Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (10): 1-17    DOI: 10.11868/j.issn.1001-4381.2020.000820
  综述 本期目录 | 过刊浏览 | 高级检索 |
高熵合金增材制造研究进展
魏水淼1, 马盼1, 季鹏程1, 马永超2, 王灿1, 赵健1, 于治水1
1. 上海工程技术大学 材料工程学院, 上海 201620;
2. 山推工程机械股份有限公司, 山东 济宁 272073
Research progress in high entropy alloys by additive manufacturing
WEI Shui-miao1, MA Pan1, JI Peng-cheng1, MA Yong-chao2, WANG Can1, ZHAO Jian1, YU Zhi-shui1
1. School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China;
2. Shantui Construction Machinery Co., Ltd., Jining 272073, Shandong, China
全文: PDF(4445 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 基于不同的高熵合金(high-entropy alloys,HEAs)体系,综述了增材制造高熵合金的最新研究进展,阐述了不同成分高熵合金增材制造的快速凝固微观组织、偏析和析出行为,着重分析了增材制造高熵合金的力学性能、变形及强化机理。指出不同的高熵合金体系应选择适合的增材制造工艺,并且成型质量的影响因素还有待进一步研究,最后提出利用增材制造技术可以研发和制备出具有优异强度-塑性组合的高熵合金。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏水淼
马盼
季鹏程
马永超
王灿
赵健
于治水
关键词 高熵合金增材制造微观组织强化机理    
Abstract:Based on different high-entropy alloys (HEAs) systems, the latest research progress in additive manufactured high-entropy alloys was reviewed. The rapid solidification microstructure, segregation and precipitation behaviors of high-entropy alloys fabricated by additive manufacturing with different compositions were described. Especially, the analysis was focused on the mechanical properties, deformation and strengthening mechanisms. It was pointed out that the appropriate additive manufacturing process should be selected for different high-entropy alloy systems, and the influencing factors of forming quality need to be further studied. Finally, it was proposed that high-entropy alloys with both excellent strength and high plasticity can be developed and prepared by additive manufacturing technology.
Key wordshigh-entropy alloys (HEAs)    additive manufacturing    microstructure    strengthening mechanism
收稿日期: 2020-08-31      出版日期: 2021-10-14
中图分类号:  TG135  
通讯作者: 马盼(1986-),女,副教授,博士,研究方向为激光3D打印、高压凝固,联系地址:上海市松江区龙腾路333号行政楼1615(201620),E-mail:mapan@sues.edu.cn     E-mail: mapan@sues.edu.cn
引用本文:   
魏水淼, 马盼, 季鹏程, 马永超, 王灿, 赵健, 于治水. 高熵合金增材制造研究进展[J]. 材料工程, 2021, 49(10): 1-17.
WEI Shui-miao, MA Pan, JI Peng-cheng, MA Yong-chao, WANG Can, ZHAO Jian, YU Zhi-shui. Research progress in high entropy alloys by additive manufacturing. Journal of Materials Engineering, 2021, 49(10): 1-17.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000820      或      http://jme.biam.ac.cn/CN/Y2021/V49/I10/1
[1] YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements:novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5):299-303.
[2] CANTOR B, CHANG I T H, KNIGHT P, et al. Microstructural development in equiatomic multicomponent alloys[J]. Materials Science and Engineering:A, 2004, 375:213-218.
[3] SENKOV O N, WILKS G B, MIRACLE D B, et al. Refractory high-entropy alloys[J]. Intermetallics, 2010, 18(9):1758-1765.
[4] 王峰,郑欣,张小明,等. MoNbZr高熵合金微观组织的研究[J].热加工工艺,2012,41(24):117-120. WANG F, ZHENG X, ZHANG X M, et al. Study on microstructure of multielement MoNbZr high entropy alloy[J]. Hot Working Technology,2012,41(24):117-120.
[5] 谭雅琴,王晓明,朱胜,等.高熵合金强韧化的研究进展[J].材料导报, 2020, 34(5):120-126. TAN Y Q, WANG X M, ZHU S, et al. Research progress on strengthening and ductilizing high-entropy alloys[J]. Materials Reports, 2020, 34(5):120-126.
[6] 陈永星,朱胜,王晓明,等.高熵合金制备及研究进展[J].材料工程, 2017,45(11):129-138. CHEN Y X, ZHU S, WANG X M, et al. Research progress in advanced materials of high-entropy alloys[J]. Journal of Materials Engineering, 2017,45(11):129-138.
[7] LI R, NIU P, YUAN T, et al. Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy:processability, non-equilibrium microstructure and mechanical property[J]. Journal of Alloys and Compounds, 2018, 746:125-134.
[8] XIANG S, LUAN H, WU J, et al. Microstructures and mechanical properties of CrMnFeCoNi high entropy alloys fabricated using laser metal deposition technique[J]. Journal of Alloys and Compounds, 2019, 773:387-392.
[9] CHEW Y, BI G J, ZHU Z G, et al. Microstructure and enhanced strength of laser aided additive manufactured CoCrFeNiMn high entropy alloy[J]. Materials Science and Engineering:A, 2019, 744:137-144.
[10] GAO X, LU Y. Laser 3D printing of CoCrFeMnNi high-entropy alloy[J]. Materials Letters, 2019, 236:77-80.
[11] QIU Z, YAO C, FENG K, et al. Cryogenic deformation mechanism of CrMnFeCoNi high-entropy alloy fabricated by laser additive manufacturing process[J]. International Journal of Lightweight Materials and Manufacture, 2018, 1(1):33-39.
[12] ZHANG M, ZHOU X, WANG D, et al. AlCoCuFeNi high-entropy alloy with tailored microstructure and outstanding compressive properties fabricated via selective laser melting with heat treatment[J]. Materials Science and Engineering:A, 2019, 743:773-784.
[13] CHEN P, LI S, ZHOU Y, et al. Fabricating CoCrFeMnNi high entropy alloy via selective laser melting in-situ alloying[J]. Journal of Materials Science and Technology, 2020, 43:40-43.
[14] JOSEPH J, JARVIS T, WU X, et al. Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted AlxCoCrFeNi high entropy alloys[J]. Materials Science and Engineering:A, 2015, 633:184-193.
[15] VIKRAM R J, MURTY B S, FABIJANIC D, et al. Insights into micro-mechanical response and texture of the additively manufactured eutectic high entropy alloy AlCoCrFeNi2.1[J]. Journal of Alloys and Compounds, 2020, 827:154034.
[16] GALATI M, IULIANO L. A literature review of powder-based electron beam melting focusing on numerical simulations[J]. Additive Manufacturing, 2018, 19:1-20.
[17] BRIF Y, THOMAS M, TODD I. The use of high-entropy alloys in additive manufacturing[J]. Scripta Materialia, 2015, 99:93-96.
[18] SUN Z, TAN X P, DESCOINS M, et al. Revealing hot tearing mechanism for an additively manufactured high-entropy alloy via selective laser melting[J]. Scripta Materialia, 2019, 168:129-133.
[19] LIN D, XU L, JING H, et al. Effects of annealing on the structure and mechanical properties of FeCoCrNi high-entropy alloy fabricated via selective laser melting[J]. Additive Manufacturing, 2020, 32:101058.
[20] KENEL C, CASATI N P M, DUNAND D C. 3D ink-extrusion additive manufacturing of CoCrFeNi high-entropy alloy micro-lattices[J]. Nature Communications, 2019, 10(1):1-8.
[21] ZHOU R, LIU Y, ZHOU C, et al. Microstructures and mechanical properties of C-containing FeCoCrNi high-entropy alloy fabricated by selective laser melting[J]. Intermetallics, 2018, 94:165-171.
[22] WU W, ZHOU R, WEI B, et al. Nanosized precipitates and dislocation networks reinforced C-containing CoCrFeNi high-entropy alloy fabricated by selective laser melting[J]. Materials Characterization, 2018, 144:605-610.
[23] ZHOU R, LIU Y, LIU B, et al. Precipitation behavior of selective laser melted FeCoCrNiC0.05 high entropy alloy[J]. Intermetallics, 2019, 106:20-25.
[24] SONG M, ZHOU R, GU J, et al. Nitrogen induced heterogeneous structures overcome strength-ductility trade-off in an additively manufactured high-entropy alloy[J]. Applied Materials Today, 2020, 18:100498.
[25] LIN D, XU L, LI X, et al. A Si-containing FeCoCrNi high-entropy alloy with high strength and ductility synthesized in situ via selective laser melting[J]. Additive Manufacturing, 2020, 35:101340.
[26] ZHOU K, LI J, WANG L, et al. Direct laser deposited bulk CoCrFeNiNbx high entropy alloys[J]. Intermetallics, 2019, 114:106592.
[27] WANG Q, AMAR A, JIANG C, et al. CoCrFeNiMo0.2 high entropy alloy by laser melting deposition:prospective material for low temperature and corrosion resistant applications[J]. Intermetallics, 2020, 119:106727.
[28] ZHOU K, WANG Z, HE F, et al. A precipitation-strengthened high-entropy alloy for additive manufacturing[J]. Additive Manufacturing, 2020, 35:101410.
[29] KIM J, WAKAI A, MORIDI A. Materials and manufacturing renaissance:additive manufacturing of high-entropy alloys[J]. Journal of Materials Research, 2020, 35(15):1963-1983.
[30] ZHU Z G, NGUYEN Q B, NG F L, et al. Hierarchical microstructure and strengthening mechanisms of a CoCrFeNiMn high entropy alloy additively manufactured by selective laser melting[J]. Scripta Materialia, 2018, 154:20-24.
[31] TONG Z, REN X, JIAO J, et al. Laser additive manufacturing of FeCrCoMnNi high-entropy alloy:effect of heat treatment on microstructure, residual stress and mechanical property[J]. Journal of Alloys and Compounds, 2019, 785:1144-1159.
[32] GUAN S, WAN D, SOLBERG K, et al. Additive manufacturing of fine-grained and dislocation-populated CrMnFeCoNi high entropy alloy by laser engineered net shaping[J]. Materials Science and Engineering:A, 2019, 761:138056.
[33] WANG P, HUANG P, NG F L, et al. Additively manufactured CoCrFeNiMn high-entropy alloy via pre-alloyed powder[J]. Materials & Design, 2019, 168:107576.
[34] XU Z, ZHANG H, LI W, et al. Microstructure and nanoindentation creep behavior of CoCrFeMnNi high-entropy alloy fabricated by selective laser melting[J]. Additive Manufacturing, 2019, 28:766-771.
[35] KIM Y K, YANG S, LEE K A. Superior temperature-dependent mechanical properties and deformation behavior of equiatomic CoCrFeMnNi high-entropy alloy additively manufactured by selective laser melting[J]. Scientific Reports, 2020, 10(1):1-13.
[36] ZHANG C, FENG K, KOKAWA H, et al. Cracking mechanism and mechanical properties of selective laser melted CoCrFeMnNi high entropy alloy using different scanning strategies[J]. Materials Science and Engineering:A, 2020, 789:139672.
[37] AMAR A, LI J, XIANG S, et al. Additive manufacturing of high-strength CrMnFeCoNi-based high entropy alloys with TiC addition[J]. Intermetallics, 2019, 109:162-166.
[38] LI J, XIANG S, LUAN H, et al. Additive manufacturing of high-strength CrMnFeCoNi high-entropy alloys-based composites with WC addition[J]. Journal of Materials Science and Technology, 2019, 35(11):2430-2434.
[39] LI B, ZHANG L, XU Y, et al. Selective laser melting of CoCrFeNiMn high entropy alloy powder modified with nano-TiN particles for additive manufacturing and strength enhancement:process, particle behavior and effects[J]. Powder Technology, 2020, 360:509-521.
[40] LI B, ZHANG L, YANG B. Grain refinement and localized amorphization of additively manufactured high-entropy alloy matrix composites reinforced by nano ceramic particles via selective-laser-melting/remelting[J].Composites Communications,2020,19:56-60.
[41] SAVINOV R, WANG Y, SHI J. Microstructure and properties of CeO2-doped CoCrFeMnNi high entropy alloy fabricated by laser metal deposition[J]. Journal of Manufacturing Processes, 2020,56:1245-1251.
[42] GAO X, YU Z, HU W, et al. In situ strengthening of CrMnFeCoNi high-entropy alloy with Al realized by laser additive manufacturing[J]. Journal of Alloys and Compounds, 2020, 847:156563.
[43] PARK J M, CHOE J, KIM J G, et al. Superior tensile properties of 1%C-CoCrFeMnNi high-entropy alloy additively manufactured by selective laser melting[J]. Materials Research Letters, 2020, 8(1):1-7.
[44] KIM J G, PARK J M, SEOL J B, et al. Nano-scale solute heterogeneities in the ultrastrong selectively laser melted carbon-doped CoCrFeMnNi alloy[J]. Materials Science and Engineering:A, 2020, 773:138726.
[45] PARK J M, CHOE J, PARK H K, et al. Synergetic strengthening of additively manufactured (CoCrFeMnNi)99C1 high-entropy alloy by heterogeneous anisotropic microstructure[J]. Additive Manufacturing, 2020, 35:101333.
[46] JOSEPH J, STANFORD N, HODGSON P, et al. Understanding the mechanical behaviour and the large strength/ductility differences between FCC and BCC AlxCoCrFeNi high entropy alloys[J]. Journal of Alloys and Compounds, 2017, 726:885-895.
[47] PEYROUZET F, HACHET D, SOULAS R, et al. Selective laser melting of Al0.3CoCrFeNi high-entropy alloy:printability, microstructure, and mechanical properties[J]. JOM, 2019, 71(10):3443-3451.
[48] NARTU M S K K Y, ALAM T, DASARI S, et al. Enhanced tensile yield strength in laser additively manufactured Al0.3CoCrFeNi high entropy alloy[J]. Materialia, 2020, 9:100522.
[49] 徐勇勇,孙琨,邹增琪,等. 选区激光熔化制备Al0. 5CoCrFeNi高熵合金的工艺参数及组织性能[J]. 西安交通大学学报,2018, 52(1):151-157. XU Y Y, SUN K, ZOU Z Q, et al. Processing parameters, microstructure and properties of Al0.5CoCrFeNi high entropy alloy prepared by selective laser melting[J]. Journal of Xi'an Jiaotong University, 2018, 52(1):151-157.
[50] ZHOU P F, XIAO D H, WU Z, et al. Al0.5FeCoCrNi high entropy alloy prepared by selective laser melting with gas-atomized pre-alloy powders[J]. Materials Science and Engineering:A, 2019, 739:86-89.
[51] GWALANI B, GANGIREDDY S, SHUKLA S, et al. Compositionally graded high entropy alloy with a strong front and ductile back[J]. Materials Today Communications, 2019, 20:100602.
[52] MOHANTY A, SAMPREETH J K, BEMBALGE O, et al. High temperature oxidation study of direct laser deposited AlxCoCrFeNi (x=0.3,0.7) high entropy alloys[J]. Surface and Coatings Technology, 2019, 380:125028.
[53] LI M, GAZQUEZ J, BORISEVICH A, et al. Evaluation of microstructure and mechanical property variations in AlxCoCrFeNi high entropy alloys produced by a high-throughput laser deposition method[J]. Intermetallics, 2018, 95:110-118.
[54] KUNCE I, POLANSKI M, KARCZEWSKI K, et al. Microstructural characterisation of high-entropy alloy AlCoCrFeNi fabricated by laser engineered net shaping[J]. Journal of Alloys and Compounds, 2015, 648:751-758.
[55] WANG R, ZHANG K, DAVIES C, et al. Evolution of microstructure, mechanical and corrosion properties of AlCoCrFeNi high-entropy alloy prepared by direct laser fabrication[J]. Journal of Alloys and Compounds, 2017, 694:971-981.
[56] FUJIEDA T, SHIRATORI H, KUWABARA K, et al. First demonstration of promising selective electron beam melting method for utilizing high-entropy alloys as engineering materials[J]. Materials Letters, 2015, 159:12-15.
[57] SHIRATORI H, FUJIEDA T, YAMANAKA K, et al. Relationship between the microstructure and mechanical properties of an equiatomic AlCoCrFeNi high-entropy alloy fabricated by selective electron beam melting[J]. Materials Science and Engineering:A, 2016, 656:39-46.
[58] NIU P D, LI R D, YUAN T C, et al. Microstructures and properties of an equimolar AlCoCrFeNi high entropy alloy printed by selective laser melting[J]. Intermetallics, 2019, 104:24-32.
[59] KARLSSON D, MARSHAL A, JOHANSSON F, et al. Elemental segregation in an AlCoCrFeNi high-entropy alloy-a comparison between selective laser melting and induction melting[J]. Journal of Alloys and Compounds, 2019, 784:195-203.
[60] KARLSSON D, LINDWALL G, LUNDBÄCK A, et al. Binder jetting of the AlCoCrFeNi alloy[J]. Additive Manufacturing, 2019, 27:72-79.
[61] SISTLA H R, NEWKIRK J W, LIOU F F. Effect of Al/Ni ratio, heat treatment on phase transformations and microstructure of AlxFeCoCrNi2-x (x=0.3, 1) high entropy alloys[J]. Materials & Design, 2015, 81:113-121.
[62] BORKAR T, CHAUDHAARY V, GWALANI B, et al. A combinatorial approach for assessing the magnetic properties of high entropy alloys:role of Cr in AlCoxCr1-xFeNi[J]. Advanced Engineering Materials, 2017, 19(8):1700048.
[63] KUNCE I, POLANSKI M, BYSTRZYCKI J. Microstructure and hydrogen storage properties of a TiZrNbMoV high entropy alloy synthesized using laser engineered net shaping (LENS)[J]. International Journal of Hydrogen Energy, 2014, 39(18):9904-9910.
[64] DOBBELSTEIN H, GUREVICH E L, GEORGE E P, et al. Laser metal deposition of a refractory TiZrNbHfTa high-entropy alloy[J]. Additive Manufacturing, 2018, 24:386-390.
[65] 李青宇,李涤尘,张航,等. 激光熔覆沉积成形NbMoTaTi难熔高熵合金的组织与强度研究[J]. 航空制造技术, 2018, 61(10):61-67. LI Q Y, LI D C, ZHANG H, et al. Study on structure and strength of NbMoTaTi refractory high entropy alloy fabricated by laser cladding deposition[J]. Aeronautical Manufacturing Technology, 2018, 61(10):61-67.
[66] ZHANG H, XU W, XU Y, et al. The thermal-mechanical behavior of WTaMoNb high-entropy alloy via selective laser melting (SLM):experiment and simulation[J]. The International Journal of Advanced Manufacturing Technology,2018,96(1/4):461-474.
[67] DOBBELSTEIN H, GUREVICH E L, GEORGE E P, et al. Laser metal deposition of compositionally graded TiZrNbTa refractory high-entropy alloys using elemental powder blends[J]. Additive Manufacturing, 2019, 25:252-262.
[68] MELIA M A, WHETTEN S R, PUCKETT R, et al. High-throughput additive manufacturing and characterization of refractory high entropy alloys[J]. Applied Materials Today, 2020, 19:100560.
[69] MOOREHEAD M, BERTSCH K, NIEZGODA M, et al. High-throughput synthesis of Mo-Nb-Ta-W high-entropy alloys via additive manufacturing[J]. Materials & Design, 2020, 187:108358.
[70] LUO S, GAO P, YU H, et al. Selective laser melting of an equiatomic AlCrCuFeNi high-entropy alloy:processability, non-equilibrium microstructure and mechanical behavior[J]. Journal of Alloys and Compounds, 2019, 771:387-397.
[71] LUO S, ZHAO C, SU Y, et al. Selective laser melting of dual phase AlCrCuFeNix high entropy alloys:formability, heterogeneous microstructures and deformation mechanisms[J]. Additive Manufacturing, 2020, 31:100925.
[72] LUO S, SU Y, WANG Z. Tailored microstructures and strengthening mechanisms in an additively manufactured dual-phase high-entropy alloy via selective laser melting[J]. Science China Materials, 2020, 63(7):1279-1290.
[73] BORKAR T, GWALANI B, CHOUDHURI D, et al. A combinatorial assessment of AlxCrCuFeNi2 (0 < x < 1.5) complex concentrated alloys:microstructure, microhardness, and magnetic properties[J]. Acta Materialia, 2016, 116:63-76.
[74] CHOUDHURI D, GWALANI B, GORSSE S, et al. Change in the primary solidification phase from fcc to bcc-based B2 in high entropy or complex concentrated alloys[J]. Scripta Materialia, 2017, 127:186-190.
[75] SU Y, LUO S, WANG Z. Microstructure evolution and cracking behaviors of additively manufactured AlxCrCuFeNi2 high entropy alloys via selective laser melting[J]. Journal of Alloys and Compounds, 2020, 842:155823.
[76] CHEN X, YAN L, KARNATI S, et al. Fabrication and characterization of AlxCoFeNiCu1-x high entropy alloys by laser metal deposition[J]. Coatings, 2017, 7(4):47.
[77] WANG Y, LI R, NIU P, et al. Microstructures and properties of equimolar AlCoCrCuFeNi high-entropy alloy additively manufactured by selective laser melting[J]. Intermetallics, 2020, 120:106746.
[78] FUJIEDA T, CHEN M, SHIRATORI H, et al. Mechanical and corrosion properties of CoCrFeNiTi-based high-entropy alloy additive manufactured using selective laser melting[J]. Additive Manufacturing, 2019, 25:412-420.
[79] GWALANI B, SONI V, WASEEM O A, et al. Laser additive manufacturing of compositionally graded AlCrFeMoVx (x=0 to 1) high-entropy alloy system[J]. Optics and Laser Technology, 2019, 113:330-337.
[80] SARSWAT P K, SARKAR S, MURALI A, et al. Additive manufactured new hybrid high entropy alloys derived from the AlCoFeNiSmTiVZr system[J]. Applied Surface Science, 2019, 476:242-258.
[81] ZHU Z G, AN X H, LU W J, et al. Selective laser melting enabling the hierarchically heterogeneous microstructure and excellent mechanical properties in an interstitial solute strengthened high entropy alloy[J]. Materials Research Letters, 2019, 7(11):453-459.
[82] AGRAWAL P, THAPLIYAL S, NENE S S, et al. Excellent strength-ductility synergy in metastable high entropy alloy by laser powder bed additive manufacturing[J]. Additive Manufacturing, 2020, 32:101098.
[83] THAPLIYAL S, NENE S S, AGRAWAL P, et al. Damage-tolerant, corrosion-resistant high entropy alloy with high strength and ductility by laser powder bed fusion additive manufacturing[J]. Additive Manufacturing, 2020, 36:101455.
[84] YAO H, TAN Z, HE D, et al. High strength and ductility AlCrFeNiV high entropy alloy with hierarchically heterogeneous microstructure prepared by selective laser melting[J]. Journal of Alloys and Compounds, 2020, 813:152196.
[85] VOGIATZIEF D, EVIRGEN A, GEIN S, et al. Laser powder bed fusion and heat treatment of an AlCrFe2Ni2 high entropy alloy[J]. Frontiers in Materials, 2020, 7:248.
[86] KATZ-DEMYANETZ A, GORBACHEV I I, ESHED E, et al. High entropy Al0.5CrMoNbTa0.5 alloy:additive manufacturing vs casting vs CALPHAD approval calculations[J]. Materials Characterization, 2020, 167:110505.
[87] EWALD S, KIES F, HERMSEN S, et al. Rapid alloy development of extremely high-alloyed metals using powder blends in laser powder bed fusion[J]. Materials, 2019, 12(10):1-15.
[88] YANG X, ZHOU Y, XI S, et al. Additively manufactured fine grained Ni6Cr4WFe9Ti high entropy alloys with high strength and ductility[J]. Materials Science and Engineering:A, 2019, 767:138394.
[89] WANG Z, GU J, AN D, et al. Characterization of the microstructure and deformation substructure evolution in a hierarchal high-entropy alloy by correlative EBSD and ECCI[J]. Intermetallics, 2020, 121:106788.
[1] 韩启飞, 符瑞, 胡锦龙, 郭跃岭, 韩亚峰, 王俊升, 纪涛, 卢继平, 刘长猛. 电弧熔丝增材制造铝合金研究进展[J]. 材料工程, 2022, 50(4): 62-73.
[2] 安强, 祁文军, 左小刚. TA15钛合金表面原位合成TiC增强钛基激光熔覆层的组织与耐磨性[J]. 材料工程, 2022, 50(4): 139-146.
[3] 孙琦迪, 杨蔚涛, 郝庆国, 关肖虎, 章斌, 杨旗. 低周疲劳变形过程中Fe-33Mn-4Si合金钢的微观组织演变[J]. 材料工程, 2022, 50(4): 162-171.
[4] 于源, 乔竹辉, 任海波, 刘维民. 高熵合金摩擦磨损性能的研究进展[J]. 材料工程, 2022, 50(3): 1-17.
[5] 姜明明, 孙树峰, 王津, 王萍萍, 孙晓雨, 邵晶, 刘纪新, 曹爱霞, 孙维丽, 陈希章. 激光熔覆制备高熵合金涂层耐磨性研究进展[J]. 材料工程, 2022, 50(3): 18-32.
[6] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
[7] 张昊, 吴昊, 唐啸天, 罗涛, 邓人钦. 微量W元素的添加对CoCrFeNiMnAl高熵合金的组织与性能的影响[J]. 材料工程, 2022, 50(3): 50-59.
[8] 胡广, 赵英杰, 马胜国, 张团卫, 赵聃, 王志华. 考虑位错密度和损伤的NiCoCrFe高熵合金晶体塑性有限元分析[J]. 材料工程, 2022, 50(3): 60-68.
[9] 计植耀, 马跃, 王清, 董闯. 高性能软磁合金的研究进展[J]. 材料工程, 2022, 50(3): 69-80.
[10] 余晖, 任军超, 杨鑫, 郭舒龙, 余炜, 冯建航, 殷福星, 辛光善. Zn层添加AZ31/7075合金复合成形工艺及组织与性能研究[J]. 材料工程, 2022, 50(3): 157-165.
[11] 石磊, 李阳, 肖亦辰, 武传松, 刘会杰. 基于搅拌摩擦的金属固相增材制造研究进展[J]. 材料工程, 2022, 50(1): 1-14.
[12] 邵震, 崔雷, 王东坡, 陈永亮, 胡正根, 王非凡. 几何参数对2219铝合金拉拔式摩擦塞补焊接头微观组织及力学性能的影响[J]. 材料工程, 2022, 50(1): 25-32.
[13] 李红, 韩祎, 曹健, MARIUSZ Bober, JACEK Senkara. 高熵合金在钎焊和表面工程领域的应用研究进展[J]. 材料工程, 2021, 49(8): 1-10.
[14] 李安庆, 张立华, 蒋日鹏, 李晓谦, 张昀. 冷却速度及超声振动协同作用对7085铝合金凝固组织及力学性能的影响[J]. 材料工程, 2021, 49(8): 63-71.
[15] 谷籽旺, 郭文敏, 张弘鳞, 李文娟. 基于核壳结构粉体设计的CoNiCrAlY-Al2O3复合涂层组织结构及其抗氧化性能[J]. 材料工程, 2021, 49(7): 112-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn