Graphene is widely considered a promising candidate for microwave absorbing materials in the future due to its unique dielectric properties, high specific surface area, low density and other outstanding properties. However, the single component graphene has poor microwave absorbing properties, so graphene-based microwave absorbing composites have become a research hotspot in recent years. In this paper, microwave absorbing mechanism and characteristics of graphene and its composites were introduced. Accordingly, it indicates that dielectric graphene microwave absorbing composites have the potential to become lightweight, high-intensity, broadband, and thin-layer microwave absorbing materials.The research progress in dielectric graphene microwave absorbing composites was reviewed from two aspects of graphene matrix and dopant.Finally, it was pointed out that developing new dielectric dopants with strong loss ability, constructing microwave absorbing composites with multiple components, establishing common design methods, as well as exploring large scale preparation methods would become the research trends in the future.
Fig.4 rGO气凝胶(rGOA)与SiC纤维/rGO气凝胶(SiCw/rGOA)吸波复合材料的电磁特性对比[80] (a)介电常数实部ε′;(b)介电常数虚部ε″;(c)损耗角正切tanδ;(d)电导率σ;(e)电导损耗虚部贡献ε″ c;(f)极化损耗虚部贡献ε″ p
1
BELLIS G D , TAMBURRANO A , DINESCU A , et al. Electromagnetic properties of composites containing graphite nanoplatelets at radio frequency[J]. Carbon, 2011, 49 (13): 4291- 4300.
doi: 10.1016/j.carbon.2011.06.008
2
DAI Y W , SUN M Q , LIU C G , et al. Electromagnetic wave absorbing characteristics of carbon black cement-based composites[J]. Cement and Concrete Composites, 2010, 32 (7): 508- 513.
doi: 10.1016/j.cemconcomp.2010.03.009
3
ZHAO T K , HOU C L , ZHANG H Y , et al. Electromagnetic wave absorbing properties of amorphous carbon nanotubes[J]. Scientific Reports, 2014, 4 (1): 1- 7.
4
YAN J , HUANG Y , WEI C , et al. Covalently bonded polyaniline/graphene composites as high-performance electromagnetic (EM) wave absorption materials[J]. Composites: Part A, 2017, 99, 121- 128.
doi: 10.1016/j.compositesa.2017.04.016
5
ZHANG H Y , XU Y J , ZHOU J G , et al. Stacking fault and unoccupied densities of state dependence of electromagnetic wave absorption in SiC nanowires[J]. Journal of Materials Chemistry: C, 2015, 3 (17): 4416- 4423.
doi: 10.1039/C5TC00405E
6
HAO X , YIN X W , ZHANG L T , et al. Dielectric, electromagnetic interference shielding and absorption properties of Si3N4-PyC composite ceramics[J]. Journal of Materials Science & Technology, 2013, 29 (3): 249- 254.
7
LI Y , CAO M S . Enhanced electromagnetic properties and microwave attenuation of BiFeO3-BaFe7(MnTi)2.5O19 driven by multi-relaxation and strong ferromagnetic resonance[J]. Materials & Design, 2016, 110, 99- 104.
8
FENG Y B , QIU T , SHEN C Y , et al. Electromagnetic and absorption properties of carbonyl iron/rubber radar absorbing materials[J]. IEEE Transactions on Magnetics, 2016, 42 (3): 363- 368.
9
LIU X G , GENG D Y , MA S , et al. Electromagnetic-wave absorption properties of FeCo nanocapsules and coral-like aggregates self-assembled by the nanocapsules[J]. Journal of Applied Physics, 2008, 104 (6): 064319.
doi: 10.1063/1.2982411
10
NOVOSELOV K S , GEIM A K , MOROZOV S V , et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306 (5696): 666- 669.
doi: 10.1126/science.1102896
11
GEIM A K , NOVOSELOV K S . The rise of graphene[J]. Nature Materials, 2007, 6 (3): 183- 191.
doi: 10.1038/nmat1849
12
BALANDIN A A , GHOSH S , BAO W , et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8 (3): 902- 907.
doi: 10.1021/nl0731872
13
CHAE H K , SIBERIO-PEREZ D Y , KIM J , et al. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature, 2004, 427 (6974): 523- 527.
doi: 10.1038/nature02311
14
NOVOSELOV K S , GEIM A K , MOROZOV S V , et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438 (7065): 197.
doi: 10.1038/nature04233
15
MIKHAILOV S A , ZIEGLER K . Nonlinear electromagnetic response of graphene: frequency multiplication and the self-consistent-field effects[J]. Journal of Physics: Condensed Matter, 2008, 20 (38): 384204.
doi: 10.1088/0953-8984/20/38/384204
16
ZAVYALOV D V , KRYUCHKOV S V , TYULKINA T A . Effect of rectification of current induced by an electromagnetic wave in graphene: a numerical simulation[J]. Semiconductors, 2010, 44 (7): 879- 883.
doi: 10.1134/S1063782610070092
17
SHUNIN Y N , ZHUKOVSKII Y F , GOPEYENKO V I , et al. Simulation of electromagnetic properties in carbon nanotubes and graphene-based nanostructures[J]. Journal of Nanophotonics, 2012, 6 (1): 1706.
18
KRYUCHKOV S V , KUKHARA E I , ZAVYALOV D V . Absorption of electromagnetic waves by graphene[J]. Physics of Wave Phenomena, 2013, 21 (3): 207- 213.
doi: 10.3103/S1541308X13030060
19
WANG C , HAN X , XU P , et al. The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material[J]. Applied Physics Letters, 2011, 98 (7): 072906.
doi: 10.1063/1.3555436
20
MICHIELSSEN E , SAJER J M , RANJITHAN S , et al. Design of lightweight, broad-band microwave absorbers using genetic algorithms[J]. IEEE Transactions on Microwave Theory and Techniques, 1993, 41 (6): 1024- 1031.
doi: 10.1109/22.238519
21
RAMO S , WHINNERY J R , VAN DUZAR T . Fields and waves in communication electronics[M]. New York: John Wiley, 1965.
22
SUN H , CHE R C , YOU X , et al. Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities[J]. Advanced Materials, 2014, 26 (48): 8120- 8125.
doi: 10.1002/adma.201403735
23
REN F , YU H , WANG L , et al. Current progress on the modification of carbon nanotubes and their application in electromagnetic wave absorption[J]. RSC Advances, 2014, 4 (28): 14419.
doi: 10.1039/c3ra46989a
24
廖绍彬. 铁磁学[M]. 北京: 科学出版社, 1998.
24
LIAO S B . Ferromagnetism[M]. Beijing: Science Press, 1998.
25
CAO W Q , WANG X X , YUAN J , et al. Temperature dependent microwave absorption of ultrathin graphene composites[J]. Journal of Materials Chemistry: C, 2015, 3 (38): 10017- 10022.
doi: 10.1039/C5TC02185E
26
邢丽英. 隐身材料[M]. 北京: 化学工业出版社, 2004.
26
XING L Y . Stealth materials[M]. Beijing: Chemical Industry Press, 2004.
27
YAO Y J , YANG Z H , ZHANG D W , et al. Magnetic CoFe2O4-graphene hybrids: facile synthesis, characterization, and catalytic properties[J]. Industrial & Engineering Chemistry Research, 2012, 51 (17): 6044- 6051.
28
FU M , JIAO Q Z , ZHAO Y . Preparation of NiFe2O4 nanorod-graphene composites via an ionic liquid assisted one-step hydrothermal approach and their microwave absorbing properties[J]. Journal of Materials Chemistry: A, 2013, 1 (18): 5577.
doi: 10.1039/c3ta10402h
29
ZHANG G Y , SHU R W , XIE Y , et al. Cubic MnFe2O4 particles decorated reduced graphene oxide with excellent microwave absorption properties[J]. Materials Letters, 2018, 231, 209- 212.
doi: 10.1016/j.matlet.2018.08.055
30
PAN G H , ZHU J , MA S L , et al. Enhancing the electromagnetic performance of Co through the phase-controlled synthesis of hexagonal and cubic Co nanocrystals grown on graphene[J]. ACS Applied Materials & Interfaces, 2013, 5 (23): 12716- 12724.
31
LIU X F , CUI X R , CHEN Y X , et al. Modulation of electromagnetic wave absorption by carbon shell thickness in carbon encapsulated magnetite nanospindles-poly(vinylidene fluoride) composites[J]. Carbon, 2015, 95, 870- 878.
doi: 10.1016/j.carbon.2015.09.036
32
SHEN B , ZHAI W T , TAO M M , et al. Lightweight, multifunctional polyetherimide/graphene@Fe3O4 composite foams for shielding of electromagnetic pollution[J]. ACS Applied Materials & Interfaces, 2013, 5 (21): 11383- 11391.
33
LI Y J , YU M , YANG P A , et al. Enhanced microwave absorption property of Fe nanoparticles encapsulated within reduced graphene oxide with different thicknesses[J]. Industrial & Engineering Chemistry Research, 2017, 56 (31): 8872- 8879.
34
CAO M S , WANG X X , CAO W Q , et al. Ultrathin graphene: electrical properties and highly efficient electromagnetic interference shielding[J]. Journal of Material Chemistry: C, 2015, 3, 6589- 6599.
doi: 10.1039/C5TC01354B
35
XIA Y L , WANG J K , CHEN C C , et al. Controlled hydrothermal temperature provides tunable permittivity and an improved electromagnetic absorption performance of reduced graphene oxide[J]. RSC Advances, 2018, 8 (58): 33065- 33071.
doi: 10.1039/C8RA05843A
36
KUANG B Y , SONG W L , NING M Q , et al. Chemical reduction dependent dielectric properties and dielectric loss mechanism of reduced graphene oxide[J]. Carbon, 2018, 127, 209- 217.
doi: 10.1016/j.carbon.2017.10.092
37
WU F , ZENG Q , XIA Y L , et al. The effects of annealing temperature on the permittivity and electromagnetic attenuation performance of reduced graphene oxide[J]. Applied Physics Letters, 2018, 112 (19): 192902.
doi: 10.1063/1.5028472
38
ZHANG Y , HUANG Y , ZHANG T F , et al. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam[J]. Advanced Materials, 2015, 27 (12): 2049- 2053.
doi: 10.1002/adma.201405788
39
CHEN Y W , ZHANG H Y , ZENG G X . Tunable and high performance electromagnetic absorber based on ultralight 3D graphene foams with aligned structure[J]. Carbon, 2018, 140, 494- 503.
doi: 10.1016/j.carbon.2018.09.014
40
XU D W , XIONG X H , CHEN P , et al. Superior corrosion-resistant 3D porous magnetic graphene foam-ferrite nanocomposite with tunable electromagnetic wave absorption properties[J]. Journal of Magnetism and Magnetic Materials, 2019, 469, 428- 436.
doi: 10.1016/j.jmmm.2018.09.019
41
HAN M K , YIN X W , HOU Z X , et al. Flexible and thermostable graphene/SiC nanowire foam composites with tunable electromagnetic wave absorption properties[J]. ACS Applied Materials & Interfaces, 2017, 9 (13): 11803- 11810.
42
HE X J , LI X J , MA H , et al. ZnO template strategy for the synthesis of 3D interconnected graphene nanocapsules from coal tar pitch as supercapacitor electrode materials[J]. Journal of Power Sources, 2017, 340, 183- 191.
doi: 10.1016/j.jpowsour.2016.11.073
43
DONG S , SONG J T , ZHANG X H , et al. Strong contribution of in situ grown nanowires to enhance the thermostabilities and microwave absorption properties of porous graphene foams under different atmospheres[J]. Journal of Materials Chemistry: C, 2017, 5 (45): 11837- 11846.
doi: 10.1039/C7TC04102K
44
YE X L , CHEN Z F , LI M , et al. Microstructure and microwave absorption performance variation of SiC/C foam at different elevated-temperature heat treatment[J]. ACS Sustainable Chemistry and Engineering, 2019, 7, 18395- 18404.
doi: 10.1021/acssuschemeng.9b04062
45
XU Y F , LI J H , JI H M , et al. Constructing excellent electromagnetic wave absorber with dielectric-dielectric media based on 3D reduced graphene and Ag(Ⅰ)-Schiff base coordination compounds[J]. Journal of Alloys and Compounds, 2019, 781, 560- 570.
doi: 10.1016/j.jallcom.2018.12.069
46
SONG C Q , YIN X W , HAN M K , et al. Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties[J]. Carbon, 2017, 116, 50- 58.
doi: 10.1016/j.carbon.2017.01.077
47
WANG Y C , DONG Y , CHEN P , et al. Reduced graphene oxide foam templated by nickel foam for organ-on-a-chip engineering of cardiac constructs[J]. Materials Science and Engineering: C, 2020, 117, 111344.
doi: 10.1016/j.msec.2020.111344
48
WANG K X , SHI L R , WANG M Z , et al. Biomass hydroxyapatite-templated synthesis of 3D graphene[J]. Acta Physico-Chimica Sinica, 2019, 35, 1112- 1118.
doi: 10.3866/PKU.WHXB201805032
49
JIANG X F , LI R Q , HU M , et al. Zinc-tiered synthesis of 3D graphene for monolithic electrodes[J]. Advanced Materials, 2019, 31, 1901186.
doi: 10.1002/adma.201901186
50
KANG Y , JIANG Z H , MA T , et al. Hybrids of reduced graphene oxide and hexagonal boron nitride: lightweight absorbers with tunable and highly efficient microwave attenuation properties[J]. ACS Applied Materials & Interfaces, 2016, 8 (47): 32468- 32476.
51
BAI Y Q , ZHONG B , YU Y L , et al. Mass fabrication and superior microwave absorption property of multilayer graphene/hexagonal boron nitride nanoparticle hybrids[J]. npi 2D Materials and Applications, 2019, 3 (1): 1- 10.
doi: 10.1038/s41699-018-0083-1
52
FANG S , HUANG D Q , LV R T , et al. Three-dimensional reduced graphene oxide powder for efficient microwave absorption in the S-band (2-4 GHz)[J]. RSC Advances, 2017, 7 (41): 25773- 25779.
doi: 10.1039/C7RA03215C
53
AROOJ Y , ZHAO Y , HAN X , et al. Combined effect of graphene oxide and MWCNTs on microwave absorbing performance of epoxy composites[J]. Polymers for Advanced Technologies, 2015, 26 (6): 620- 625.
doi: 10.1002/pat.3496
54
WANG Y F , CHEN D L , YIN X , et al. Hybrid of MoS2 and reduced graphene oxide: a lightweight and broadband electromagnetic wave absorber[J]. ACS Applied Materials & Interfaces, 2015, 7 (47): 26226- 26234.
55
ZHANG D Q , JIA Y X , CHENG J Y , et al. High-performance microwave absorption materials based on MoS2-graphene isomorphic hetero-structures[J]. Journal of Alloys and Compounds, 2018, 758, 62- 71.
doi: 10.1016/j.jallcom.2018.05.130
56
SHAHZAD F , ALHABEB M , HATTER C B , et al. Electromagnetic interference shielding with 2D transition metal carbides(MXenes)[J]. Science, 2016, 353 (6304): 1137- 1140.
doi: 10.1126/science.aag2421
57
LI X L , YIN X W , LIANG S , et al. 2D carbide MXene Ti2CTx as a novel high-performance electromagnetic interference shielding material[J]. Carbon, 2019, 146, 210- 217.
doi: 10.1016/j.carbon.2019.02.003
58
CAO M S , CAI Y Z , HE P , et al. 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding[J]. Chemical Engineering Journal, 2019, 359, 1265- 1302.
doi: 10.1016/j.cej.2018.11.051
59
SONG Q , YE F , KONG L , et al. Graphene and MXene nanomaterials: toward high-performance electromagnetic wave absorption in gigahertz band range[J]. Advanced Functional Materials, 2020, 30 (31): 2000475.
doi: 10.1002/adfm.202000475
60
LUO H , FENG W L , LIAO C W , et al. Peaked dielectric responses in Ti3C2 MXene nanosheets enabled composites with efficient microwave absorption[J]. Journal of Applied Physics, 2018, 123 (10): 104103.
doi: 10.1063/1.5008323
61
WANG L B , LIU H , LV X L , et al. Facile synthesis 3D porous MXene Ti3C2Tx@RGO composite aerogel with excellent dielectric loss and electromagnetic wave absorption[J]. Journal of Alloys and Compounds, 2020, 828, 154251.
doi: 10.1016/j.jallcom.2020.154251
62
LI Y , MENG F B , MEI Y , et al. Electrospun generation of Ti3C2Tx MXene@graphene oxide hybrid aerogel microspheres for tunable high-performance microwave absorption[J]. Chemical Engineering Journal, 2020, 391, 123512.
doi: 10.1016/j.cej.2019.123512
63
MA J , LIU W , QUAN B , et al. Incorporation of the polarization point on the graphene aerogel to achieve strong dielectric loss behavior[J]. Journal of Colloid and Interface Science, 2017, 504, 479- 484.
doi: 10.1016/j.jcis.2017.06.004
64
HAN M K , YIN X W , LI X L , et al. Laminated and Two-dimensional carbon-supported microwave absorbers derived from MXenes[J]. ACS Applied Materials & Interfaces, 2017, 9 (23): 20038- 20045.
65
WANG L , DING X , HUANG Y , et al. Ternary nanocomposites of graphene@SiO2@NiO nanoflowers: synthesis and their microwave electromagnetic properties[J]. Micro & Nano Letters, 2013, 8 (8): 391- 394.
66
YANG S , GUO X , CHEN P , et al. Two-step synthesis of self-assembled 3D graphene/shuttle-shaped zinc oxide (ZnO) nanocomposites for high-performance microwave absorption[J]. Journal of Alloys and Compounds, 2019, 797, 1310- 1319.
doi: 10.1016/j.jallcom.2019.05.190
67
FENG W , WANG Y , CHEN J , et al. Reduced graphene oxide decorated with in-situ growing ZnO nanocrystals: facile synthesis and enhanced microwave absorption properties[J]. Carbon, 2016, 108, 52- 60.
doi: 10.1016/j.carbon.2016.06.084
WANG X X , CAO M S . Featured research report: research progress of low-dimensional electromagnetic functional materials[J]. Surface Technology, 2020, 49 (2): 18- 28.
69
ZHUO R F , QIAO L , FENG H T , et al. Microwave absorption properties and the isotropic antenna mechanism of ZnO nanotrees[J]. Journal of Applied Physics, 2008, 104 (9): 094101.
doi: 10.1063/1.2973198
70
CHEN Y J , CAO M S , WANG T H , et al. Microwave absorption properties of the ZnO nanowire-polyester composites[J]. Applied Physics Letters, 2004, 84 (17): 3367- 3369.
doi: 10.1063/1.1702134
71
ZHANG L , ZHANG X H , ZHANG G J , et al. Investigation on the optimization, design and microwave absorption properties of reduced graphene oxide/tetrapod-like ZnO composites[J]. RSC Advances, 2015, 5 (14): 10197- 10203.
doi: 10.1039/C4RA12591F
72
FENG W , WANG Y M , CHEN J C , et al. Microwave absorbing property optimization of starlike ZnO/reduced graphene oxide doped by ZnO nanocrystal composites[J]. Physical Chemistry Chemical Physics, 2017, 19 (22): 14596- 14605.
doi: 10.1039/C7CP02039B
73
JIANG Y , CHEN Y , LIU Y J , et al. Lightweight spongy bone-like graphene@SiC aerogel composites for high-performance microwave absorption[J]. Chemical Engineering Journal, 2018, 337, 522- 531.
doi: 10.1016/j.cej.2017.12.131
74
ZHANG X J , WANG G S , WEI Y Z , et al. Polymer-composite with high dielectric constant and enhanced absorption properties based on graphene-CuS nanocomposites and polyvinylidene fluoride[J]. Journal of Materials Chemistry: A, 2013, 1 (39): 12115.
doi: 10.1039/c3ta12451g
75
RAN J , GUO M J , ZHONG L , et al. In situ growth of BaTiO3 nanotube on the surface of reduced graphene oxide: a lightweight electromagnetic absorber[J]. Journal of Alloys and Compounds, 2019, 773, 423- 431.
doi: 10.1016/j.jallcom.2018.09.142
76
WANG Z Q , ZHAO P F , HE D N , et al. Cerium oxide immobilized reduced graphene oxide hybrids with excellent microwave absorbing performance[J]. Physical Chemistry Chemical Physics, 2018, 20, 14155- 14165.
doi: 10.1039/C8CP00160J
77
TANG H X , ZHOU Z , SODANO H A . Relationship between Ba TiO3 nanowire aspect ratio and the dielectric permittivity of nanocomposites[J]. ACS Applied Materials & Interfaces, 2014, 6 (8): 5450- 5455.
78
SHE W , BI H , WEN Z W , et al. Tunable microwave absorption frequency by aspect ratio of hollow polydopamine@α-MnO2 microspindles studied by electron holography[J]. ACS Applied Materials & Interfaces, 2016, 8 (15): 9782- 9789.
79
ZHANG D D , ZHAO D L , ZHANG J M , et al. Microwave absorbing property and complex permittivity and permeability of graphene-CdS nanocomposite[J]. Journal of Alloys and Compounds, 2014, 589, 378- 383.
doi: 10.1016/j.jallcom.2013.11.195
80
CHEN J P , JIA H , LIU Z , et al. Construction of C-Si heterojunction interface in SiC whisker/reduced graphene oxide aerogels for improving microwave absorption[J]. Carbon, 2020, 164, 59- 68.
doi: 10.1016/j.carbon.2020.03.049