stir welding process[J]. Scripta Materialia, 2016, 119:21-26.
[21] PADHY G K, WU C S, GAO S. Friction stir based welding and processing technologies-processes, parameters, microstructures and applications:a review[J]. Journal of Materials Science & Technology, 2018, 34(1):1-38.
[22] TARASOV S Y, RUBTSOV V E, FORTUNA S V, et al. Ultrasonic-assisted aging in friction stir welding on Al-Cu-Li-Mg aluminum alloy[J]. Welding in the World, 2017, 61(4):679-690.
[23] SHI L, WU C S, LIU X C. Modeling the effects of ultrasonic vibration on friction stir welding[J]. Journal of Materials Processing Technology, 2015, 222:91-102.
[24] LIU X C, WU C S, PADHY G K. Characterization of plastic deformation and material flow in ultrasonic vibration enhanced friction stir welding[J]. Scripta Materialia, 2015, 102:95-98.
[25] HU Y Y, LIU H J, FUJII H, et al. Vacancy-induced θ' precipitation during ultrasonic-affected friction stir welding of Al-Cu alloy[J]. Journal of Materials Science, 2020, 55:14626-14641.
[1] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[2] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
[3] 陈帅, 陶凤和, 贾长治, 孙河洋. 成形角度对选区激光熔化4Cr5MoSiV1钢组织和性能的影响[J]. 材料工程, 2022, 50(3): 122-130.
[4] 唐鹏钧, 房立家, 王兴元, 李沛勇, 张学军. 人工时效对激光选区熔化AlMg4.5Sc0.55Mn0.5Zr0.2合金显微组织和力学性能的影响[J]. 材料工程, 2022, 50(2): 84-93.
[5] 邵震, 崔雷, 王东坡, 陈永亮, 胡正根, 王非凡. 几何参数对2219铝合金拉拔式摩擦塞补焊接头微观组织及力学性能的影响[J]. 材料工程, 2022, 50(1): 25-32.
[6] 吴程浩, 刘涛, 高嵩, 石磊, 刘洪涛. 铝/钢异种金属的超声振动强化搅拌摩擦焊接工艺[J]. 材料工程, 2022, 50(1): 33-42.
[7] 徐学宏, 郑义珠, 陈吉平, 宁博, 刘晓忱. 缝合参数对泡沫夹层结构复合材料力学性能的影响[J]. 材料工程, 2022, 50(1): 132-137.
[8] 肖伟, 杨占旭, 乔庆东. 石墨电极表面聚丙烯腈纳米纤维膜的制备及性能[J]. 材料工程, 2021, 49(9): 60-68.
[9] 王庆娟, 吴金城, 王伟, 杜忠泽, 尹仁锟. 超高强β钛合金等温相转变特性及力学性能[J]. 材料工程, 2021, 49(9): 94-100.
[10] 孙昊飞, 肖志, 韦凯, 杨旭静, 齐军. 预弯曲变形对CP800复相钢力学性能的影响[J]. 材料工程, 2021, 49(8): 81-88.
[11] 姜卓钰, 束小文, 吕晓旭, 高晔, 周怡然, 董禹飞, 焦健. SiC晶须增强SiCf/SiC复合材料的力学性能[J]. 材料工程, 2021, 49(8): 89-96.
[12] 张海连, 段淼, 李四中, 林志勇. 催化炭化-原位反应/反应熔体浸渗法制备C/C-SiC复合材料[J]. 材料工程, 2021, 49(7): 85-91.
[13] 唐延川, 万能, 唐兴昌, 刘德佳, 焦海涛, 胡勇, 赵龙志. 合金化组元(Al,Cr,Si,Ti)含量对激光沉积(FeNiCo)-(AlCrSiTi)非等原子比多组元合金涂层组织与力学性能的影响[J]. 材料工程, 2021, 49(7): 92-102.
[14] 邢宇轩, 郭英奎, 陈磊, 赵壮志, 王玉金. 气压浸渗法制备ZrC-W-Cu复合材料的显微组织与力学性能[J]. 材料工程, 2021, 49(7): 124-132.
[15] 詹强坤, 刘允中, 刘小辉, 周志光. 激光选区熔化成形含锆7×××系铝合金的显微组织与力学性能[J]. 材料工程, 2021, 49(6): 85-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn