Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (5): 130-138    DOI: 10.11868/j.issn.1001-4381.2020.000765
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于微观尺度X射线断层扫描技术的短切碳纤维SMC复合材料失效分析
程子敬, 王凯峰(), 张连洪
天津大学 机械工程学院, 天津 300350
Failure analysis of chopped carbon fiber SMC composites by micro X-ray computed tomography
Zijing CHENG, Kaifeng WANG(), Lianhong ZHANG
School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
全文: PDF(19511 KB)   HTML ( 3 )  
输出: BibTeX | EndNote (RIS)      
摘要 

短切碳纤维片状模塑料(SMC)复合材料内部复杂的纤维三维分布及其造成的多样微裂纹演化过程加剧了其失效分析的难度。针对短切碳纤维SMC复合材料的失效行为进行研究, 提出采用微观尺度X射线断层扫描技术实时表征材料内部的微观结构, 捕捉碳纤维和微裂纹的几何信息, 结合先进的图像采集和图像处理技术, 进而准确重构出短切碳纤维SMC复合材料在受力过程中的三维结构变化以及微裂纹的完整演变过程, 定量测量微裂纹的几何尺寸, 实现损伤的精准诊断, 并利用Tsai-Wu失效判据和界面开裂后的基体应力场理论等失效方法探究短切碳纤维SMC复合材料的失效机制。该方法的提出对于研究短切碳纤维SMC复合材料的失效过程以及分析相应的失效行为提供了重要依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程子敬
王凯峰
张连洪
关键词 微观尺度X射线断层扫描技术碳纤维复合材料损伤检测损伤表征失效机制    
Abstract

The complex internal three-dimensional fiber distributions and the various microcrack propagation processes of the chopped carbon fiber sheet molding compound (SMC) composites aggravate the difficulty of failure analysis. In-situ micro X-ray computed tomography was proposed in this study to characterize the internal microstructure evolution under different tensile loading conditions. Combined with advanced image acquisition and image processing technologies, the three-dimensional microstructure of the SMC composites, including the complete microcrack propagation, under different loading conditions was reconstructed, where the microcrack geometric size was quantitatively measured. The failure mechanism of the SMC composites was explored via the Tsai-Wu failure criterion and the matrix stress field theory after interface cracking. The proposed method provides an important basis for studying the failure process of the SMC composites and the corresponding failure behavior.

Key wordsmicro X-ray computed tomography    carbon fiber composite    damage detection    damage evaluation    failure mechanism
收稿日期: 2020-08-18      出版日期: 2022-05-23
中图分类号:  TB332  
基金资助:天津市自然科学基金项目(19JCZDJC38500)
通讯作者: 王凯峰     E-mail: wangkf@tju.edu.cn
作者简介: 王凯峰(1987—),男,副教授,博士生导师,博士,研究方向为碳纤维复合材料性能表征、3D/4D打印技术等,联系地址:天津市津南区海河教育园雅观路135号天津大学机械工程学院(300350), E-mail: wangkf@tju.edu.cn
引用本文:   
程子敬, 王凯峰, 张连洪. 基于微观尺度X射线断层扫描技术的短切碳纤维SMC复合材料失效分析[J]. 材料工程, 2022, 50(5): 130-138.
Zijing CHENG, Kaifeng WANG, Lianhong ZHANG. Failure analysis of chopped carbon fiber SMC composites by micro X-ray computed tomography. Journal of Materials Engineering, 2022, 50(5): 130-138.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000765      或      http://jme.biam.ac.cn/CN/Y2022/V50/I5/130
Fig.1  实验装置
(a)加载平台;(b)微观尺度X射线断层扫描平台
Fig.2  X射线断层扫描示意图
Fig.3  未加载下CFRP SMC复合材料三维重建
Fig.4  CFRP SMC复合材料不同平面下的二维形貌
(a)在厚度(y)-长度(z)平面内的区域分割;(b)在宽度(x)-长度(z)平面第8层的纤维取向分布
Layer Mean fiber orientation angle/(°)
1 36
2 43
3 10
4 37
5 73
6 26
7 66
8 44
9 79
10 54
11 70
12 28
13 46
Table 1  不同层下的平均纤维取向角
Fig.5  不同拉应力下微裂纹的演变
(a)0 MPa;(b)156 MPa;(c)168 MPa;(d)176 MPa;(e)201 MPa
Fig.6  最大拉应力下的微裂纹扩展
Fig.7  微裂纹几何尺寸
Fig.8  裂纹4三维形貌
Fig.9  裂纹4时空量化结果
(a)时空宽度(x)-厚度(y)平面分析;(b)时空宽度(x)-长度(z)平面分析
Fig.10  微裂纹断裂分析
(a)断裂扩展路径;(b)裂纹分布
Fig.11  整体坐标系和局部坐标系
Material E11/GPa E22/GPa ν12 G12/GPa G23/GPa σu, t/MPa σu, c/MPa
Carbon fiber 245 15.65 0.246 12.37 5.14
Matrix 3.8 3.8 0.4 1.36 1.36 61.6 300
Table 2  CFRP SMC复合材料碳纤维和基体的性能参数[4]
Layer Interface debonding strength/MPa
1 64.3
2 55.3
3 217.1
4 62.8
5 39.1
6 86.4
7 41
8 54.2
9 38.1
10 46.5
11 39.8
12 80.7
13 52.4
Table 3  CFRP SMC复合材料不同层下的界面脱粘强度
1 SUN W , VASSILOPOULOS A P , KELLER T . Experimental investigation of kink initiation and kink band formation in unidirectional glass fiber-reinforced polymer specimens[J]. Composite Structures, 2015, 130, 9- 17.
doi: 10.1016/j.compstruct.2015.04.028
2 MA Y , UEDA M , YOKOZEKI T , et al. A comparative study of the mechanical properties and failure behavior of carbon fiber/epoxy and carbon fiber/polyamide 6 unidirectional composites[J]. Composite Structures, 2017, 160, 89- 99.
doi: 10.1016/j.compstruct.2016.10.037
3 TANG H , CHEN Z , ZHOU G , et al. Correlation between failure and local material property in chopped carbon fiber chip-reinforced sheet molding compound composites under tensile load[J]. Polymer Composites, 2019, 40 (Suppl 2): 962- 974.
4 CHEN Z , TANG H , SHAO Y , et al. Failure of chopped carbon fiber Sheet Molding Compound (SMC) composites under uniaxial tensile loading: Computational prediction and experimental analysis[J]. Composites Part A: Applied Science and Manufacturing, 2019, 118, 117- 130.
doi: 10.1016/j.compositesa.2018.12.021
5 WAN Y , STRAUMIT I , TAKAHASHI J , et al. Micro-CT analysis of internal geometry of chopped carbon fiber tapes reinforced thermoplastics[J]. Composites Part A: Applied Science and Manufacturing, 2016, 91, 211- 221.
doi: 10.1016/j.compositesa.2016.10.013
6 FERABOLI P , PEITSO E , DELEO F , et al. Characterization of prepreg-based discontinuous carbon fiber/epoxy systems[J]. Journal of Reinforced Plastics and Composites, 2009, 28 (10): 1191- 1214.
doi: 10.1177/0731684408088883
7 FERABOLI P , PEITSO E , CLEVELAND T , et al. Notched behavior of prepreg-based discontinuous carbon fiber/epoxy systems[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40 (3): 289- 299.
doi: 10.1016/j.compositesa.2008.12.012
8 YAMASHITA S , HASHIMOTO K , SUGANUMA H , et al. Experimental characterization of the tensile failure mode of ultra-thin chopped carbon fiber tape-reinforced thermo-plastics[J]. Journal of Reinforced Plastics and Composites, 2016, 35 (18): 1342- 1352.
doi: 10.1177/0731684416651134
9 NICOLETTO G , RIVA E , STOCCHI A . Mechanical characterization of advanced random discontinuous carbon/epoxy composites[J]. Materials Today: Proceedings, 2016, 3 (4): 1079- 1084.
doi: 10.1016/j.matpr.2016.03.052
10 SELEZNEVA M , LESSARD L . Characterization of mechanical properties of randomly oriented strand thermoplastic composites[J]. Journal of Composite Materials, 2016, 50 (20): 2833- 2851.
doi: 10.1177/0021998315613129
11 HATTUM F , BERNARDO C A . A model to predict the strength of short fiber composites[J]. Polymer Composites, 1999, 20 (4): 524- 533.
doi: 10.1002/pc.10376
12 WARREN K C , LOPEZ-ANIDO R A , VEL S S , et al. Progressive failure analysis of three-dimensional woven carbon composites in single-bolt, double-shear bearing[J]. Composites: Part B, 2016, 84, 266- 276.
13 FAESSEL M , DELISÉE C , BOS F , et al. 3D Modelling of random cellulosic fibrous networks based on X-ray tomography and image analysis[J]. Composites Science and Technology, 2005, 65 (13): 1931- 1940.
doi: 10.1016/j.compscitech.2004.12.038
14 HARPER L T , QIAN C C , LUCHOO R , et al. 3D geometric modelling of discontinuous fibre composites using a force-directed algorithm[J]. Journal of Composite Materials, 2017, 51 (17): 2389- 2406.
doi: 10.1177/0021998316672722
15 SELEZNEVA M , ROY S , LESSARD L , et al. Analytical model for prediction of strength and fracture paths characteristic to randomly oriented strand (ROS) composites[J]. Composites: Part B, 2016, 96, 103- 111.
doi: 10.1016/j.compositesb.2016.04.017
16 MARCANTONIO V , MONARCA D , COLANTONI A , et al. Ultrasonic waves for materials evaluation in fatigue, thermal and corrosion damage: a review[J]. Mechanical Systems and Signal Processing, 2019, 120, 32- 42.
doi: 10.1016/j.ymssp.2018.10.012
17 MALPOT A , TOUCHARD F , BERGAMO S . An investigation of the influence of moisture on fatigue damage mechanisms in a woven glass-fibre-reinforced PA66 composite using acoustic emission and infrared thermography[J]. Composites: Part B, 2017, 130, 11- 20.
doi: 10.1016/j.compositesb.2017.07.017
18 PEI S , WANG K , LI J , et al. Mechanical properties prediction of injection molded short/long carbon fiber reinforced polymer composites using micro X-ray computed tomography[J]. Composites: Part A, 2020, 130, 105732.
doi: 10.1016/j.compositesa.2019.105732
19 ROLLAND H , SAINTIER N , RAPHAEL I , et al. Fatigue damage mechanisms of short fiber reinforced PA66 as observed by in-situ syn-chrotron X-ray microtomography[J]. Composites: Part B, 2018, 143, 217- 229.
doi: 10.1016/j.compositesb.2017.12.051
20 SHIRINBAYAN M , FITOUSSI J , MERAGHNI F , et al. High strain rate visco-damageable behavior of Advanced Sheet Molding Compound (A-SMC) under tension[J]. Composites: Part B, 2015, 82, 30- 41.
doi: 10.1016/j.compositesb.2015.07.010
21 JENDLI Z , MERAGHNI F , FITOUSSI J , et al. Micromechanical analysis of strain rate effect on damage evolution in sheet molding compound composites[J]. Composites: Part A, 2004, 35 (7/8): 779- 785.
22 WANG K , PEI S , LI Y , et al. In-situ 3D fracture propagation of short carbon fiber reinforced polymer composites[J]. Composites Science and Technology, 2019, 182, 107788.
23 PEI S , WANG K , LI Y , et al. Spatiotemporal characterization of 3D fracture behavior of carbon-fiber-reinforced polymer composites[J]. Composite Structures, 2018, 203, 30- 37.
24 FU S Y , LAUKE B . Effects of fiber length and fiber orientation distributions on the tensile strength of short-fiber-reinforced polymers[J]. Composites Science and Technology, 1996, 56 (10): 1179- 1190.
doi: 10.1016/S0266-3538(96)00072-3
25 OTSU N . A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9 (1): 62- 66.
doi: 10.1109/TSMC.1979.4310076
26 王磊, 段会川. Otsu方法在多阈值图像分割中的应用[J]. 计算机工程与设计, 2008, 29 (11): 2844- 2845.
26 WANG L , DUAN H C . Application of Otsu' method in multi-threshold image segmentation[J]. Computer Engineering and Design, 2008, 29 (11): 2844- 2845.
27 黄争鸣. 复合材料破坏与强度[M]. 北京: 科学出版社, 2018: 261- 277.
27 HUANG Z M . Failure and strength of composite materials[M]. Beijing: Science Press, 2018: 261- 277.
28 TOYA M . A crack along the interface of a circular inclusion embedded in an infinite solid[J]. Journal of the Mechanics and Physics of Solids, 1974, 22 (5): 325- 348.
doi: 10.1016/0022-5096(74)90002-7
29 TSAI S W , WU E M . A general theory of strength for anisotropic materials[J]. Journal of Composite Materials, 1971, 5 (1): 58- 80.
doi: 10.1177/002199837100500106
[1] 张宝艳, 陈祥宝, 周正刚. 消泡剂对真空压力成型复合材料质量与性能的影响[J]. 材料工程, 2007, 0(12): 3-7.
[2] 乔生儒, 杨忠学, 韩栋, 李玫. 3D-C/SiC复合材料拉伸蠕变损伤和蠕变机理[J]. 材料工程, 2004, 0(4): 34-36.
[3] 陶小乐, 胡永明, 益小苏. 碳纤维复合材料层板在准静态球头压入条件下的压入深度-压力-电阻性质[J]. 材料工程, 2001, 0(4): 19-21.
[4] 梁大开, 黄明双, 陶宝祺. 光纤埋人碳纤维复合材料结构的实验研究[J]. 材料工程, 2000, 0(2): 16-18,40.
[5] 黄玉东, 刘立洵, 王天慧, 张志谦, 冯志海, 于瑞莲. 碳纤维预成型立体织物纤维表面处理及效果评价[J]. 材料工程, 1999, 0(8): 15-17.
[6] 王玉林, 齐锦刚, 万怡灶, 辛景义. 用于骨折内固定板的可吸收聚合物及其复合材料[J]. 材料工程, 1999, 0(12): 35-38.
[7] 王晓红, 刘俊能, 何山. 碳纤维复合材料的雷达透射性研究[J]. 材料工程, 1998, 0(1): 15-18.
[8] 甘永学, 陈汴琨. 碳纤维/铜-5%锡基复合材料的弯曲性能[J]. 材料工程, 1991, 0(4): 25-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn