Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (8): 127-138    DOI: 10.11868/j.issn.1001-4381.2020.000903
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
化学镀制备纳米银-石墨烯复合材料及其电化学性能
李金磊1,2, 邓凌峰1,2,3,*(), 张淑娴1,2, 谭洁慧1,2, 覃榕荣1,2, 王壮1,2
1 中南林业科技大学 材料科学与工程学院, 长沙 410004
2 中南林业科技大学 材料表界面科学与技术湖南省重点实验室, 长沙 410004
3 湖南烯能新材料有限公司, 长沙 410205
Preparation and electrochemical performance of nano-silver-graphene composite by electroless plating
Jin-lei LI1,2, Ling-feng DENG1,2,3,*(), Shu-xian ZHANG1,2, Jie-hui TAN1,2, Rong-rong QIN1,2, Zhuang WANG1,2
1 School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
2 Hunan Province Key Laboratory of Materials Surface and Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
3 Hunan Xineng New Material Co., Ltd., Changsha 410205, China
全文: PDF(17302 KB)   HTML ( 7 )  
输出: BibTeX | EndNote (RIS)      
摘要 

以葡萄糖为还原剂,采用化学镀原位合成纳米银-石墨烯复合材料(Ag/GR),通过X射线衍射(XRD)、X射线能量色散谱(EDS)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)和傅里叶红外光谱(FTIR)等方法对材料的结构形态进行表征分析。结果表明,石墨烯表面银的负载形态为预期的单质状态,AgNPs平均粒径约为21 nm。同时,利用循环伏安法(CV)、交流阻抗谱(EIS)、线性伏安扫描法(LSV)和差分脉冲伏安法(DPV)对抗坏血酸(AA)在Ag/GR/GCE电化学传感器上的电化学响应进行研究。电化学测试结果表明,Ag/GR复合材料具有最高的响应电化学信号212.9 μA和最低的电荷转移电阻90.5 Ω,峰值电流约为石墨烯电极(110 μA)的2倍和玻碳电极(42.5 μA)的5倍,AgNPs与石墨烯具有良好的协同作用,对AA具有明显的电催化活性。AA的阳极峰电流在5~120 μmol/L浓度范围内线性增加。然而,AA的阳极峰电流与浓度范围为50~120 μmol/L的自然对数高度相关,检测限为0.06 μmol/L。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李金磊
邓凌峰
张淑娴
谭洁慧
覃榕荣
王壮
关键词 化学镀银纳米粒子石墨烯抗坏血酸    
Abstract

Using glucose as the reducing agent, the nano-silver-graphene composite material (Ag/GR) was synthesized in situ by electroless plating, the structural morphology of the material was characterized and analyzed by X-ray diffraction (XRD), X-ray energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) and Fourier infrared spectrometry (FTIR). The results show that the loading morphology of silver on the graphene surface is the single state that meets the expectation. The average particle size of AgNPs is about 21 nm. At the same time, the electrochemical response of ascorbic acid (AA) on Ag/GR/GCE electrochemical sensors was studied using the electrochemical test methods of cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), linear sweep voltammetry (LSV) and differential pulse voltammetry (DPV). The electrochemical test results show that the Ag/GR composite has the highest response electrochemical signal of 212.9 μA and the lowest resistance of charge transfer of 90.5 Ω. The peak current is about twice that of the graphene electrode (110 μA) and about five times that of the glassy carbon electrode (42.5 μA). Due to the good synergistic effect of AgNPs and graphene, it has obvious electrocatalytic activity for AA. And the anode peak current and concentration show positive correlation linear change trend in the range of 5-120 μmol/L. However, the anode peak current of AA is highly correlated with the natural logarithm of the concentration range from 50 μmol/L to 120 μmol/L. The low limits of detection is 0.06 μmol/L.

Key wordselectroless plating    silver nanoparticle    graphene    ascorbic acid
收稿日期: 2020-09-24      出版日期: 2021-08-12
中图分类号:  TQ13  
基金资助:国家自然科学基金重点资助项目(31530009);湖南省科研创新资助项目(CX2018B458)
通讯作者: 邓凌峰     E-mail: denglingfeng168@126.com
作者简介: 邓凌峰(1970-), 男, 副教授, 博士, 主要从事能源材料的研究, 联系地址: 湖南省长沙市天心区韶山南498号中南林业科技大学研究生院(410004), E-mail: denglingfeng168@126.com
引用本文:   
李金磊, 邓凌峰, 张淑娴, 谭洁慧, 覃榕荣, 王壮. 化学镀制备纳米银-石墨烯复合材料及其电化学性能[J]. 材料工程, 2021, 49(8): 127-138.
Jin-lei LI, Ling-feng DENG, Shu-xian ZHANG, Jie-hui TAN, Rong-rong QIN, Zhuang WANG. Preparation and electrochemical performance of nano-silver-graphene composite by electroless plating. Journal of Materials Engineering, 2021, 49(8): 127-138.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000903      或      http://jme.biam.ac.cn/CN/Y2021/V49/I8/127
Fig.1  Ag/GR的制备工艺流程
Fig.2  Ag/GR复合材料的XRD图
Fig.3  Ag/GR复合材料SEM照片(a)和EDS图谱(b)
Fig.4  Ag/GR-7和石墨烯的XPS全谱及其C,O和Ag元素的精细谱
(a)Ag/GR-7全谱;(b)石墨烯全谱;(c)Ag/GR-7 C1s光谱;(d)石墨烯C1s能谱;(e)Ag/GR-7 O1 s光谱;(f)Ag/GR-7和石墨烯的Ag3d光谱
Fig.5  不同银负载量下Ag/GR复合材料的SEM微观形貌
(a)5 g/L;(b)6 g/L;(c)7 g/L;(d)8 g/L;(e)9 g/L
Fig.6  GO,GR和Ag/GR的FTIR图
Fig.7  不同电化学传感器在[Fe(CN)6]3-/4-和KCl溶液中的CV图
Fig.8  银负载量不同Ag/GR修饰电极的电化学阻抗谱
(a)Nyquist图;(b)高频区的放大
Fig.9  AA在Ag/GR-5(a),Ag/GR-6(b),Ag/GR-7(c),Ag/GR-8(d),Ag/GR-9(e)上的CV曲线
Fig.10  负载量与阳极峰值电流、阴极峰值电流和电荷转移电阻的关系
Fig.11  扫描速率对抗坏血酸传感的影响
(a)AA在Ag/GR-9/GCE上的CV图;(b)IpaIpcv的关系;(c)IpaIpcv1/2的关系;(d)lgIp与lgv的关系
Fig.12  AA氧化还原的电化学机理
Fig.13  AA在Ag/GR修饰电极上的电化学行为
(a)AA的LSV曲线;(b)Epav的关系;(c)Ipav1/2的关系;(d)lgIpa与lgv的线性关系
Fig.14  Ag/GR-8/GCE在含不同浓度AA醋酸缓冲液中的差分脉冲伏安图
(a)总DPV曲线;(b)5~50 μmol/L的DPV曲线;(c)Ipa与lnc的关系;(d)50~120 μmol/L的DPV曲线;(e)Ipa与lnc的关系
Modified GCE materials Methods Detection range/(μmol·L-1) LOD/(μmol·L-1) Reference
aGO/P(ANI-co-THI) DPV 0.5×103-5×103 242 [23]
bN-rGO DPV 0.1×103-4×103 9.6 [24]
cCQDs-rGO DPV g0.2×103-0.9×103, 1.4×103-4.2×103 3.33 [25]
drGO-SnO2 DPV 400-1600 38.7 [26]
eTiO2/rGO Amperometric 25-725 1.19 [27]
ZnO DPV 8.4-171 0.67 [28]
fPDY/MWCNTs DPV 5-110 0.1 [29]
Ag/GR DPV 5-50, 50-120 0.06 This work
Table 1  纳米银-石墨烯复合材料修饰电极(Ag/GR/GCE)与其他修饰电极在抗坏血酸电化学测定中的效率比较
1 ZHU L F , WANG Y C , MEI D Q , et al. Fully elastomeric fingerprint-shaped electronic skin based on tunable patterned graphene/silver nanocomposites[J]. ACS Applied Materials & Interfaces, 2020, 12 (28): 31725- 31737.
2 张传香, 陈亚玲, 巩云, 等. 二硫化钼/石墨烯复合材料的一步水热合成及电催化性能[J]. 材料工程, 2020, 48 (5): 56- 61.
2 ZHANG C X , CHEN Y L , GONG Y , et al. One step hydrothermal synthesis and electro-catalytic performance of MoS2/RGO composites[J]. Journal of Materials Engineering, 2020, 48 (5): 56- 61.
3 YUE X Y , SONG C S , YAN Z Y , et al. Reduced graphene oxide supported nitrogen-doped porous carbon-coated NiFe alloy composite with excellent electrocatalytic activity for oxygen evolution reaction[J]. Applied Surface Science, 2019, 493, 963- 974.
doi: 10.1016/j.apsusc.2019.07.083
4 李秀辉, 燕绍九, 洪起虎, 等. 石墨烯添加量对铜基复合材料性能的影响[J]. 材料工程, 2019, 47 (1): 11- 17.
4 LI X H , YAN S J , HONG Q H , et al. Influence of graphene content on properties of Cu matrix composites[J]. Journal of Materials Engineering, 2019, 47 (1): 11- 17.
5 RABINA B , SADHNA R , KHANINDRAM B , et al. Capacitive and sensing responses of biomass derived silver decorated graphene[J]. Scientific Reports, 2019, 9 (6): 4863- 1331.
6 苏长泳, 黄林军, 王彦欣, 等. 石墨烯及Ag/石墨烯纳米复合材料的原位合成[J]. 材料导报, 2015, 29 (4): 55- 59.
6 SU C Y , HUANG L J , WANG Y X , et al. In-situ synthesis for graphene and Ag/graphene nanocomposites[J]. Materials Review, 2015, 29 (4): 55- 59.
7 HE Q G , TIAN Y L , WU Y Y , et al. Facile and ultrasensitive determination of 4-nitrophenol based on acetylene black paste and graphene hybrid electrode[J]. Nanomaterials, 2019, 9 (3): 429- 444.
doi: 10.3390/nano9030429
8 LIU J , DONG S , HE Q G , et al. Facile Preparation of Fe3O4/C nanocomposite and its application for cost-effective and sensitive detection of Tryptophan[J]. Biomolecules, 2019, 9 (6): 245- 259.
doi: 10.3390/biom9060245
9 TU X L , XIE Y , GAO F , et al. Self-template synthesis of flower-like hierarchical graphene/copper oxide@copper(Ⅱ) metal-organic framework composite for the voltammetric determination of caffeic acid[J]. Microchimica Acta, 2020, 187 (5): 22- 32.
10 RAO S S , SAPTAMI K , VENKATTESAN J , et al. Microwave-assisted rapid synthesis of silver nanoparticles using fucoidan: characterization with assessment of biocompatibility and antimicrobial activity[J]. International Journal of Biological Macromolecules, 2020, 163, 745- 755.
doi: 10.1016/j.ijbiomac.2020.06.230
11 KHAN M J , KUMARI S , SHAMELI K , et al. Green synthesis and characterization of pullulan mediated silver nanoparticles through ultraviolet irradiation. Materials[J]. Materials, 2019, 12 (15): 2382- 2393.
doi: 10.3390/ma12152382
12 SHCHITOYSKAYA E V , KOLZUNOVA L G , KARPENKO M A . Electrochemical immobilization of silver nanoparticles in a polymethylolacryalmide matrix[J]. Russian Journal of Electrochemistry, 2020, 56 (5): 379- 387.
doi: 10.1134/S1023193520040114
13 YANG S , XUE B , LI Y , et al. Controllable Ag-rGO heterostructure for highly thermal conductivity in layer-by-layer nanocellulose hybrid films[J]. Chemical Engineering Journal, 2019, 383, 123072.
14 LASKAR I B , ROKHUM L , GUPTA R , et al. Zinc oxide supported silver nanoparticles as a heterogeneous catalyst for production of biodiesel from palm oil[J]. Environmental Progress & Sustainable Energy, 2020, 39 (3): 13369- 13406.
15 PEREVEZENTSEVA D O , VAITULEVICH E A , BIMATOV V I . Synthesis of silver nanoparticles in the presence of polyethylene glycol and their electrochemical behavior at a graphite electrode by cyclic voltammetry[J]. Oriental Journal of Chemistry, 2018, 34 (2): 1130- 1135.
doi: 10.13005/ojc/340267
16 SHEN J , SHI M , LI N , et al. Facile synthesis and application of Ag-chemically converted graphene nanocomposite[J]. Nano Research, 2010, 3 (5): 339- 349.
doi: 10.1007/s12274-010-1037-x
17 QI B , DUN Z , PENG Q . Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection[J]. Journal of Colloid and Interface Science, 2011, 360 (2): 463- 470.
doi: 10.1016/j.jcis.2011.05.009
18 ROYA A , ALI M H S , SHAVESSTEH D , et al. Selective fluorometric determination of sulfadiazine based on the growth of silver nanoparticles on graphene quantum dots[J]. Microchimica Acta, 2019, 187 (1): 2072- 2078.
19 何光裕, 马凯, 侯景会, 等. 纳米银/石墨烯复合材料的绿色制备及其抑菌性能[J]. 精细化工, 2012, 29 (9): 840- 843.
19 HE G Y , MA K , HOU J H , et al. Green synthesis of Ag@graphene nanocomposite and its antibacterial activity[J]. Fine Chemicals, 2012, 29 (9): 840- 843.
20 SOYSAL F , ÇIPLAK Z , GÖKALP C , et al. One-step hydrothermal synthesis of nitrogen doped reduced graphene oxide-silver nanocomposites: catalytic performance[J]. Applied Organometallic Chemistry, 2020, 34, 5621- 5631.
21 左鹏, 张治国, 李卫. NaOH和NiSO4添加剂浓度对短碳纤维化学镀银结构和导电率的影响[J]. 表面技术, 2019, 48 (5): 153- 160.
21 ZUO P , ZHANG Z G , LI W . Effects of concentration of NaOH and NiSO4 additives on structure and electrical conductivity of silver-coated short carbon fibers by electroless plating[J]. Surface Technology, 2019, 48 (5): 153- 160.
22 BHUJEL R , SWAIN B P . Investigation of cyclic voltammetry and impedance spectroscopy of thermally exfoliated biomass synthesized nickel decorated graphene[J]. Journal of Physics and Chemistry of Solids, 2019, 130, 242- 249.
doi: 10.1016/j.jpcs.2019.02.023
23 SONG N N , WANG Y Z , YANG X Y , et al. A novel electrochemical biosensor for the determination of dopamine and ascorbic acid based on graphene oxide/poly(aniline-co-thionine) nanocomposite[J]. Journal of Electroanalytical Chemistry, 2020, 873, 30579- 30618.
24 ZHANG H Y , LIU S . Electrochemical biosensors based on nitrogen-doped reduced graphene oxide for the simultaneous detection of ascorbic acid, dopamine and uric acid[J]. Journal of Alloys and Compounds, 2020, 842, 155873- 155890.
doi: 10.1016/j.jallcom.2020.155873
25 WEI Y Y , XU Z F , WANG S J , et al. One-step preparation of carbon quantum dots-reduced graphene oxide nanocomposite-modified glass carbon electrode for the simultaneous detection of ascorbic acid, dopamine, and uric acid[J]. Ionics, 2020, 26, 5817- 5828.
doi: 10.1007/s11581-020-03703-5
26 RINKY S , SUSHMEE B . Facile green synthesis of reduced graphene oxide/tin oxide composite for highly selective and ultra-sensitive detection of ascorbic acid[J]. Journal of Electroanalytical Chemistry, 2018, 816, 30- 37.
doi: 10.1016/j.jelechem.2018.03.033
27 HARRAZ F A , FAISAL M , ISMAIL A A , et al. TiO2/reduced graphene oxide nanocomposite as efficient ascorbic acid amperometric sensor[J]. Journal of Electroanalytical Chemistry, 2019, 832, 225- 232.
doi: 10.1016/j.jelechem.2018.11.004
28 连欢, 李金涛, 张翠忠, 等. 花状氧化锌修饰电极对抗坏血酸的电催化氧化[J]. 分析试验室, 2019, 38 (2): 136- 140.
28 LIAN H , LI J T , ZHANG C Z , et al. The electrocatalytic oxidation of ascorbic acid on a glassy carbon electrode modified with flower-like ZnO[J]. Chinese Journal of Analysis Laboratory, 2019, 38 (2): 136- 140.
29 HATE M A , KARIMI M A , SOLEYMANZADEH M , et al. Highly sensitive detection of dopamine, ascorbic and uric acid with a nanostructure of Dianix yellow/multi-walled carbon nanotubes modified electrode[J]. Measurement, 2020, 163, 107893- 107901.
doi: 10.1016/j.measurement.2020.107893
[1] 张林琳, 顾学林, 向笑笑, 刘会娥, 陈爽. 石墨烯-羧甲基纤维素复合气凝胶的制备及吸油性能评价[J]. 材料工程, 2022, 50(9): 43-51.
[2] 李守佳, 罗春燕, 陈卫星, 方铭港, 孙健鑫. 氧化石墨烯接枝聚乙二醇对左旋聚乳酸结晶行为和热稳定性的影响[J]. 材料工程, 2022, 50(8): 99-106.
[3] 周银, 乔畅, 邹家栋, 郭洪锍, 王树奇. 多层石墨烯对钛合金摩擦学性能的影响[J]. 材料工程, 2022, 50(8): 107-114.
[4] 张铭泰, 余少彬, 李希成, 冯萃敏, 石梦童, 汪长征, 王强. 新型复合纳米材料用于光催化降解染料废水的研究进展[J]. 材料工程, 2022, 50(7): 59-68.
[5] 吴乾鑫, 刘磊, 孙晋蒙, 李一帆, 刘宇航, 杜洪方, 艾伟, 杜祝祝, 王科. 磺酸基修饰石墨烯复合材料的储钠性能研究[J]. 材料工程, 2022, 50(4): 36-43.
[6] 杜宗波, 时双强, 陈宇滨, 褚海荣, 杨程. 介电型石墨烯吸波复合材料研究进展[J]. 材料工程, 2022, 50(4): 74-84.
[7] 侯小鹏, 曾浩, 杜邵文, 李娜, 朱怡雯, 傅小珂, 李秀涛. 基于工业化碳材料的锂氟化碳电池正极材料制备及性能[J]. 材料工程, 2022, 50(3): 107-114.
[8] 阚侃, 王珏, 付东, 郑明明, 张晓臣. 氮掺杂碳纤维包覆石墨烯纳米片的构建及电容特性[J]. 材料工程, 2022, 50(2): 94-102.
[9] 王牧, 曾夏茂, 苗霞, 魏浩光, 周仕明, 冯岸超. 三维石墨烯-吡咯气凝胶/环氧树脂复合材料的制备及其性能[J]. 材料工程, 2022, 50(1): 117-124.
[10] 刘龙, 梁森, 王得盼, 周越松, 郑长升. 硅烷偶联剂及氧化石墨烯二次改性对芳纶纤维界面性能的影响[J]. 材料工程, 2022, 50(1): 145-153.
[11] 李颖, 雷蕊, 徐文凯, 朱小雪, 黄艳凤. 磁性氧化石墨烯基17β-雌二醇分子印迹复合膜的制备与性能[J]. 材料工程, 2021, 49(6): 170-177.
[12] 陈宇, 张代军, 李军, 温嘉轩, 陈祥宝. 三维结构石墨烯气凝胶/环氧树脂复合材料的制备和电磁屏蔽性能[J]. 材料工程, 2021, 49(5): 82-88.
[13] 杜娟, 曹翔宇, 宋海鹏, 魏子明, 李香云, 杨涵清, 杨梓铭, 李伯阳, 李海龙. 氧化石墨烯在金属表面的应用及其机理研究进展[J]. 材料工程, 2021, 49(2): 32-41.
[14] 吴旭, 唐晓宁, 黄鑫威, 刘美丽, 周文华, 欧阳全胜. 液相制备石墨烯/硫复合材料及其在锂硫电池正极中的应用[J]. 材料工程, 2021, 49(2): 114-120.
[15] 陈燕宁, 吴量, 陈勇花, 程苓, 姚文辉, 潘复生. 镁合金表面氧化石墨烯复合涂层的研究现状[J]. 材料工程, 2021, 49(12): 1-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn