The complex internal three-dimensional fiber distributions and the various microcrack propagation processes of the chopped carbon fiber sheet molding compound (SMC) composites aggravate the difficulty of failure analysis. In-situ micro X-ray computed tomography was proposed in this study to characterize the internal microstructure evolution under different tensile loading conditions. Combined with advanced image acquisition and image processing technologies, the three-dimensional microstructure of the SMC composites, including the complete microcrack propagation, under different loading conditions was reconstructed, where the microcrack geometric size was quantitatively measured. The failure mechanism of the SMC composites was explored via the Tsai-Wu failure criterion and the matrix stress field theory after interface cracking. The proposed method provides an important basis for studying the failure process of the SMC composites and the corresponding failure behavior.
SUN W , VASSILOPOULOS A P , KELLER T . Experimental investigation of kink initiation and kink band formation in unidirectional glass fiber-reinforced polymer specimens[J]. Composite Structures, 2015, 130, 9- 17.
doi: 10.1016/j.compstruct.2015.04.028
2
MA Y , UEDA M , YOKOZEKI T , et al. A comparative study of the mechanical properties and failure behavior of carbon fiber/epoxy and carbon fiber/polyamide 6 unidirectional composites[J]. Composite Structures, 2017, 160, 89- 99.
doi: 10.1016/j.compstruct.2016.10.037
3
TANG H , CHEN Z , ZHOU G , et al. Correlation between failure and local material property in chopped carbon fiber chip-reinforced sheet molding compound composites under tensile load[J]. Polymer Composites, 2019, 40 (Suppl 2): 962- 974.
4
CHEN Z , TANG H , SHAO Y , et al. Failure of chopped carbon fiber Sheet Molding Compound (SMC) composites under uniaxial tensile loading: Computational prediction and experimental analysis[J]. Composites Part A: Applied Science and Manufacturing, 2019, 118, 117- 130.
doi: 10.1016/j.compositesa.2018.12.021
5
WAN Y , STRAUMIT I , TAKAHASHI J , et al. Micro-CT analysis of internal geometry of chopped carbon fiber tapes reinforced thermoplastics[J]. Composites Part A: Applied Science and Manufacturing, 2016, 91, 211- 221.
doi: 10.1016/j.compositesa.2016.10.013
6
FERABOLI P , PEITSO E , DELEO F , et al. Characterization of prepreg-based discontinuous carbon fiber/epoxy systems[J]. Journal of Reinforced Plastics and Composites, 2009, 28 (10): 1191- 1214.
doi: 10.1177/0731684408088883
7
FERABOLI P , PEITSO E , CLEVELAND T , et al. Notched behavior of prepreg-based discontinuous carbon fiber/epoxy systems[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40 (3): 289- 299.
doi: 10.1016/j.compositesa.2008.12.012
8
YAMASHITA S , HASHIMOTO K , SUGANUMA H , et al. Experimental characterization of the tensile failure mode of ultra-thin chopped carbon fiber tape-reinforced thermo-plastics[J]. Journal of Reinforced Plastics and Composites, 2016, 35 (18): 1342- 1352.
doi: 10.1177/0731684416651134
9
NICOLETTO G , RIVA E , STOCCHI A . Mechanical characterization of advanced random discontinuous carbon/epoxy composites[J]. Materials Today: Proceedings, 2016, 3 (4): 1079- 1084.
doi: 10.1016/j.matpr.2016.03.052
10
SELEZNEVA M , LESSARD L . Characterization of mechanical properties of randomly oriented strand thermoplastic composites[J]. Journal of Composite Materials, 2016, 50 (20): 2833- 2851.
doi: 10.1177/0021998315613129
11
HATTUM F , BERNARDO C A . A model to predict the strength of short fiber composites[J]. Polymer Composites, 1999, 20 (4): 524- 533.
doi: 10.1002/pc.10376
12
WARREN K C , LOPEZ-ANIDO R A , VEL S S , et al. Progressive failure analysis of three-dimensional woven carbon composites in single-bolt, double-shear bearing[J]. Composites: Part B, 2016, 84, 266- 276.
13
FAESSEL M , DELISÉE C , BOS F , et al. 3D Modelling of random cellulosic fibrous networks based on X-ray tomography and image analysis[J]. Composites Science and Technology, 2005, 65 (13): 1931- 1940.
doi: 10.1016/j.compscitech.2004.12.038
14
HARPER L T , QIAN C C , LUCHOO R , et al. 3D geometric modelling of discontinuous fibre composites using a force-directed algorithm[J]. Journal of Composite Materials, 2017, 51 (17): 2389- 2406.
doi: 10.1177/0021998316672722
15
SELEZNEVA M , ROY S , LESSARD L , et al. Analytical model for prediction of strength and fracture paths characteristic to randomly oriented strand (ROS) composites[J]. Composites: Part B, 2016, 96, 103- 111.
doi: 10.1016/j.compositesb.2016.04.017
16
MARCANTONIO V , MONARCA D , COLANTONI A , et al. Ultrasonic waves for materials evaluation in fatigue, thermal and corrosion damage: a review[J]. Mechanical Systems and Signal Processing, 2019, 120, 32- 42.
doi: 10.1016/j.ymssp.2018.10.012
17
MALPOT A , TOUCHARD F , BERGAMO S . An investigation of the influence of moisture on fatigue damage mechanisms in a woven glass-fibre-reinforced PA66 composite using acoustic emission and infrared thermography[J]. Composites: Part B, 2017, 130, 11- 20.
doi: 10.1016/j.compositesb.2017.07.017
18
PEI S , WANG K , LI J , et al. Mechanical properties prediction of injection molded short/long carbon fiber reinforced polymer composites using micro X-ray computed tomography[J]. Composites: Part A, 2020, 130, 105732.
doi: 10.1016/j.compositesa.2019.105732
19
ROLLAND H , SAINTIER N , RAPHAEL I , et al. Fatigue damage mechanisms of short fiber reinforced PA66 as observed by in-situ syn-chrotron X-ray microtomography[J]. Composites: Part B, 2018, 143, 217- 229.
doi: 10.1016/j.compositesb.2017.12.051
20
SHIRINBAYAN M , FITOUSSI J , MERAGHNI F , et al. High strain rate visco-damageable behavior of Advanced Sheet Molding Compound (A-SMC) under tension[J]. Composites: Part B, 2015, 82, 30- 41.
doi: 10.1016/j.compositesb.2015.07.010
21
JENDLI Z , MERAGHNI F , FITOUSSI J , et al. Micromechanical analysis of strain rate effect on damage evolution in sheet molding compound composites[J]. Composites: Part A, 2004, 35 (7/8): 779- 785.
22
WANG K , PEI S , LI Y , et al. In-situ 3D fracture propagation of short carbon fiber reinforced polymer composites[J]. Composites Science and Technology, 2019, 182, 107788.
23
PEI S , WANG K , LI Y , et al. Spatiotemporal characterization of 3D fracture behavior of carbon-fiber-reinforced polymer composites[J]. Composite Structures, 2018, 203, 30- 37.
24
FU S Y , LAUKE B . Effects of fiber length and fiber orientation distributions on the tensile strength of short-fiber-reinforced polymers[J]. Composites Science and Technology, 1996, 56 (10): 1179- 1190.
doi: 10.1016/S0266-3538(96)00072-3
25
OTSU N . A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9 (1): 62- 66.
doi: 10.1109/TSMC.1979.4310076
WANG L , DUAN H C . Application of Otsu' method in multi-threshold image segmentation[J]. Computer Engineering and Design, 2008, 29 (11): 2844- 2845.
27
黄争鸣. 复合材料破坏与强度[M]. 北京: 科学出版社, 2018: 261- 277.
27
HUANG Z M . Failure and strength of composite materials[M]. Beijing: Science Press, 2018: 261- 277.
28
TOYA M . A crack along the interface of a circular inclusion embedded in an infinite solid[J]. Journal of the Mechanics and Physics of Solids, 1974, 22 (5): 325- 348.
doi: 10.1016/0022-5096(74)90002-7
29
TSAI S W , WU E M . A general theory of strength for anisotropic materials[J]. Journal of Composite Materials, 1971, 5 (1): 58- 80.
doi: 10.1177/002199837100500106