Research progress in high entropy alloys by additive manufacturing
Shui-miao WEI1, Pan MA1,*(), Peng-cheng JI1, Yong-chao MA2, Can WANG1, Jian ZHAO1, Zhi-shui YU1
1 School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China 2 Shantui Construction Machinery Co., Ltd., Jining 272073, Shandong, China
Based on different high-entropy alloys (HEAs) systems, the latest research progress in additive manufactured high-entropy alloys was reviewed. The rapid solidification microstructure, segregation and precipitation behaviors of high-entropy alloys fabricated by additive manufacturing with different compositions were described. Especially, the analysis was focused on the mechanical properties, deformation and strengthening mechanisms. It was pointed out that the appropriate additive manufacturing process should be selected for different high-entropy alloy systems, and the influencing factors of forming quality need to be further studied. Finally, it was proposed that high-entropy alloys with both excellent strength and high plasticity can be developed and prepared by additive manufacturing technology.
YEH J W , CHEN S K , LIN S J , et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6 (5): 299- 303.
doi: 10.1002/adem.200300567
2
CANTOR B , CHANG I T H , KNIGHT P , et al. Microstructural development in equiatomic multicomponent alloys[J]. Materials Science and Engineering: A, 2004, 375, 213- 218.
3
SENKOV O N , WILKS G B , MIRACLE D B , et al. Refractory high-entropy alloys[J]. Intermetallics, 2010, 18 (9): 1758- 1765.
doi: 10.1016/j.intermet.2010.05.014
WANG F , ZHENG X , ZHANG X M , et al. Study on microstructure of multielement MoNbZr high entropy alloy[J]. Hot Working Technology, 2012, 41 (24): 117- 120.
TAN Y Q , WANG X M , ZHU S , et al. Research progress on strengthening and ductilizing high-entropy alloys[J]. Materials Reports, 2020, 34 (5): 120- 126.
CHEN Y X , ZHU S , WANG X M , et al. Research progress in advanced materials of high-entropy alloys[J]. Journal of Materials Engineering, 2017, 45 (11): 129- 138.
doi: 10.11868/j.issn.1001-4381.2015.001124
7
LI R , NIU P , YUAN T , et al. Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy: processability, non-equilibrium microstructure and mechanical property[J]. Journal of Alloys and Compounds, 2018, 746, 125- 134.
doi: 10.1016/j.jallcom.2018.02.298
8
XIANG S , LUAN H , WU J , et al. Microstructures and mechanical properties of CrMnFeCoNi high entropy alloys fabricated using laser metal deposition technique[J]. Journal of Alloys and Compounds, 2019, 773, 387- 392.
doi: 10.1016/j.jallcom.2018.09.235
9
CHEW Y , BI G J , ZHU Z G , et al. Microstructure and enhanced strength of laser aided additive manufactured CoCrFeNiMn high entropy alloy[J]. Materials Science and Engineering: A, 2019, 744, 137- 144.
doi: 10.1016/j.msea.2018.12.005
10
GAO X , LU Y . Laser 3D printing of CoCrFeMnNi high-entropy alloy[J]. Materials Letters, 2019, 236, 77- 80.
doi: 10.1016/j.matlet.2018.10.084
11
QIU Z , YAO C , FENG K , et al. Cryogenic deformation mechanism of CrMnFeCoNi high-entropy alloy fabricated by laser additive manufacturing process[J]. International Journal of Lightweight Materials and Manufacture, 2018, 1 (1): 33- 39.
doi: 10.1016/j.ijlmm.2018.02.001
12
ZHANG M , ZHOU X , WANG D , et al. AlCoCuFeNi high-entropy alloy with tailored microstructure and outstanding compressive properties fabricated via selective laser melting with heat treatment[J]. Materials Science and Engineering: A, 2019, 743, 773- 784.
doi: 10.1016/j.msea.2018.11.118
13
CHEN P , LI S , ZHOU Y , et al. Fabricating CoCrFeMnNi high entropy alloy via selective laser melting in-situ alloying[J]. Journal of Materials Science and Technology, 2020, 43, 40- 43.
doi: 10.1016/j.jmst.2020.01.002
14
JOSEPH J , JARVIS T , WU X , et al. Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted AlxCoCrFeNi high entropy alloys[J]. Materials Science and Engineering: A, 2015, 633, 184- 193.
doi: 10.1016/j.msea.2015.02.072
15
VIKRAM R J , MURTY B S , FABIJANIC D , et al. Insights into micro-mechanical response and texture of the additively manufactured eutectic high entropy alloy AlCoCrFeNi2.1[J]. Journal of Alloys and Compounds, 2020, 827, 154034.
doi: 10.1016/j.jallcom.2020.154034
16
GALATI M , IULIANO L . A literature review of powder-based electron beam melting focusing on numerical simulations[J]. Additive Manufacturing, 2018, 19, 1- 20.
doi: 10.1016/j.addma.2017.11.001
17
BRIF Y , THOMAS M , TODD I . The use of high-entropy alloys in additive manufacturing[J]. Scripta Materialia, 2015, 99, 93- 96.
doi: 10.1016/j.scriptamat.2014.11.037
18
SUN Z , TAN X P , DESCOINS M , et al. Revealing hot tearing mechanism for an additively manufactured high-entropy alloy via selective laser melting[J]. Scripta Materialia, 2019, 168, 129- 133.
doi: 10.1016/j.scriptamat.2019.04.036
19
LIN D , XU L , JING H , et al. Effects of annealing on the structure and mechanical properties of FeCoCrNi high-entropy alloy fabricated via selective laser melting[J]. Additive Manufacturing, 2020, 32, 101058.
doi: 10.1016/j.addma.2020.101058
20
KENEL C , CASATI N P M , DUNAND D C . 3D ink-extrusion additive manufacturing of CoCrFeNi high-entropy alloy micro-lattices[J]. Nature Communications, 2019, 10 (1): 1- 8.
doi: 10.1038/s41467-018-07882-8
21
ZHOU R , LIU Y , ZHOU C , et al. Microstructures and mechanical properties of C-containing FeCoCrNi high-entropy alloy fabricated by selective laser melting[J]. Intermetallics, 2018, 94, 165- 171.
doi: 10.1016/j.intermet.2018.01.002
22
WU W , ZHOU R , WEI B , et al. Nanosized precipitates and dislocation networks reinforced C-containing CoCrFeNi high-entropy alloy fabricated by selective laser melting[J]. Materials Characterization, 2018, 144, 605- 610.
doi: 10.1016/j.matchar.2018.08.019
23
ZHOU R , LIU Y , LIU B , et al. Precipitation behavior of selective laser melted FeCoCrNiC0.05 high entropy alloy[J]. Intermetallics, 2019, 106, 20- 25.
doi: 10.1016/j.intermet.2018.12.001
24
SONG M , ZHOU R , GU J , et al. Nitrogen induced heterogeneous structures overcome strength-ductility trade-off in an additively manufactured high-entropy alloy[J]. Applied Materials Today, 2020, 18, 100498.
doi: 10.1016/j.apmt.2019.100498
25
LIN D , XU L , LI X , et al. A Si-containing FeCoCrNi high-entropy alloy with high strength and ductility synthesized in situ via selective laser melting[J]. Additive Manufacturing, 2020, 35, 101340.
doi: 10.1016/j.addma.2020.101340
26
ZHOU K , LI J , WANG L , et al. Direct laser deposited bulk CoCrFeNiNbx high entropy alloys[J]. Intermetallics, 2019, 114, 106592.
doi: 10.1016/j.intermet.2019.106592
27
WANG Q , AMAR A , JIANG C , et al. CoCrFeNiMo0.2 high entropy alloy by laser melting deposition: prospective material for low temperature and corrosion resistant applications[J]. Intermetallics, 2020, 119, 106727.
doi: 10.1016/j.intermet.2020.106727
28
ZHOU K , WANG Z , HE F , et al. A precipitation-strengthened high-entropy alloy for additive manufacturing[J]. Additive Manufacturing, 2020, 35, 101410.
doi: 10.1016/j.addma.2020.101410
29
KIM J , WAKAI A , MORIDI A . Materials and manufacturing renaissance: additive manufacturing of high-entropy alloys[J]. Journal of Materials Research, 2020, 35 (15): 1963- 1983.
doi: 10.1557/jmr.2020.140
30
ZHU Z G , NGUYEN Q B , NG F L , et al. Hierarchical microstructure and strengthening mechanisms of a CoCrFeNiMn high entropy alloy additively manufactured by selective laser melting[J]. Scripta Materialia, 2018, 154, 20- 24.
doi: 10.1016/j.scriptamat.2018.05.015
31
TONG Z , REN X , JIAO J , et al. Laser additive manufacturing of FeCrCoMnNi high-entropy alloy: effect of heat treatment on microstructure, residual stress and mechanical property[J]. Journal of Alloys and Compounds, 2019, 785, 1144- 1159.
doi: 10.1016/j.jallcom.2019.01.213
32
GUAN S , WAN D , SOLBERG K , et al. Additive manufacturing of fine-grained and dislocation-populated CrMnFeCoNi high entropy alloy by laser engineered net shaping[J]. Materials Science and Engineering: A, 2019, 761, 138056.
doi: 10.1016/j.msea.2019.138056
33
WANG P , HUANG P , NG F L , et al. Additively manufactured CoCrFeNiMn high-entropy alloy via pre-alloyed powder[J]. Materials & Design, 2019, 168, 107576.
34
XU Z , ZHANG H , LI W , et al. Microstructure and nanoindentation creep behavior of CoCrFeMnNi high-entropy alloy fabricated by selective laser melting[J]. Additive Manufacturing, 2019, 28, 766- 771.
doi: 10.1016/j.addma.2019.06.012
35
KIM Y K , YANG S , LEE K A . Superior temperature-dependent mechanical properties and deformation behavior of equiatomic CoCrFeMnNi high-entropy alloy additively manufactured by selective laser melting[J]. Scientific Reports, 2020, 10 (1): 1- 13.
doi: 10.1038/s41598-019-56847-4
36
ZHANG C , FENG K , KOKAWA H , et al. Cracking mechanism and mechanical properties of selective laser melted CoCrFeMnNi high entropy alloy using different scanning strategies[J]. Materials Science and Engineering: A, 2020, 789, 139672.
doi: 10.1016/j.msea.2020.139672
37
AMAR A , LI J , XIANG S , et al. Additive manufacturing of high-strength CrMnFeCoNi-based high entropy alloys with TiC addition[J]. Intermetallics, 2019, 109, 162- 166.
doi: 10.1016/j.intermet.2019.04.005
38
LI J , XIANG S , LUAN H , et al. Additive manufacturing of high-strength CrMnFeCoNi high-entropy alloys-based composites with WC addition[J]. Journal of Materials Science and Technology, 2019, 35 (11): 2430- 2434.
doi: 10.1016/j.jmst.2019.05.062
39
LI B , ZHANG L , XU Y , et al. Selective laser melting of CoCrFeNiMn high entropy alloy powder modified with nano-TiN particles for additive manufacturing and strength enhancement: process, particle behavior and effects[J]. Powder Technology, 2020, 360, 509- 521.
doi: 10.1016/j.powtec.2019.10.068
40
LI B , ZHANG L , YANG B . Grain refinement and localized amorphization of additively manufactured high-entropy alloy matrix composites reinforced by nano ceramic particles via selective-laser-melting/remelting[J]. Composites Communications, 2020, 19, 56- 60.
doi: 10.1016/j.coco.2020.03.001
41
SAVINOV R , WANG Y , SHI J . Microstructure and properties of CeO2-doped CoCrFeMnNi high entropy alloy fabricated by laser metal deposition[J]. Journal of Manufacturing Processes, 2020, 56, 1245- 1251.
doi: 10.1016/j.jmapro.2020.04.018
42
GAO X , YU Z , HU W , et al. In situ strengthening of CrMnFeCoNi high-entropy alloy with Al realized by laser additive manufacturing[J]. Journal of Alloys and Compounds, 2020, 847, 156563.
doi: 10.1016/j.jallcom.2020.156563
43
PARK J M , CHOE J , KIM J G , et al. Superior tensile properties of 1%C-CoCrFeMnNi high-entropy alloy additively manufactured by selective laser melting[J]. Materials Research Letters, 2020, 8 (1): 1- 7.
doi: 10.1080/21663831.2019.1638844
44
KIM J G , PARK J M , SEOL J B , et al. Nano-scale solute heterogeneities in the ultrastrong selectively laser melted carbon-doped CoCrFeMnNi alloy[J]. Materials Science and Engineering: A, 2020, 773, 138726.
doi: 10.1016/j.msea.2019.138726
45
PARK J M , CHOE J , PARK H K , et al. Synergetic strengthening of additively manufactured (CoCrFeMnNi)99C1 high-entropy alloy by heterogeneous anisotropic microstructure[J]. Additive Manufacturing, 2020, 35, 101333.
doi: 10.1016/j.addma.2020.101333
46
JOSEPH J , STANFORD N , HODGSON P , et al. Understanding the mechanical behaviour and the large strength/ductility differences between FCC and BCC AlxCoCrFeNi high entropy alloys[J]. Journal of Alloys and Compounds, 2017, 726, 885- 895.
doi: 10.1016/j.jallcom.2017.08.067
47
PEYROUZET F , HACHET D , SOULAS R , et al. Selective laser melting of Al0.3CoCrFeNi high-entropy alloy: printability, microstructure, and mechanical properties[J]. JOM, 2019, 71 (10): 3443- 3451.
doi: 10.1007/s11837-019-03715-1
48
NARTU M S K K Y , ALAM T , DASARI S , et al. Enhanced tensile yield strength in laser additively manufactured Al0.3CoCrFeNi high entropy alloy[J]. Materialia, 2020, 9, 100522.
doi: 10.1016/j.mtla.2019.100522
XU Y Y , SUN K , ZOU Z Q , et al. Processing parameters, microstructure and properties of Al0.5CoCrFeNi high entropy alloy prepared by selective laser melting[J]. Journal of Xi'an Jiaotong University, 2018, 52 (1): 151- 157.
50
ZHOU P F , XIAO D H , WU Z , et al. Al0.5FeCoCrNi high entropy alloy prepared by selective laser melting with gas-atomized pre-alloy powders[J]. Materials Science and Engineering: A, 2019, 739, 86- 89.
doi: 10.1016/j.msea.2018.10.035
51
GWALANI B , GANGIREDDY S , SHUKLA S , et al. Compositionally graded high entropy alloy with a strong front and ductile back[J]. Materials Today Communications, 2019, 20, 100602.
doi: 10.1016/j.mtcomm.2019.100602
52
MOHANTY A , SAMPREETH J K , BEMBALGE O , et al. High temperature oxidation study of direct laser deposited AlxCoCrFeNi (x=0.3, 0.7) high entropy alloys[J]. Surface and Coatings Technology, 2019, 380, 125028.
doi: 10.1016/j.surfcoat.2019.125028
53
LI M , GAZQUEZ J , BORISEVICH A , et al. Evaluation of microstructure and mechanical property variations in AlxCoCrFeNi high entropy alloys produced by a high-throughput laser deposition method[J]. Intermetallics, 2018, 95, 110- 118.
doi: 10.1016/j.intermet.2018.01.021
54
KUNCE I , POLANSKI M , KARCZEWSKI K , et al. Microstructural characterisation of high-entropy alloy AlCoCrFeNi fabricated by laser engineered net shaping[J]. Journal of Alloys and Compounds, 2015, 648, 751- 758.
doi: 10.1016/j.jallcom.2015.05.144
55
WANG R , ZHANG K , DAVIES C , et al. Evolution of microstructure, mechanical and corrosion properties of AlCoCrFeNi high-entropy alloy prepared by direct laser fabrication[J]. Journal of Alloys and Compounds, 2017, 694, 971- 981.
doi: 10.1016/j.jallcom.2016.10.138
56
FUJIEDA T , SHIRATORI H , KUWABARA K , et al. First demonstration of promising selective electron beam melting method for utilizing high-entropy alloys as engineering materials[J]. Materials Letters, 2015, 159, 12- 15.
doi: 10.1016/j.matlet.2015.06.046
57
SHIRATORI H , FUJIEDA T , YAMANAKA K , et al. Relationship between the microstructure and mechanical properties of an equiatomic AlCoCrFeNi high-entropy alloy fabricated by selective electron beam melting[J]. Materials Science and Engineering: A, 2016, 656, 39- 46.
doi: 10.1016/j.msea.2016.01.019
58
NIU P D , LI R D , YUAN T C , et al. Microstructures and properties of an equimolar AlCoCrFeNi high entropy alloy printed by selective laser melting[J]. Intermetallics, 2019, 104, 24- 32.
doi: 10.1016/j.intermet.2018.10.018
59
KARLSSON D , MARSHAL A , JOHANSSON F , et al. Elemental segregation in an AlCoCrFeNi high-entropy alloy-a comparison between selective laser melting and induction melting[J]. Journal of Alloys and Compounds, 2019, 784, 195- 203.
doi: 10.1016/j.jallcom.2018.12.267
60
KARLSSON D , LINDWALL G , LUNDBÄCK A , et al. Binder jetting of the AlCoCrFeNi alloy[J]. Additive Manufacturing, 2019, 27, 72- 79.
doi: 10.1016/j.addma.2019.02.010
61
SISTLA H R , NEWKIRK J W , LIOU F F . Effect of Al/Ni ratio, heat treatment on phase transformations and microstructure of AlxFeCoCrNi2-x (x=0.3, 1) high entropy alloys[J]. Materials & Design, 2015, 81, 113- 121.
62
BORKAR T , CHAUDHAARY V , GWALANI B , et al. A combinatorial approach for assessing the magnetic properties of high entropy alloys: role of Cr in AlCoxCr1-xFeNi[J]. Advanced Engineering Materials, 2017, 19 (8): 1700048.
doi: 10.1002/adem.201700048
63
KUNCE I , POLANSKI M , BYSTRZYCKI J . Microstructure and hydrogen storage properties of a TiZrNbMoV high entropy alloy synthesized using laser engineered net shaping (LENS)[J]. International Journal of Hydrogen Energy, 2014, 39 (18): 9904- 9910.
doi: 10.1016/j.ijhydene.2014.02.067
64
DOBBELSTEIN H , GUREVICH E L , GEORGE E P , et al. Laser metal deposition of a refractory TiZrNbHfTa high-entropy alloy[J]. Additive Manufacturing, 2018, 24, 386- 390.
doi: 10.1016/j.addma.2018.10.008
LI Q Y , LI D C , ZHANG H , et al. Study on structure and strength of NbMoTaTi refractory high entropy alloy fabricated by laser cladding deposition[J]. Aeronautical Manufacturing Technology, 2018, 61 (10): 61- 67.
66
ZHANG H , XU W , XU Y , et al. The thermal-mechanical behavior of WTaMoNb high-entropy alloy via selective laser melting (SLM): experiment and simulation[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96 (1/4): 461- 474.
67
DOBBELSTEIN H , GUREVICH E L , GEORGE E P , et al. Laser metal deposition of compositionally graded TiZrNbTa refractory high-entropy alloys using elemental powder blends[J]. Additive Manufacturing, 2019, 25, 252- 262.
doi: 10.1016/j.addma.2018.10.042
68
MELIA M A , WHETTEN S R , PUCKETT R , et al. High-throughput additive manufacturing and characterization of refractory high entropy alloys[J]. Applied Materials Today, 2020, 19, 100560.
doi: 10.1016/j.apmt.2020.100560
69
MOOREHEAD M , BERTSCH K , NIEZGODA M , et al. High-throughput synthesis of Mo-Nb-Ta-W high-entropy alloys via additive manufacturing[J]. Materials & Design, 2020, 187, 108358.
70
LUO S , GAO P , YU H , et al. Selective laser melting of an equiatomic AlCrCuFeNi high-entropy alloy: processability, non-equilibrium microstructure and mechanical behavior[J]. Journal of Alloys and Compounds, 2019, 771, 387- 397.
doi: 10.1016/j.jallcom.2018.08.290
71
LUO S , ZHAO C , SU Y , et al. Selective laser melting of dual phase AlCrCuFeNix high entropy alloys: formability, heterogeneous microstructures and deformation mechanisms[J]. Additive Manufacturing, 2020, 31, 100925.
doi: 10.1016/j.addma.2019.100925
72
LUO S , SU Y , WANG Z . Tailored microstructures and strengthening mechanisms in an additively manufactured dual-phase high-entropy alloy via selective laser melting[J]. Science China Materials, 2020, 63 (7): 1279- 1290.
doi: 10.1007/s40843-020-1291-9
73
BORKAR T , GWALANI B , CHOUDHURI D , et al. A combinatorial assessment of AlxCrCuFeNi2 (0 < x < 1.5) complex concentrated alloys: microstructure, microhardness, and magnetic properties[J]. Acta Materialia, 2016, 116, 63- 76.
doi: 10.1016/j.actamat.2016.06.025
74
CHOUDHURI D , GWALANI B , GORSSE S , et al. Change in the primary solidification phase from fcc to bcc-based B2 in high entropy or complex concentrated alloys[J]. Scripta Materialia, 2017, 127, 186- 190.
doi: 10.1016/j.scriptamat.2016.09.023
75
SU Y , LUO S , WANG Z . Microstructure evolution and cracking behaviors of additively manufactured AlxCrCuFeNi2 high entropy alloys via selective laser melting[J]. Journal of Alloys and Compounds, 2020, 842, 155823.
doi: 10.1016/j.jallcom.2020.155823
76
CHEN X , YAN L , KARNATI S , et al. Fabrication and characterization of AlxCoFeNiCu1-x high entropy alloys by laser metal deposition[J]. Coatings, 2017, 7 (4): 47.
doi: 10.3390/coatings7040047
77
WANG Y , LI R , NIU P , et al. Microstructures and properties of equimolar AlCoCrCuFeNi high-entropy alloy additively manufactured by selective laser melting[J]. Intermetallics, 2020, 120, 106746.
doi: 10.1016/j.intermet.2020.106746
78
FUJIEDA T , CHEN M , SHIRATORI H , et al. Mechanical and corrosion properties of CoCrFeNiTi-based high-entropy alloy additive manufactured using selective laser melting[J]. Additive Manufacturing, 2019, 25, 412- 420.
doi: 10.1016/j.addma.2018.10.023
79
GWALANI B , SONI V , WASEEM O A , et al. Laser additive manufacturing of compositionally graded AlCrFeMoVx (x=0 to 1) high-entropy alloy system[J]. Optics and Laser Technology, 2019, 113, 330- 337.
doi: 10.1016/j.optlastec.2019.01.009
80
SARSWAT P K , SARKAR S , MURALI A , et al. Additive manufactured new hybrid high entropy alloys derived from the AlCoFeNiSmTiVZr system[J]. Applied Surface Science, 2019, 476, 242- 258.
doi: 10.1016/j.apsusc.2018.12.300
81
ZHU Z G , AN X H , LU W J , et al. Selective laser melting enabling the hierarchically heterogeneous microstructure and excellent mechanical properties in an interstitial solute strengthened high entropy alloy[J]. Materials Research Letters, 2019, 7 (11): 453- 459.
doi: 10.1080/21663831.2019.1650131
82
AGRAWAL P , THAPLIYAL S , NENE S S , et al. Excellent strength-ductility synergy in metastable high entropy alloy by laser powder bed additive manufacturing[J]. Additive Manufacturing, 2020, 32, 101098.
doi: 10.1016/j.addma.2020.101098
83
THAPLIYAL S , NENE S S , AGRAWAL P , et al. Damage-tolerant, corrosion-resistant high entropy alloy with high strength and ductility by laser powder bed fusion additive manufacturing[J]. Additive Manufacturing, 2020, 36, 101455.
doi: 10.1016/j.addma.2020.101455
84
YAO H , TAN Z , HE D , et al. High strength and ductility AlCrFeNiV high entropy alloy with hierarchically heterogeneous microstructure prepared by selective laser melting[J]. Journal of Alloys and Compounds, 2020, 813, 152196.
doi: 10.1016/j.jallcom.2019.152196
85
VOGIATZIEF D , EVIRGEN A , GEIN S , et al. Laser powder bed fusion and heat treatment of an AlCrFe2Ni2 high entropy alloy[J]. Frontiers in Materials, 2020, 7, 248.
doi: 10.3389/fmats.2020.00248
86
KATZ-DEMYANETZ A , GORBACHEV I I , ESHED E , et al. High entropy Al0.5CrMoNbTa0.5 alloy: additive manufacturing vs casting vs CALPHAD approval calculations[J]. Materials Characterization, 2020, 167, 110505.
doi: 10.1016/j.matchar.2020.110505
87
EWALD S , KIES F , HERMSEN S , et al. Rapid alloy development of extremely high-alloyed metals using powder blends in laser powder bed fusion[J]. Materials, 2019, 12 (10): 1- 15.
88
YANG X , ZHOU Y , XI S , et al. Additively manufactured fine grained Ni6Cr4WFe9Ti high entropy alloys with high strength and ductility[J]. Materials Science and Engineering: A, 2019, 767, 138394.
doi: 10.1016/j.msea.2019.138394
89
WANG Z , GU J , AN D , et al. Characterization of the microstructure and deformation substructure evolution in a hierarchal high-entropy alloy by correlative EBSD and ECCI[J]. Intermetallics, 2020, 121, 106788.
doi: 10.1016/j.intermet.2020.106788