Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (10): 1-17    DOI: 10.11868/j.issn.1001-4381.2020.000820
  综述 本期目录 | 过刊浏览 | 高级检索 |
高熵合金增材制造研究进展
魏水淼1, 马盼1,*(), 季鹏程1, 马永超2, 王灿1, 赵健1, 于治水1
1 上海工程技术大学 材料工程学院, 上海 201620
2 山推工程机械股份有限公司, 山东 济宁 272073
Research progress in high entropy alloys by additive manufacturing
Shui-miao WEI1, Pan MA1,*(), Peng-cheng JI1, Yong-chao MA2, Can WANG1, Jian ZHAO1, Zhi-shui YU1
1 School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
2 Shantui Construction Machinery Co., Ltd., Jining 272073, Shandong, China
全文: PDF(4445 KB)   HTML ( 2 )  
输出: BibTeX | EndNote (RIS)      
摘要 

基于不同的高熵合金(high-entropy alloys,HEAs)体系,综述了增材制造高熵合金的最新研究进展,阐述了不同成分高熵合金增材制造的快速凝固微观组织、偏析和析出行为,着重分析了增材制造高熵合金的力学性能、变形及强化机理。指出不同的高熵合金体系应选择适合的增材制造工艺,并且成型质量的影响因素还有待进一步研究,最后提出利用增材制造技术可以研发和制备出具有优异强度-塑性组合的高熵合金。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏水淼
马盼
季鹏程
马永超
王灿
赵健
于治水
关键词 高熵合金增材制造微观组织强化机理    
Abstract

Based on different high-entropy alloys (HEAs) systems, the latest research progress in additive manufactured high-entropy alloys was reviewed. The rapid solidification microstructure, segregation and precipitation behaviors of high-entropy alloys fabricated by additive manufacturing with different compositions were described. Especially, the analysis was focused on the mechanical properties, deformation and strengthening mechanisms. It was pointed out that the appropriate additive manufacturing process should be selected for different high-entropy alloy systems, and the influencing factors of forming quality need to be further studied. Finally, it was proposed that high-entropy alloys with both excellent strength and high plasticity can be developed and prepared by additive manufacturing technology.

Key wordshigh-entropy alloys (HEAs)    additive manufacturing    microstructure    strengthening mechanism
收稿日期: 2020-08-31      出版日期: 2021-10-14
中图分类号:  TG135  
通讯作者: 马盼     E-mail: mapan@sues.edu.cn
作者简介: 马盼(1986-), 女, 副教授, 博士, 研究方向为激光3D打印、高压凝固, 联系地址: 上海市松江区龙腾路333号行政楼1615(201620), E-mail: mapan@sues.edu.cn
引用本文:   
魏水淼, 马盼, 季鹏程, 马永超, 王灿, 赵健, 于治水. 高熵合金增材制造研究进展[J]. 材料工程, 2021, 49(10): 1-17.
Shui-miao WEI, Pan MA, Peng-cheng JI, Yong-chao MA, Can WANG, Jian ZHAO, Zhi-shui YU. Research progress in high entropy alloys by additive manufacturing. Journal of Materials Engineering, 2021, 49(10): 1-17.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000820      或      http://jme.biam.ac.cn/CN/Y2021/V49/I10/1
Fig.1  SLM过程示意图[12]
Fig.2  LMD过程示意图[9]
Fig.3  EBM过程示意图[16]
Method Composition σy/MPa σuts/MPa εf/% Segregation Remark Reference
SLM FeCoCrNi 600 745 32 No [17]
SLM CoCrFeNi 572±7.5 691.0±15.9 17.9±0.9 No [18]
SLM FeCoCrNi 581.9 707.9 ≈20 [19]
Ink-extrusion CoCrFeNi 250±5 598±8 33.8±1.3 Sintering [20]
SLM FeCoCrNiC0.05 638 797 13.5 No [21]
SLM FeCoCrNiC0.05 638 795 13.5 Cr along dislocation networks Annealed at 400 ℃ for 3 h followed by water quenching [22]
SLM FeCoCrNiC0.05 787 950 10.3 C and Cr on grain boundaries Nano-scale Cr23C6 type carbides can precipitate under annealing at 1073 K for 0.5 h [23]
SLM 1.8%(atom fraction) N-doped FeCoNiCr 650 853 34 [24]
SLM FeCoCrNiSi0.05 701±14 907±25 30.8±2 No By remelting each layer after its initial laser scanning [25]
LMD CoCrFeNiNbx ≈410(Nb0.1) ≈690(Nb0.1) 55(Nb0.1) Laves phase was enriched in Nb As the Nb concentration increased, both yield and fracture strengths increased but tensile ductility decreased [26]
LMD CoCrFeNiMo0.2 500(77 K) 928(77 K) 60(77 K) [27]
LMD Ni2.1CoCrFeNb0.2 896 1127 17 Nb At 1250 ℃ for 1 h followed by water quenching,then at 650 ℃ aged for 96 h [28]
Table 1  增材制造CoCrFeNi系高熵合金
Method Grain size/ μm σy/MPa σuts/MPa εf/% Segregation Microstructural evolution Strengthening mechanism Reference
SLM ≈1 519 601 35 Mn is segregated at the boundary of weld pool After HIP, the Mn segregation disappeared Grain boundary strengthening [7]
SLM ≈12.9 510 609 34 Minor segregation of Mn along the melt pool boundaries Deformation induced twins Dislocation strengthening [30]
LMD 564(77 K) 891(77 K) 36(77 K) Mn, Cr When the strain increases to 18%, deformation twinning appears Grain boundary strengthening,dislocation strengthening [11]
LMD 3-4 710 (-130 ℃) 850 (-130 ℃) 40.2 (-130 ℃) Mn and Ni segregate into grain boundary Deformation induced twins Grain boundary strengthening,dislocation strengthening [9]
LMD 50-200 402(77 K) 878(77 K) 95(77 K) No Grain boundary strengthening,dislocation strengthening [8]
EBM ≈65 205±3 497±2 63±1 Mn and Ni segregate into the interdendrite Dislocation strengthening [33]
LMD 30-150 448 620 57 Fine BCC phase distributed at the grain boundaries of the FCC matrix Precipitation strengthening [10]
LMD 10 346 566 27.5 Mn and Ni segregate into grain boundary BCC phase appears in heat treatment Residual stress relief by heat treatment [31]
LMD ≈13 517 26 Mn and Ni segregate into grain boundary Deformation induced twins Grain boundary strengthening,dislocation strengthening [32]
Table 2  增材制造CoCrFeNiMn高熵合金
Method Addition Crystal structure σy/MPa σuts/MPa εf /% Strengthening mechanism Reference
LMD TiC FCC+TiC 385 723 32 Second-phase strengthening [37]
LMD WC FCC+Cr23C6 800 37 Grain boundary strengthening,precipitation strengthening [38]
SLM TiN FCC+TiN-particles 1036 12 Grain boundary strengthening,dislocation strengthening [39]
SLM TiN FCC+TiN-particles 1100 18 [40]
LMD CeO2 FCC+oxides [41]
LMD Al FCC+BCC 506 736 41.2 Grain boundary strengthening [42]
SLM C FCC+nano precipitate 829 989 24.3 Solution strengthening,dislocation strengthening,precipitation strengthening [43]
SLM C γ-austenite 900 30 Precipitation strengthening [44]
SLM C 741 874 39.7 Grain boundary strengthening,dislocation strengthening [45]
Table 3  增材制造CoCrFeNiMn高熵合金复合材料
Method Composition Mechanical property Segregation Crystal structure Reference
LMD Al0.3CoCrFeNi Tension and compression yield strength:194 MPa,tensile elongation 38% Grain boundary rich in Al FCC [14, 46]
SLM Al0.3CoCrFeNi Tensile strength:896 MPa,yield strength:730 MPa,elongation:29% FCC [47]
LMD Al0.3FeCoCrNi Tensile yield strength 410 MPa FCC,precipitation of L12 after HT [48]
SLM Al0.5CrFeCoNi Tensile strength:878 MPa,yield strength:540 MPa,elongation:18% Al and Ni rich in columnar intergranular BCC+FCC [49]
SLM Al0.5FeCoCrNi Tensile strength:721 MPa,yield strength:579 MPa,elongation:22% FCC [50]
LMD Al0.6CoCrFeNi Compression yield strength:400 MPa, compressive strength is 1420 MPa, tensile strength is 930 MPa Grain boundary rich in Al, Ni FCC/BCC [14, 46]
LMD AlxCoCrFeNi (0.3 < x < 0.7) FCC(x=0.3) FCC+B2(x=0.7) [51]
LMD AlxCoCrFeNi (x=0.3, 0.7) FCC(x=0.3) FCC+BCC(x=0.7) [52]
LMD Al0.85CoCrFeNi Compression yield strength:1400 MPa,elongation to failure:0.25 BCC rich in Fe, Cr BCC+B2 [14, 46]
LMD AlxCoCrFeNi (0.15 < x < 1.32) FCC(x≤0.37) BCC/B2(x≥1.16) [53]
LMD AlCoCrFeNi AlNi-rich matrix,FeCr- rich precipitates B2+BCC precipitates [54]
LMD AlCoCrFeNi Aged at 1200 ℃/168 h,compression yield strength:1.13 GPa,fracture stress:3.02 GPa,elongation:24.2% B2 rich in Al-Ni FCC rich in Fe-Cr B2 matrix+FCC precipitates after aging [55]
EBM AlCoCrFeNi Compression yield strength:1015 MPa,fracture strain 26.4%;tensile strength 1073.5 MPa,yield strength 769 MPa,elongation 1.2% B2 rich in Al-Ni BCC rich in Cr-Fe B2/BCC matrix+FCC precipitates [56-57]
SLM AlCoCrFeNi B2 rich in Al-Ni B2+A2+Fe-Cr precipitates [58]
SLM AlCoCrFeNi Cr B2/BCC [59]
Binder jetting AlCoCrFeNi Compression yield strength:(1461±23) MPa, elongation to failure:(31.46±2.1)% AlNi-rich B2 CrFe-rich BCC B2/BCC+FCC+σ phase [60]
LMD AlCoCrFeNi2.1 Compression yield strength is (711±23) MPa at 400 ℃ L12 phase is rich in Ni and deficient in Al L12+BCC [15]
LMD AlxFeCoCrNi2-x (0.3 < x < 1.7) γ+B2(x=0.7) A2+B2+L12(x=1) [61]
LMD AlCoxCr1-xFeNi (0 < x < 1) Ni+Al rich,Fe+Co rich BCC+B2 [62]
Table 4  增材制造AlxCoCrFeNi系高熵合金
Fig.4  激光沉积的AlxCoCrFeNi合金库的成分范围与粉末进料速率的函数关系[53]
Method Composition Crystal structure Segregation Mechanical property Reference
LMD TiZrNbMoV BCC Mo, Zr-rich precipitates [63]
LMD TiZrNbHfTa BCC [64]
LMD NbMoTaTi BCC Micro segregation between grain boundaries Compression strength 1301.83 MPa at 25 ℃ [65]
SLM WTaMoNb BCC [66]
LMD TiZrNbTa BCC [67]
LMD MoNbTaW BCC [68-69]
Table 5  增材制造难熔高熵合金
Method Composition Mechanical property Crystal structure Reference
SLM AlCrCuFeNi Compressive strength 2052.8 MPa, strain of 6.8% BCC [70]
SLM AlCrCuFeNix [71]
SLM AlCrCuFeNi3.0 Yield strength≈775 MPa, tensile strength ≈957 MPa, elongation≈14.3% B2+FCC [72]
LMD AlxCrCuFeNi2 (0 < x < 1.5) FCC+L12+BCC+B2 (x=1) [73-74]
SLM AlxCrCuFeNi2 BCC/B2(x=1) [75]
LMD AlxCoFeNiCu1-x (x=0.25, 0.5, 0.75) FCC(x=0.25, 0.5) FCC+BCC(x=0.75) [76]
SLM AlCoCuFeNi HT at 1000 ℃,compressive fracture strength of 1600 MPa, yield strength of 744 MPa, strain of 13.1% BCC(B2)+FCC(HT) [12]
SLM AlCoCrCuFeNi FCC+BCC [77]
SLM/EBM Co1.5CrFeNi1.5Ti0.5Mo0.1 SLM specimens yield strength:(773.0±4.2) MPa,tensile strength:1178.0 MPa,elongation:(25.8±0.6)% FCC [78]
LMD AlCrFeMoVx(x=0-1) BCC [79]
SLM AlCoFeNiSmTiVZr system FCC [80]
SLM Fe49.5Mn30Co10Cr10C0.5 Yield strength:710 MPa,tensile strength:1 GPa,elongation:28% FCC [81]
SLM Fe40Mn20Co20Cr15Si5 Yield strength of (530±40) MPa,ultimate tensile strength (≈1.1 GPa) and ductility (30%) ε+γ [82]
SLM Fe38.5Mn20Co20Cr15Si5Cu1.5 Ultimate tensile strength ≈1235 MPa, average yield strength is (665±13) MPa,ductility is 17.2% γ+ε [83]
SLM AlCrFeNiV Ultimate tensile strength≈1057.47 MPa and plastic strain≈30.3% FCC+L12 nano phase [84]
SLM AlCrFe2Ni2 Flexural strength is 2051 MPa BCC+FCC [85]
EBM Al0.5CrMoNbTa0.5 BCC [86]
SLM C0.12Al0.26CoFeMnNi Yield strength:500 MPa,tensile strength:800 MPa,elongation:41% [87]
SLM Ni6Cr4WFe9Ti Yield strength:742 MPa,tensile strength:972 MPa,elongation:12% γ+unknown phase [88]
Table 6  增材制造其他体系高熵合金
Fig.5  增材制造高熵合金力学性能强化机理
1 YEH J W , CHEN S K , LIN S J , et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6 (5): 299- 303.
doi: 10.1002/adem.200300567
2 CANTOR B , CHANG I T H , KNIGHT P , et al. Microstructural development in equiatomic multicomponent alloys[J]. Materials Science and Engineering: A, 2004, 375, 213- 218.
3 SENKOV O N , WILKS G B , MIRACLE D B , et al. Refractory high-entropy alloys[J]. Intermetallics, 2010, 18 (9): 1758- 1765.
doi: 10.1016/j.intermet.2010.05.014
4 王峰, 郑欣, 张小明, 等. MoNbZr高熵合金微观组织的研究[J]. 热加工工艺, 2012, 41 (24): 117- 120.
4 WANG F , ZHENG X , ZHANG X M , et al. Study on microstructure of multielement MoNbZr high entropy alloy[J]. Hot Working Technology, 2012, 41 (24): 117- 120.
5 谭雅琴, 王晓明, 朱胜, 等. 高熵合金强韧化的研究进展[J]. 材料导报, 2020, 34 (5): 120- 126.
5 TAN Y Q , WANG X M , ZHU S , et al. Research progress on strengthening and ductilizing high-entropy alloys[J]. Materials Reports, 2020, 34 (5): 120- 126.
6 陈永星, 朱胜, 王晓明, 等. 高熵合金制备及研究进展[J]. 材料工程, 2017, 45 (11): 129- 138.
doi: 10.11868/j.issn.1001-4381.2015.001124
6 CHEN Y X , ZHU S , WANG X M , et al. Research progress in advanced materials of high-entropy alloys[J]. Journal of Materials Engineering, 2017, 45 (11): 129- 138.
doi: 10.11868/j.issn.1001-4381.2015.001124
7 LI R , NIU P , YUAN T , et al. Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy: processability, non-equilibrium microstructure and mechanical property[J]. Journal of Alloys and Compounds, 2018, 746, 125- 134.
doi: 10.1016/j.jallcom.2018.02.298
8 XIANG S , LUAN H , WU J , et al. Microstructures and mechanical properties of CrMnFeCoNi high entropy alloys fabricated using laser metal deposition technique[J]. Journal of Alloys and Compounds, 2019, 773, 387- 392.
doi: 10.1016/j.jallcom.2018.09.235
9 CHEW Y , BI G J , ZHU Z G , et al. Microstructure and enhanced strength of laser aided additive manufactured CoCrFeNiMn high entropy alloy[J]. Materials Science and Engineering: A, 2019, 744, 137- 144.
doi: 10.1016/j.msea.2018.12.005
10 GAO X , LU Y . Laser 3D printing of CoCrFeMnNi high-entropy alloy[J]. Materials Letters, 2019, 236, 77- 80.
doi: 10.1016/j.matlet.2018.10.084
11 QIU Z , YAO C , FENG K , et al. Cryogenic deformation mechanism of CrMnFeCoNi high-entropy alloy fabricated by laser additive manufacturing process[J]. International Journal of Lightweight Materials and Manufacture, 2018, 1 (1): 33- 39.
doi: 10.1016/j.ijlmm.2018.02.001
12 ZHANG M , ZHOU X , WANG D , et al. AlCoCuFeNi high-entropy alloy with tailored microstructure and outstanding compressive properties fabricated via selective laser melting with heat treatment[J]. Materials Science and Engineering: A, 2019, 743, 773- 784.
doi: 10.1016/j.msea.2018.11.118
13 CHEN P , LI S , ZHOU Y , et al. Fabricating CoCrFeMnNi high entropy alloy via selective laser melting in-situ alloying[J]. Journal of Materials Science and Technology, 2020, 43, 40- 43.
doi: 10.1016/j.jmst.2020.01.002
14 JOSEPH J , JARVIS T , WU X , et al. Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted AlxCoCrFeNi high entropy alloys[J]. Materials Science and Engineering: A, 2015, 633, 184- 193.
doi: 10.1016/j.msea.2015.02.072
15 VIKRAM R J , MURTY B S , FABIJANIC D , et al. Insights into micro-mechanical response and texture of the additively manufactured eutectic high entropy alloy AlCoCrFeNi2.1[J]. Journal of Alloys and Compounds, 2020, 827, 154034.
doi: 10.1016/j.jallcom.2020.154034
16 GALATI M , IULIANO L . A literature review of powder-based electron beam melting focusing on numerical simulations[J]. Additive Manufacturing, 2018, 19, 1- 20.
doi: 10.1016/j.addma.2017.11.001
17 BRIF Y , THOMAS M , TODD I . The use of high-entropy alloys in additive manufacturing[J]. Scripta Materialia, 2015, 99, 93- 96.
doi: 10.1016/j.scriptamat.2014.11.037
18 SUN Z , TAN X P , DESCOINS M , et al. Revealing hot tearing mechanism for an additively manufactured high-entropy alloy via selective laser melting[J]. Scripta Materialia, 2019, 168, 129- 133.
doi: 10.1016/j.scriptamat.2019.04.036
19 LIN D , XU L , JING H , et al. Effects of annealing on the structure and mechanical properties of FeCoCrNi high-entropy alloy fabricated via selective laser melting[J]. Additive Manufacturing, 2020, 32, 101058.
doi: 10.1016/j.addma.2020.101058
20 KENEL C , CASATI N P M , DUNAND D C . 3D ink-extrusion additive manufacturing of CoCrFeNi high-entropy alloy micro-lattices[J]. Nature Communications, 2019, 10 (1): 1- 8.
doi: 10.1038/s41467-018-07882-8
21 ZHOU R , LIU Y , ZHOU C , et al. Microstructures and mechanical properties of C-containing FeCoCrNi high-entropy alloy fabricated by selective laser melting[J]. Intermetallics, 2018, 94, 165- 171.
doi: 10.1016/j.intermet.2018.01.002
22 WU W , ZHOU R , WEI B , et al. Nanosized precipitates and dislocation networks reinforced C-containing CoCrFeNi high-entropy alloy fabricated by selective laser melting[J]. Materials Characterization, 2018, 144, 605- 610.
doi: 10.1016/j.matchar.2018.08.019
23 ZHOU R , LIU Y , LIU B , et al. Precipitation behavior of selective laser melted FeCoCrNiC0.05 high entropy alloy[J]. Intermetallics, 2019, 106, 20- 25.
doi: 10.1016/j.intermet.2018.12.001
24 SONG M , ZHOU R , GU J , et al. Nitrogen induced heterogeneous structures overcome strength-ductility trade-off in an additively manufactured high-entropy alloy[J]. Applied Materials Today, 2020, 18, 100498.
doi: 10.1016/j.apmt.2019.100498
25 LIN D , XU L , LI X , et al. A Si-containing FeCoCrNi high-entropy alloy with high strength and ductility synthesized in situ via selective laser melting[J]. Additive Manufacturing, 2020, 35, 101340.
doi: 10.1016/j.addma.2020.101340
26 ZHOU K , LI J , WANG L , et al. Direct laser deposited bulk CoCrFeNiNbx high entropy alloys[J]. Intermetallics, 2019, 114, 106592.
doi: 10.1016/j.intermet.2019.106592
27 WANG Q , AMAR A , JIANG C , et al. CoCrFeNiMo0.2 high entropy alloy by laser melting deposition: prospective material for low temperature and corrosion resistant applications[J]. Intermetallics, 2020, 119, 106727.
doi: 10.1016/j.intermet.2020.106727
28 ZHOU K , WANG Z , HE F , et al. A precipitation-strengthened high-entropy alloy for additive manufacturing[J]. Additive Manufacturing, 2020, 35, 101410.
doi: 10.1016/j.addma.2020.101410
29 KIM J , WAKAI A , MORIDI A . Materials and manufacturing renaissance: additive manufacturing of high-entropy alloys[J]. Journal of Materials Research, 2020, 35 (15): 1963- 1983.
doi: 10.1557/jmr.2020.140
30 ZHU Z G , NGUYEN Q B , NG F L , et al. Hierarchical microstructure and strengthening mechanisms of a CoCrFeNiMn high entropy alloy additively manufactured by selective laser melting[J]. Scripta Materialia, 2018, 154, 20- 24.
doi: 10.1016/j.scriptamat.2018.05.015
31 TONG Z , REN X , JIAO J , et al. Laser additive manufacturing of FeCrCoMnNi high-entropy alloy: effect of heat treatment on microstructure, residual stress and mechanical property[J]. Journal of Alloys and Compounds, 2019, 785, 1144- 1159.
doi: 10.1016/j.jallcom.2019.01.213
32 GUAN S , WAN D , SOLBERG K , et al. Additive manufacturing of fine-grained and dislocation-populated CrMnFeCoNi high entropy alloy by laser engineered net shaping[J]. Materials Science and Engineering: A, 2019, 761, 138056.
doi: 10.1016/j.msea.2019.138056
33 WANG P , HUANG P , NG F L , et al. Additively manufactured CoCrFeNiMn high-entropy alloy via pre-alloyed powder[J]. Materials & Design, 2019, 168, 107576.
34 XU Z , ZHANG H , LI W , et al. Microstructure and nanoindentation creep behavior of CoCrFeMnNi high-entropy alloy fabricated by selective laser melting[J]. Additive Manufacturing, 2019, 28, 766- 771.
doi: 10.1016/j.addma.2019.06.012
35 KIM Y K , YANG S , LEE K A . Superior temperature-dependent mechanical properties and deformation behavior of equiatomic CoCrFeMnNi high-entropy alloy additively manufactured by selective laser melting[J]. Scientific Reports, 2020, 10 (1): 1- 13.
doi: 10.1038/s41598-019-56847-4
36 ZHANG C , FENG K , KOKAWA H , et al. Cracking mechanism and mechanical properties of selective laser melted CoCrFeMnNi high entropy alloy using different scanning strategies[J]. Materials Science and Engineering: A, 2020, 789, 139672.
doi: 10.1016/j.msea.2020.139672
37 AMAR A , LI J , XIANG S , et al. Additive manufacturing of high-strength CrMnFeCoNi-based high entropy alloys with TiC addition[J]. Intermetallics, 2019, 109, 162- 166.
doi: 10.1016/j.intermet.2019.04.005
38 LI J , XIANG S , LUAN H , et al. Additive manufacturing of high-strength CrMnFeCoNi high-entropy alloys-based composites with WC addition[J]. Journal of Materials Science and Technology, 2019, 35 (11): 2430- 2434.
doi: 10.1016/j.jmst.2019.05.062
39 LI B , ZHANG L , XU Y , et al. Selective laser melting of CoCrFeNiMn high entropy alloy powder modified with nano-TiN particles for additive manufacturing and strength enhancement: process, particle behavior and effects[J]. Powder Technology, 2020, 360, 509- 521.
doi: 10.1016/j.powtec.2019.10.068
40 LI B , ZHANG L , YANG B . Grain refinement and localized amorphization of additively manufactured high-entropy alloy matrix composites reinforced by nano ceramic particles via selective-laser-melting/remelting[J]. Composites Communications, 2020, 19, 56- 60.
doi: 10.1016/j.coco.2020.03.001
41 SAVINOV R , WANG Y , SHI J . Microstructure and properties of CeO2-doped CoCrFeMnNi high entropy alloy fabricated by laser metal deposition[J]. Journal of Manufacturing Processes, 2020, 56, 1245- 1251.
doi: 10.1016/j.jmapro.2020.04.018
42 GAO X , YU Z , HU W , et al. In situ strengthening of CrMnFeCoNi high-entropy alloy with Al realized by laser additive manufacturing[J]. Journal of Alloys and Compounds, 2020, 847, 156563.
doi: 10.1016/j.jallcom.2020.156563
43 PARK J M , CHOE J , KIM J G , et al. Superior tensile properties of 1%C-CoCrFeMnNi high-entropy alloy additively manufactured by selective laser melting[J]. Materials Research Letters, 2020, 8 (1): 1- 7.
doi: 10.1080/21663831.2019.1638844
44 KIM J G , PARK J M , SEOL J B , et al. Nano-scale solute heterogeneities in the ultrastrong selectively laser melted carbon-doped CoCrFeMnNi alloy[J]. Materials Science and Engineering: A, 2020, 773, 138726.
doi: 10.1016/j.msea.2019.138726
45 PARK J M , CHOE J , PARK H K , et al. Synergetic strengthening of additively manufactured (CoCrFeMnNi)99C1 high-entropy alloy by heterogeneous anisotropic microstructure[J]. Additive Manufacturing, 2020, 35, 101333.
doi: 10.1016/j.addma.2020.101333
46 JOSEPH J , STANFORD N , HODGSON P , et al. Understanding the mechanical behaviour and the large strength/ductility differences between FCC and BCC AlxCoCrFeNi high entropy alloys[J]. Journal of Alloys and Compounds, 2017, 726, 885- 895.
doi: 10.1016/j.jallcom.2017.08.067
47 PEYROUZET F , HACHET D , SOULAS R , et al. Selective laser melting of Al0.3CoCrFeNi high-entropy alloy: printability, microstructure, and mechanical properties[J]. JOM, 2019, 71 (10): 3443- 3451.
doi: 10.1007/s11837-019-03715-1
48 NARTU M S K K Y , ALAM T , DASARI S , et al. Enhanced tensile yield strength in laser additively manufactured Al0.3CoCrFeNi high entropy alloy[J]. Materialia, 2020, 9, 100522.
doi: 10.1016/j.mtla.2019.100522
49 徐勇勇, 孙琨, 邹增琪, 等. 选区激光熔化制备Al0. 5CoCrFeNi高熵合金的工艺参数及组织性能[J]. 西安交通大学学报, 2018, 52 (1): 151- 157.
49 XU Y Y , SUN K , ZOU Z Q , et al. Processing parameters, microstructure and properties of Al0.5CoCrFeNi high entropy alloy prepared by selective laser melting[J]. Journal of Xi'an Jiaotong University, 2018, 52 (1): 151- 157.
50 ZHOU P F , XIAO D H , WU Z , et al. Al0.5FeCoCrNi high entropy alloy prepared by selective laser melting with gas-atomized pre-alloy powders[J]. Materials Science and Engineering: A, 2019, 739, 86- 89.
doi: 10.1016/j.msea.2018.10.035
51 GWALANI B , GANGIREDDY S , SHUKLA S , et al. Compositionally graded high entropy alloy with a strong front and ductile back[J]. Materials Today Communications, 2019, 20, 100602.
doi: 10.1016/j.mtcomm.2019.100602
52 MOHANTY A , SAMPREETH J K , BEMBALGE O , et al. High temperature oxidation study of direct laser deposited AlxCoCrFeNi (x=0.3, 0.7) high entropy alloys[J]. Surface and Coatings Technology, 2019, 380, 125028.
doi: 10.1016/j.surfcoat.2019.125028
53 LI M , GAZQUEZ J , BORISEVICH A , et al. Evaluation of microstructure and mechanical property variations in AlxCoCrFeNi high entropy alloys produced by a high-throughput laser deposition method[J]. Intermetallics, 2018, 95, 110- 118.
doi: 10.1016/j.intermet.2018.01.021
54 KUNCE I , POLANSKI M , KARCZEWSKI K , et al. Microstructural characterisation of high-entropy alloy AlCoCrFeNi fabricated by laser engineered net shaping[J]. Journal of Alloys and Compounds, 2015, 648, 751- 758.
doi: 10.1016/j.jallcom.2015.05.144
55 WANG R , ZHANG K , DAVIES C , et al. Evolution of microstructure, mechanical and corrosion properties of AlCoCrFeNi high-entropy alloy prepared by direct laser fabrication[J]. Journal of Alloys and Compounds, 2017, 694, 971- 981.
doi: 10.1016/j.jallcom.2016.10.138
56 FUJIEDA T , SHIRATORI H , KUWABARA K , et al. First demonstration of promising selective electron beam melting method for utilizing high-entropy alloys as engineering materials[J]. Materials Letters, 2015, 159, 12- 15.
doi: 10.1016/j.matlet.2015.06.046
57 SHIRATORI H , FUJIEDA T , YAMANAKA K , et al. Relationship between the microstructure and mechanical properties of an equiatomic AlCoCrFeNi high-entropy alloy fabricated by selective electron beam melting[J]. Materials Science and Engineering: A, 2016, 656, 39- 46.
doi: 10.1016/j.msea.2016.01.019
58 NIU P D , LI R D , YUAN T C , et al. Microstructures and properties of an equimolar AlCoCrFeNi high entropy alloy printed by selective laser melting[J]. Intermetallics, 2019, 104, 24- 32.
doi: 10.1016/j.intermet.2018.10.018
59 KARLSSON D , MARSHAL A , JOHANSSON F , et al. Elemental segregation in an AlCoCrFeNi high-entropy alloy-a comparison between selective laser melting and induction melting[J]. Journal of Alloys and Compounds, 2019, 784, 195- 203.
doi: 10.1016/j.jallcom.2018.12.267
60 KARLSSON D , LINDWALL G , LUNDBÄCK A , et al. Binder jetting of the AlCoCrFeNi alloy[J]. Additive Manufacturing, 2019, 27, 72- 79.
doi: 10.1016/j.addma.2019.02.010
61 SISTLA H R , NEWKIRK J W , LIOU F F . Effect of Al/Ni ratio, heat treatment on phase transformations and microstructure of AlxFeCoCrNi2-x (x=0.3, 1) high entropy alloys[J]. Materials & Design, 2015, 81, 113- 121.
62 BORKAR T , CHAUDHAARY V , GWALANI B , et al. A combinatorial approach for assessing the magnetic properties of high entropy alloys: role of Cr in AlCoxCr1-xFeNi[J]. Advanced Engineering Materials, 2017, 19 (8): 1700048.
doi: 10.1002/adem.201700048
63 KUNCE I , POLANSKI M , BYSTRZYCKI J . Microstructure and hydrogen storage properties of a TiZrNbMoV high entropy alloy synthesized using laser engineered net shaping (LENS)[J]. International Journal of Hydrogen Energy, 2014, 39 (18): 9904- 9910.
doi: 10.1016/j.ijhydene.2014.02.067
64 DOBBELSTEIN H , GUREVICH E L , GEORGE E P , et al. Laser metal deposition of a refractory TiZrNbHfTa high-entropy alloy[J]. Additive Manufacturing, 2018, 24, 386- 390.
doi: 10.1016/j.addma.2018.10.008
65 李青宇, 李涤尘, 张航, 等. 激光熔覆沉积成形NbMoTaTi难熔高熵合金的组织与强度研究[J]. 航空制造技术, 2018, 61 (10): 61- 67.
65 LI Q Y , LI D C , ZHANG H , et al. Study on structure and strength of NbMoTaTi refractory high entropy alloy fabricated by laser cladding deposition[J]. Aeronautical Manufacturing Technology, 2018, 61 (10): 61- 67.
66 ZHANG H , XU W , XU Y , et al. The thermal-mechanical behavior of WTaMoNb high-entropy alloy via selective laser melting (SLM): experiment and simulation[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96 (1/4): 461- 474.
67 DOBBELSTEIN H , GUREVICH E L , GEORGE E P , et al. Laser metal deposition of compositionally graded TiZrNbTa refractory high-entropy alloys using elemental powder blends[J]. Additive Manufacturing, 2019, 25, 252- 262.
doi: 10.1016/j.addma.2018.10.042
68 MELIA M A , WHETTEN S R , PUCKETT R , et al. High-throughput additive manufacturing and characterization of refractory high entropy alloys[J]. Applied Materials Today, 2020, 19, 100560.
doi: 10.1016/j.apmt.2020.100560
69 MOOREHEAD M , BERTSCH K , NIEZGODA M , et al. High-throughput synthesis of Mo-Nb-Ta-W high-entropy alloys via additive manufacturing[J]. Materials & Design, 2020, 187, 108358.
70 LUO S , GAO P , YU H , et al. Selective laser melting of an equiatomic AlCrCuFeNi high-entropy alloy: processability, non-equilibrium microstructure and mechanical behavior[J]. Journal of Alloys and Compounds, 2019, 771, 387- 397.
doi: 10.1016/j.jallcom.2018.08.290
71 LUO S , ZHAO C , SU Y , et al. Selective laser melting of dual phase AlCrCuFeNix high entropy alloys: formability, heterogeneous microstructures and deformation mechanisms[J]. Additive Manufacturing, 2020, 31, 100925.
doi: 10.1016/j.addma.2019.100925
72 LUO S , SU Y , WANG Z . Tailored microstructures and strengthening mechanisms in an additively manufactured dual-phase high-entropy alloy via selective laser melting[J]. Science China Materials, 2020, 63 (7): 1279- 1290.
doi: 10.1007/s40843-020-1291-9
73 BORKAR T , GWALANI B , CHOUDHURI D , et al. A combinatorial assessment of AlxCrCuFeNi2 (0 < x < 1.5) complex concentrated alloys: microstructure, microhardness, and magnetic properties[J]. Acta Materialia, 2016, 116, 63- 76.
doi: 10.1016/j.actamat.2016.06.025
74 CHOUDHURI D , GWALANI B , GORSSE S , et al. Change in the primary solidification phase from fcc to bcc-based B2 in high entropy or complex concentrated alloys[J]. Scripta Materialia, 2017, 127, 186- 190.
doi: 10.1016/j.scriptamat.2016.09.023
75 SU Y , LUO S , WANG Z . Microstructure evolution and cracking behaviors of additively manufactured AlxCrCuFeNi2 high entropy alloys via selective laser melting[J]. Journal of Alloys and Compounds, 2020, 842, 155823.
doi: 10.1016/j.jallcom.2020.155823
76 CHEN X , YAN L , KARNATI S , et al. Fabrication and characterization of AlxCoFeNiCu1-x high entropy alloys by laser metal deposition[J]. Coatings, 2017, 7 (4): 47.
doi: 10.3390/coatings7040047
77 WANG Y , LI R , NIU P , et al. Microstructures and properties of equimolar AlCoCrCuFeNi high-entropy alloy additively manufactured by selective laser melting[J]. Intermetallics, 2020, 120, 106746.
doi: 10.1016/j.intermet.2020.106746
78 FUJIEDA T , CHEN M , SHIRATORI H , et al. Mechanical and corrosion properties of CoCrFeNiTi-based high-entropy alloy additive manufactured using selective laser melting[J]. Additive Manufacturing, 2019, 25, 412- 420.
doi: 10.1016/j.addma.2018.10.023
79 GWALANI B , SONI V , WASEEM O A , et al. Laser additive manufacturing of compositionally graded AlCrFeMoVx (x=0 to 1) high-entropy alloy system[J]. Optics and Laser Technology, 2019, 113, 330- 337.
doi: 10.1016/j.optlastec.2019.01.009
80 SARSWAT P K , SARKAR S , MURALI A , et al. Additive manufactured new hybrid high entropy alloys derived from the AlCoFeNiSmTiVZr system[J]. Applied Surface Science, 2019, 476, 242- 258.
doi: 10.1016/j.apsusc.2018.12.300
81 ZHU Z G , AN X H , LU W J , et al. Selective laser melting enabling the hierarchically heterogeneous microstructure and excellent mechanical properties in an interstitial solute strengthened high entropy alloy[J]. Materials Research Letters, 2019, 7 (11): 453- 459.
doi: 10.1080/21663831.2019.1650131
82 AGRAWAL P , THAPLIYAL S , NENE S S , et al. Excellent strength-ductility synergy in metastable high entropy alloy by laser powder bed additive manufacturing[J]. Additive Manufacturing, 2020, 32, 101098.
doi: 10.1016/j.addma.2020.101098
83 THAPLIYAL S , NENE S S , AGRAWAL P , et al. Damage-tolerant, corrosion-resistant high entropy alloy with high strength and ductility by laser powder bed fusion additive manufacturing[J]. Additive Manufacturing, 2020, 36, 101455.
doi: 10.1016/j.addma.2020.101455
84 YAO H , TAN Z , HE D , et al. High strength and ductility AlCrFeNiV high entropy alloy with hierarchically heterogeneous microstructure prepared by selective laser melting[J]. Journal of Alloys and Compounds, 2020, 813, 152196.
doi: 10.1016/j.jallcom.2019.152196
85 VOGIATZIEF D , EVIRGEN A , GEIN S , et al. Laser powder bed fusion and heat treatment of an AlCrFe2Ni2 high entropy alloy[J]. Frontiers in Materials, 2020, 7, 248.
doi: 10.3389/fmats.2020.00248
86 KATZ-DEMYANETZ A , GORBACHEV I I , ESHED E , et al. High entropy Al0.5CrMoNbTa0.5 alloy: additive manufacturing vs casting vs CALPHAD approval calculations[J]. Materials Characterization, 2020, 167, 110505.
doi: 10.1016/j.matchar.2020.110505
87 EWALD S , KIES F , HERMSEN S , et al. Rapid alloy development of extremely high-alloyed metals using powder blends in laser powder bed fusion[J]. Materials, 2019, 12 (10): 1- 15.
88 YANG X , ZHOU Y , XI S , et al. Additively manufactured fine grained Ni6Cr4WFe9Ti high entropy alloys with high strength and ductility[J]. Materials Science and Engineering: A, 2019, 767, 138394.
doi: 10.1016/j.msea.2019.138394
89 WANG Z , GU J , AN D , et al. Characterization of the microstructure and deformation substructure evolution in a hierarchal high-entropy alloy by correlative EBSD and ECCI[J]. Intermetallics, 2020, 121, 106788.
doi: 10.1016/j.intermet.2020.106788
[1] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[2] 朱阳阳, 李晓延, 张伟栋, 张虎, 何溪. 全Cu3Sn焊点在高温时效下的组织及力学性能[J]. 材料工程, 2022, 50(9): 169-176.
[3] 刘小辉, 刘允中. 激光选区熔化成形高强铝合金晶粒细化抑制裂纹研究现状[J]. 材料工程, 2022, 50(8): 1-16.
[4] 牛方勇, 于学鑫, 赵紫渊, 赵大可, 黄云飞, 马广义, 吴东江. 熔体自生陶瓷激光直接能量沉积增材制造研究进展[J]. 材料工程, 2022, 50(7): 1-17.
[5] 耿鹏, 陈道兵, 周燕, 文世峰, 闫春泽, 史玉升. 增材制造智能材料研究现状及展望[J]. 材料工程, 2022, 50(6): 12-26.
[6] 张昌青, 王树文, 罗德春, 师文辰, 刘晓, 崔国胜, 陈波阳, 辛舟, 芮执元. 热电耦合对铝/钢连续驱动摩擦焊接头组织的影响机理[J]. 材料工程, 2022, 50(5): 35-42.
[7] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[8] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[9] 梁恩泉, 代宇, 白静, 周亚雄, 彭东剑, 王清正, 康楠, 林鑫. 退火态激光选区熔化成形AlSi10Mg合金组织与力学性能[J]. 材料工程, 2022, 50(5): 156-165.
[10] 韩启飞, 符瑞, 胡锦龙, 郭跃岭, 韩亚峰, 王俊升, 纪涛, 卢继平, 刘长猛. 电弧熔丝增材制造铝合金研究进展[J]. 材料工程, 2022, 50(4): 62-73.
[11] 安强, 祁文军, 左小刚. TA15钛合金表面原位合成TiC增强钛基激光熔覆层的组织与耐磨性[J]. 材料工程, 2022, 50(4): 139-146.
[12] 孙琦迪, 杨蔚涛, 郝庆国, 关肖虎, 章斌, 杨旗. 低周疲劳变形过程中Fe-33Mn-4Si合金钢的微观组织演变[J]. 材料工程, 2022, 50(4): 162-171.
[13] 于源, 乔竹辉, 任海波, 刘维民. 高熵合金摩擦磨损性能的研究进展[J]. 材料工程, 2022, 50(3): 1-17.
[14] 姜明明, 孙树峰, 王津, 王萍萍, 孙晓雨, 邵晶, 刘纪新, 曹爱霞, 孙维丽, 陈希章. 激光熔覆制备高熵合金涂层耐磨性研究进展[J]. 材料工程, 2022, 50(3): 18-32.
[15] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn