Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (3): 138-147    DOI: 10.11868/j.issn.1001-4381.2020.000840
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Zirlo锆合金高温变形行为及本构关系
宋广胜1, 牛嘉维1, 宋鸿武2,*(), 张士宏2, 邓思瀛2
1 沈阳航空航天大学 材料科学与工程学院,沈阳 110036
2 中国科学院金属研究所 师昌绪先进材料创新中心,沈阳 110016
High temperature deformation behavior and constitutive model of Zirlo zirconium alloy
Guangsheng SONG1, Jiawei NIU1, Hongwu SONG2,*(), Shihong ZHANG2, Siying DENG2
1 School of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110036, China
2 Shi Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(12511 KB)   HTML ( 1 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用Gleeble-3800型热模拟试验机,对Zirlo合金进行等温恒应变速率压缩实验,研究其在变形温度550~700 ℃,应变速率0.01~10 s-1范围内的热变形行为;并在Arrhenius型双曲正弦函数方程基础上引入应变量,构建了基于应变补偿的Arrhenius本构模型,同时构建了基于位错密度演化加工硬化模型和基于唯象型的软化模型的分段唯象型本构模型。结果表明:Zirlo合金的流变应力随着温度的降低和应变速率的提高而升高,低应变速率下流变应力呈现更高的温度敏感性,流变应力曲线在不同变形条件下分别呈现加工硬化、动态回复、动态再结晶特征。经过误差分析可知,基于应变补偿的Arrhenius本构模型大部分预测值的误差均在15%以内,具有较高的准确性,而分段唯象型本构模型相对平均绝对误差最大值不超过3%,具有97%以上的准确率,可以很好地预测合金的应力-应变曲线,具有良好的拓展性,并且可初步判断曲线类型,具有良好的实用性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋广胜
牛嘉维
宋鸿武
张士宏
邓思瀛
关键词 Zirlo锆合金热变形行为本构模型应变补偿唯象本构关系    
Abstract

In order to study the thermal deformation behavior of Zirlo alloy at ranges of 550-700 ℃ deformation temperature and 0.01-10 s-1 strain rate, the Zirlo alloy was subjected to compression under condition of isothermal and constant strain rate by using the Gleeble-3800 thermal simulated test machine. Through introducing strains on the basis of the Arrhenius type hyperbolic sine function equation, an Arrhenius constitutive model was developed based on strain compensation, and founded on a combination of dislocation density evolution causing work hardening model and phenomenological softening model, a segmented phenomenological constitutive model was constructed. The results show that the flow stress of Zirlo zirconium alloy increases with the decrease of temperature and the increase of strain rate, the flow stress exhibits higher temperature sensitivity at low strain rate, and flow stress curves separately exhibit characteristics as work hardening, dynamic recovery and dynamic recrystallization under different deformation conditions. Through error analysis, it was revealed that errors of the most stresses predicted by the Arrhenius constitutive model based on strain compensation are within 15%, which exhibits high accuracy. The maximum relative average absolute errors of the segmented phenomenological constitutive model are less than 3%, exhibiting an accuracy of over 97%. The segmented phenomenological constitutive model can accurately predict the stress-strain curve of the Zirlo alloy and has good expansibility; moreover, it can preliminarily predict the type of the stress-strain curve and has good practicability.

Key wordsZirlo zirconium alloy    thermal deformation behavior    constitutive model    strain compen-sation    phenomenological constitutive relationship
收稿日期: 2020-09-04      出版日期: 2022-03-19
中图分类号:  TG146.4  
基金资助:国家自然科学基金面上项目(51875547)
通讯作者: 宋鸿武     E-mail: hwsong@imr.ac.cn
作者简介: 宋鸿武(1981—),男,研究员,工学博士,从事塑性成形理论和先进成形技术研究,联系地址:沈阳市沈河区文化路72号中国科学院金属研究所(110016),E-mail: hwsong@imr.ac.cn
引用本文:   
宋广胜, 牛嘉维, 宋鸿武, 张士宏, 邓思瀛. Zirlo锆合金高温变形行为及本构关系[J]. 材料工程, 2022, 50(3): 138-147.
Guangsheng SONG, Jiawei NIU, Hongwu SONG, Shihong ZHANG, Siying DENG. High temperature deformation behavior and constitutive model of Zirlo zirconium alloy. Journal of Materials Engineering, 2022, 50(3): 138-147.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000840      或      http://jme.biam.ac.cn/CN/Y2022/V50/I3/138
Fig.1  Zirlo合金在不同温度下压缩的真应力-真应变曲线
(a)T=550 ℃;(b)T=600 ℃;(c)T=650 ℃;(d)T=700 ℃
Fig.2  不同变形条件下压缩试样晶粒取向图
(a)T=700 ℃,=0.01 s-1;(b)T=600 ℃,=0.01 s-1;(c)T=700 ℃,=1 s-1
Fig.3  峰值应力与应变速率的关系
(a) ;(b)
Fig.4  峰值应力与应变速率及温度的关系
(a)ln[sinh(ασ)]- ;(b)ln[sinh(ασ)]-1/T
ε α n Q/(kJ·mol-1) lnA
0.2 0.0047 14.64113 352.74 41.265
0.3 0.00447 12.29814 341.28 40.4075
0.4 0.00439 10.58959 321.26 38.26
0.5 0.00436 9.15237 297.59 35.6525
0.6 0.00438 8.27666 280.17 33.66
0.7 0.00444 7.59117 271.9 32.7905
0.8 0.00452 7.03599 266.15 32.165
0.9 0.00453 6.64083 257.61 31.245
1.0 0.00425 6.48812 251.37 32.32
Table 1  不同应变下的材料参数
Fig.5  多项式拟合Zirlo合金材料参数与真应变的关系
(a)α;(b)n;(c)Q;(d)lnA
Fig.6  Zirlo合金流变应力的实测值与理论预测值误差分析
σ0/MPa β k n
15.3346 3.9448 0.25 1.5
Table 2  拟合得到的Zirlo合金材料常数
Temperature/℃ Strain rate/s-1 σss*/ MPa σst/ MPa εp
550 0.01 335.32467 195.40051 0.39
600 303.39394 145.00278 0.26
650 241.65146 107.97906 0.20
700 164.88443 82.46923 0.14
550 0.1 383.81618 266.155 0.39
600 359.99858 228.55147 0.38
650 309.18125 177.16448 0.30
700 247.03213 132.13324 0.18
550 1 374.27562 361.06854 0.46
600 351.86441 330.32287 0.40
650 354.61491 246.58076 0.35
700 311.00398 196.9516 0.32
550 10 396.69252 384.45191 0.53
600 366.19677 368.99805 0.45
650 372.19031 315.74173 0.42
700 373.29994 235.86879 0.40
Table 3  不同条件下的理想饱和应力、稳态流动应力及峰值应变
Fig.7  理想饱和应力、稳态流动应力及峰值应变与lnZ之间的关系
(a)σss*-lnZσst-lnZ;(b)εp-lnZ
Fig.8  应力的分段唯象型本构模型预测与实测结果
(a)T=550 ℃;(b)T=600 ℃;(c)T=650 ℃;(d)T=700 ℃
Temperature/℃ Strain rate/s-1 R ARRE/%
550 0.01 0.98715975 1.1789115
600 0.97691315 1.7554224
650 0.96345011 2.2668458
700 0.94443929 2.4735332
550 0.1 0.99215919 1.2568057
600 0.99639948 0.5952340
650 0.98518316 1.5424084
700 0.92665999 2.7779341
550 1 0.99550776 2.0273764
600 0.99711162 1.7103529
650 0.96546702 2.5660440
700 0.95267778 2.9764100
550 10 0.99745048 1.0669228
600 0.99852689 1.2709881
650 0.99809893 1.1248588
700 0.99484474 1.7694216
Table 4  各变形条件下的相关系数和平均绝对相对误差
Fig.9  700 ℃下压缩应力-应变曲线的理论预测及实验结果
1 LINGA M K , CHARIT I . Texture development and anisotropic deformation of zircaloys[J]. Progress in Nuclear Energy, 2006, 48 (4): 325- 359.
doi: 10.1016/j.pnucene.2005.09.011
2 ZAYMOVSKIY A S . Zirconium alloys for nuclear power[M]. Beijing: Atomic Energy Press, 1988: 199.
3 张旭. 室温下锆合金的多轴力学性能研究[D]. 天津: 天津大学, 2017.
3 ZHANG X. A study on the multiaxial mechanical properties of zirconium alloys at room temperature[D]. Tianjin: Tianjin University, 2017.
4 肖大武, 李英雷, 胡时胜. 高温高应变率下纯锆的本构模型研究[J]. 高压物理学报, 2009, 23 (1): 46- 50.
4 XIAO D W , LI Y L , HU S S . Constitutive model of pure zirconium under high temperature and high strain rate[J]. Chinese Journal of High Pressure Physics, 2009, 23 (1): 46- 50.
5 董艺伟. Zr92Ti8合金热变形行为的研究[D]. 秦皇岛: 燕山大学, 2018.
5 DONG Y W. Study on hot deformation behavior of Zr92Ti8alloy[D]. Qinhuangdao: Yanshan University, 2018.
6 SAXENA K K , JHA S K , PANCHOLI V , et al. Role of activation energies of individual phases in two-phase range on constitutive equation of Zr-2.5Nb-0.5Cu alloy[J]. Transactions of Nonferrous Metals Society of China, 2017, 27 (1): 172- 183.
doi: 10.1016/S1003-6326(17)60020-7
7 SABOORI A , DADKHAH M , PAVESE M , et al. Hot deformation behavior of Zr-1%Nb alloy: flow curve analysis and microstructure observations[J]. Materials Science and Engineering: A, 2017, 696 (1): 366- 373.
8 尹振入, 卢立伟, 刘晓烨, 等. 预孪晶AQ80镁合金热压缩本构方程及热加工图[J]. 中国有色金属学报, 2018, 28 (8): 1523- 1531.
8 YIN Z R , LU L W , LIU X Y , et al. Constitutive equation and processing map of hot deformation for pre-twin AQ80 magnesium alloy[J]. The Chinese Journal of Nonferrous Metals, 2018, 28 (8): 1523- 1531.
9 刘延辉, 姚泽坤, 宁永权, 等. 生物医用TC20钛合金高温变形行为及本构关系[J]. 材料工程, 2014, (7): 16- 21.
9 LIU Y H , YAO Z K , NING Y Q , et al. Hot deformation behavior and constitutive relationship of biomedical TC20 alloy[J]. Journal of Materials Engineering, 2014, (7): 16- 21.
10 万鹏, 王克鲁, 鲁世强, 等. 基于应变补偿和PSO-BP神经网络的Ti-2.7Cu合金本构关系[J]. 材料工程, 2019, 47 (4): 113- 119.
10 WAN P , WANG K L , LU S Q , et al. Constitutive modeling of Ti-2.7Cu alloy based on strain compensation and PSO-BP neural network[J]. Journal of Materials Engineering, 2019, 47 (4): 113- 119.
11 张施琦, 冯定, 张跃, 等. 新型超高强度冲压用钢的热变形行为及本构关系[J]. 材料工程, 2016, 44 (5): 15- 21.
doi: 10.11868/j.issn.1001-4381.2016.05.003
11 ZHANG S Q , FENG D , ZHANG Y , et al. Hot deformation behavior and constitutive model of advanced ultra-high strength hot stamping steel[J]. Journal of Materials Engineering, 2016, 44 (5): 15- 21.
doi: 10.11868/j.issn.1001-4381.2016.05.003
12 刘强, 白强, 田峰, 等. 石油管用Ti-6Al-4V-0.1Ru钛合金高温流变行为及预测模型研究[J]. 稀有金属材料与工程, 2020, 49 (1): 177- 184.
12 LIU Q , BAI Q , TIAN F , et al. High temperature behavior and constitutive model of Ti-6Al-4V-0.1Ru titanium alloy used for oil country tubular goods[J]. Rare Metal Materials and Engineering, 2020, 49 (1): 177- 184.
13 孙国强, 刘勇, 田保红, 等. Cu-0.8Mg-0.15Ce合金热变形行为与机制研究[J]. 中国稀土学报, 2019, 37 (1): 76- 83.
13 SUN G Q , LIU Y , TIAN B H , et al. Hot deformation behavior and mechanism of Cu-0.8Mg-0.15Ce alloy[J]. Journal of the Chinese Society of Rare Earths, 2019, 37 (1): 76- 83.
14 XIAO Y H , GUO C , GUO X Y . Constitutive modeling of hot deformation behavior of H62 brass[J]. Materials Science and Engineering: A, 2011, 528 (21): 6510- 6518.
15 高夏云. Zr-4合金的热变形行为研究及工艺参数优化[D]. 南昌: 南昌航空大学, 2018.
15 GAO X Y. Study on hot deformation behavior and processing parameters optimization for Zr-4 alloy[D]. Nanchang: Nanchang Hangkong University, 2018.
16 宋鸿武. TC11钛合金片层组织两相区变形机理的研究及应用[D]. 沈阳: 中国科学院金属研究所, 2009.
16 SONG H W. Research on subtransus deformation mechanisms of TC11 alloy with a lamellar structure and its application[D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2009.
17 ESTRIN Y , MECKING H . A unified phenomenological description of work hardening and creep based on one-parameter models[J]. Acta Metallurgica, 1984, 32 (1): 57- 70.
18 LAASRAOUI A , JONAS J J . Prediction of steel flow stresses at high temperatures and strain rates[J]. Metallurgical Transaction A, 1991, 22 (7): 1545- 1558.
19 WEI W , WEI K X , FAN G J . A new constitutive equation for strain hardening and softening of fcc metals during severe plastic deformation[J]. Acta Materialia, 2008, 56 (17): 4771- 4779.
20 EL-ATYA A A , XU Y , HA S , et al. Computational homogenization of tensile deformation behaviors of a third generation Al-Li alloy 2060-T8 using crystal plasticity finite element method[J]. Materials Science and Engineering: A, 2018, 731 (25): 583- 594.
[1] 王博伦, 王韬, 相宁, 葛勇, 郎建林, 孙琦伟, 陈宇宏, 颜悦. 聚碳酸酯中应变率压缩力学特性研究[J]. 材料工程, 2021, 49(12): 147-155.
[2] 王彦菊, 李神龙, 贺炜林, 沙爱学, 贾崇林, 孟宝, 万敏. 高温合金超薄板循环塑性本构模型适用性研究[J]. 材料工程, 2021, 49(11): 147-155.
[3] 李慧中, 杨雷, 王岩, 谭钢, 黄钲钦, 刘敏学. 热挤压态Ni-Co-Cr基粉末高温合金热加工行为[J]. 材料工程, 2020, 48(9): 115-123.
[4] 孙挺, 闫永明, 何肖飞, 尉文超, 杜玉婧. Cr-Mo-B系机械工程用钢高温流变行为及热加工图[J]. 材料工程, 2019, 47(9): 55-60.
[5] 任书杰, 罗飞, 田野, 刘大博, 王克鲁, 鲁世强. A100超高强度钢的流变应力曲线修正与唯象本构关系[J]. 材料工程, 2019, 47(6): 144-151.
[6] 万鹏, 王克鲁, 鲁世强, 陈虚怀, 周峰. 基于应变补偿和PSO-BP神经网络的Ti-2.7Cu合金本构关系[J]. 材料工程, 2019, 47(4): 113-119.
[7] 杨宇凯, 张宝, 王旭东, 张虎生, 武岳, 关永军. 石墨烯及碳化硅增强铝基复合材料的冲击力学行为[J]. 材料工程, 2019, 47(3): 15-22.
[8] 李凯尚, 彭剑, 彭健. 预应变对奥氏体不锈钢力学行为的影响及本构模型的构建[J]. 材料工程, 2018, 46(11): 148-154.
[9] 袁武华, 龚雪辉, 孙永庆, 梁剑雄. 0Cr16Ni5Mo低碳马氏体不锈钢的热变形行为及其热加工图[J]. 材料工程, 2016, 44(5): 8-14.
[10] 张施琦, 冯定, 张跃, 洪继要. 新型超高强度热冲压用钢的热变形行为及本构关系[J]. 材料工程, 2016, 44(5): 15-21.
[11] 张勇, 谢卫红, 刘宏伟, 张峰. 聚氨酯蜂窝纸板动力学性能及其本构模型[J]. 材料工程, 2015, 43(5): 27-32.
[12] 刘庆生, 何文, 曾芳金, 薛济来. 不同铝电解时间下阴极炭块的损伤特性研究[J]. 材料工程, 2013, 0(7): 92-96.
[13] 王韬, 曹伟, 颜悦, 厉蕾. 聚碳酸酯熔体挤压流变研究[J]. 材料工程, 2013, 0(5): 73-77.
[14] 李冬勤, 徐磊, 黄兴民, 戴光泽. 7A04铝合金动态再结晶的临界应变研究[J]. 材料工程, 2013, 0(4): 23-27.
[15] 张阳, 臧顺来, 郭翔, 梁晋, 郭成. 基于数字散斑应变测量法的薄板各向异性力学性能研究[J]. 材料工程, 2012, 0(4): 6-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn