Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (11): 1-13    DOI: 10.11868/j.issn.1001-4381.2020.000935
  综述 本期目录 | 过刊浏览 | 高级检索 |
石墨烯导热材料研究进展
李岳1,2, 李炯利1,2,3, 朱巧思1,2, 梁佳丰1,2, 郭建强1,2,3, 王旭东1,2,3
1. 中国航发北京航空材料研究院, 北京 100095;
2. 北京石墨烯技术研究院有限公司, 北京 100094;
3. 北京市石墨烯及应用工程技术研究中心, 北京 100095
Research progress in graphene based thermal conductivity materials
LI Yue1,2, LI Jiong-li1,2,3, ZHU Qiao-si1,2, LIANG Jia-feng1,2, GUO Jian-qiang1,2,3, WANG Xu-dong1,2,3
1. AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China;
2. Beijing Institute of Graphene Technology, Beijing 100094, China;
3. Beijing Engineering Research Centre of Graphene Application, Beijing 100095, China
全文: PDF(7901 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 石墨烯作为一种具有超高热导率的二维纳米材料,在导热领域有着广阔的应用前景。本文综述了石墨烯导热材料的研究进展,介绍了石墨烯本征热导率及其层数、缺陷、边缘情况等对热导率的影响,分析了石墨烯纤维的研究现状及存在的问题,讨论了各类石墨烯导热薄膜(纯石墨烯薄膜/石墨烯杂化薄膜/石墨烯聚合物复合薄膜)热导率的影响因素,归纳总结了各类三维石墨烯导热材料(无规分散石墨烯三维复合材料和特定结构石墨烯三维复合材料)的结构、性能与研究现状,最后指出了目前几种导热材料研究存在的问题并展望了石墨烯未来导热领域的发展方向,尤其是在LED照明、智能手机等高功率、高度集成系统中,石墨烯导热材料有着良好的发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李岳
李炯利
朱巧思
梁佳丰
郭建强
王旭东
关键词 石墨烯热导率石墨烯纤维石墨烯薄膜三维石墨烯石墨烯基复合材料    
Abstract:As a two-dimensional(2D) building block of new materials, graphene has received widespread attention due to its exceptional thermal properties. The thermal properties and recent advances on graphene-based material were reviewed. The intrinsic thermal conductivity of graphene and the effect of layers, defects and edge were briefly introduced. The resent research progress in graphene fiber as thermal conductivity material was analyzed and discussed. A variety of graphene films (graphene film, graphene hybrid film, graphene/polymer composite film) were grouped by category and the influencing factors of the thermal conductivity were reviewed. The structure, thermal conductivity property and current researches of 3D graphene (graphene with random orientation in the polymer matrix, graphene with specific orientation in the polymer matrix) were summarized. Finally, the challenges and prospects of graphene-based materials were also pointed out, especially inhigh power, highly integrated systems such as LED lighting and smart phones, graphene based thermal conductivity materials have a good development prospect.
Key wordsgraphene    thermalconductivity    graphene fiber    graphene film    3D graphene    graphene based composite
收稿日期: 2020-10-09      出版日期: 2021-11-12
中图分类号:  TB34  
基金资助:国家自然科学基金项目(51802296);北京市科技计划资助项目(Z191100005619006)
通讯作者: 郭建强(1980-),男,工程师,博士,研究方向为石墨烯聚合物复合材料,联系地址:北京市81信箱2分箱(100095),E-mail:guojianqiang2010@163.com     E-mail: guojianqiang2010@163.com
引用本文:   
李岳, 李炯利, 朱巧思, 梁佳丰, 郭建强, 王旭东. 石墨烯导热材料研究进展[J]. 材料工程, 2021, 49(11): 1-13.
LI Yue, LI Jiong-li, ZHU Qiao-si, LIANG Jia-feng, GUO Jian-qiang, WANG Xu-dong. Research progress in graphene based thermal conductivity materials. Journal of Materials Engineering, 2021, 49(11): 1-13.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000935      或      http://jme.biam.ac.cn/CN/Y2021/V49/I11/1
[1] YU A P, RAMESH P, SUN X B, et al. Enhanced thermal conductivity in a hybrid graphite nanoplatelet-carbon nanotube filler for epoxy composites[J]. Advanced Materials, 2008, 20(24):4740-4744.
[2] KIM H S, JANG J U, LEE H, et al. Thermal management in polymer composites:a review of physical and structural parameters[J]. Advanced Engineering Materials, 2018, 20(10):1800204.
[3] ZHANG Y, TAN Y W, STORMER H L, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene[J]. Nature, 2005, 438(7065):201-204.
[4] NAIR R P, BLAKE P, GRIGORENKO A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881):1308.
[5] HUANG X Y, IIZUKA T, JIANG P K, et al. Role of interface on the thermal conductivity of highly filled dielectric epoxy/AlN composites[J]. The Journal of Physical Chemistry C, 2012, 116(25):13629-13639.
[6] 段淼,李四中,陈国华. 机械法制备石墨烯的研究进展[J]. 材料工程, 2013(12):85-91. DUAN M,LI S Z,CHEN G H.Research progress in preparation of graphene by mechanical exfoliation[J].Journal of Materials Engineering,2013(12),85-91.
[7] 钱伟,何大平,李宝文. 石墨烯基电磁屏蔽材料的研究进展[J]. 材料工程, 2020, 48(7):14-23. QIAN W,HE D P,LI B W.Recent progress on graphene-based materials for electromagnetic interference shielding applications[J].Journal of Materials Engneering,2020,48(7):14-23.
[8] 白明洁,刘金龙,齐志娜,等. 石墨烯纳米流体研究进展[J]. 材料工程, 2020, 48(4):46-59. BAI M J,LIU J L,QI Z N,et al.Research progress in nanofluids with graphene addition[J].Journal of Materials Engineering,2020,48(4):46-49.
[9] BALANDIN A A, GHOSH S, BAO W Z, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3):902-907.
[10] CAI W, MOORE A L, ZHU Y, et al. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition[J]. Nano Letters, 2010, 10(5):1645-1651.
[11] XU X, PEREIRA L F, WANG Y, et al. Length-dependent thermal conductivity in suspended single-layer graphene[J]. Nature Communications, 2014, 5:3689.
[12] GHOSH S, BAO W, NIKA D L, et al. Dimensional crossover of thermal transport in few-layer graphene[J]. Nature Materials, 2010, 9(7):555-558.
[13] GHOSH S, CALIZO I, TEWELDEBRHAN D, et al. Extremely high thermal conductivity of graphene:prospects for thermal management applications in nanoelectronic circuits[J]. Applied Physics Letters, 2008, 92(15):151911.
[14] FUGALLO G, CEPELLOTTI A, PAULATTO L, et al. Thermal conductivity of graphene and graphite:collective excitations and mean free paths[J]. Nano Letters, 2014, 14(11):6109-6114.
[15] NAYANDEEP K M, ALEXIS R A. Thermal conductivity of graphene and graphene oxide nanoplatelets[J]. IEEE, 2012.
[16] MALEKPOUR H, RAMNANI P, SRINIVASAN S, et al. Thermal conductivity of graphene with defects induced by electron beam irradiation[J]. Nanoscale, 2016, 8(30):14608-14616.
[17] JUSTIN H, ALPER K, CEM S, et al. Control of thermal and electronic transport in defect-engineered graphene nanoribbons[J]. ACS Nano, 2011, 5(5):3779-3787.
[18] FLORIAN B, JANI K, ARKADY V K. Structural defects in graphene[J]. ACS Nano, 2011, 5(1):26-41.
[19] SEROV A Y, ONG Z Y, POP E. Effect of grain boundaries on thermal transport in graphene[J]. Applied Physics Letters, 2013, 102(3):033104.
[20] BARGI A, KIM S P, RUOFF R S, et al. Thermal transport across twin grain boundaries in polycrystalline graphene from nonequilibrium molecular dynamics simulations[J]. Nano Letters, 2011, 11(9):3917-3921.
[21] CAO A J, QU J M. Kapitza conductance of symmetric tilt grain boundaries in graphene[J]. Journal of Applied Physics, 2012, 111(5):053529.
[22] WEI D C, LIU Y Q, WANG Y. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties[J]. Nano Letters, 2009, 9:1752-1758.
[23] SENTURK A E, OKTEM A S, KONUKMAN A E S. Effects of the nitrogen doping configuration and site on the thermal conductivity of defective armchair graphene nanoribbons[J]. J Mol Model, 2017, 23(8):247.
[24] CHIEN S K, YANG Y T, CHEN C K. Influence of hydrogen functionalization on thermal conductivity of graphene:nonequilibrium molecular dynamics simulations[J]. Applied Physics Letters, 2011, 98(3):033107.
[25] CHIEN S K, YANG Y T, CHEN C K. Influence of chemisorption on the thermal conductivity of graphene nanoribbons[J]. Carbon, 2012, 50(2):421-428.
[26] 郭建强,李炯利,梁佳丰,等. 氧化石墨烯的化学还原方法与机理研究进展[J]. 材料工程, 2020, 48(7):24-35. GUO J Q,LI J L,LIANG J F,et al.Research progress in methods and mechanisms of chemical reduction graphene oxide[J].Journal of Materials Engineering,2020,48(7):24-35.
[27] POP E, VARSHNEY V, ROY A K. Thermal properties of graphene:fundamentals and applications[J]. MRS Bulletin, 2012, 37(12):1273-1281.
[28] EVANS W J, HU L, KEBLINSKI P. Thermal conductivity of graphene ribbons from equilibrium molecular dynamics:effect of ribbon width, edge roughness, and hydrogen termination[J]. Applied Physics Letters, 2010, 96(20):203112.
[29] SEOL J H, JO I, MOORE A L, et al. Two-dimensional phonon transport in supported graphene[J]. Science, 2010, 328(5975):213-216.
[30] JANG W, CHEN Z, BAO W, et al. Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite[J]. Nano Letters, 2010, 10(10):3909-3913.
[31] PETTES M T, JO I, YAO Z, et al. Influence of polymeric residue on the thermal conductivity of suspended bilayer graphene[J]. Nano Letters, 2011, 11(3):1195-1200.
[32] CHEN S, WU Q, MISHRA C, et al. Thermal conductivity of isotopically modified graphene[J]. Nature Materials, 2012, 11(3):203-207.
[33] XU Z, LIU Y J, ZHAO X L, et al. Ultrastiff and strong graphene fibers via full-scale synergetic defect engineering[J]. Advanced Materials, 2016, 28(30):6449-6456.
[34] XIN G Q, YAO T K, SUN H T, et al. Highly thermally conductive and mechanically strong graphene fibers[J]. Science, 2015, 349(6252):1083-1087.
[35] FANG B, CHANG D, XU Z, et al. A review on graphene fibers:expectations, advances, and prospects[J]. Advanced Materials, 2020, 32(5):e1902664.
[36] PARK H, LEE K H, KIM Y B, et al. Dynamic assembly of liquid crystalline graphene oxide gel fibers for ion transport[J]. Science Advances, 2018, 4:2104.
[37] XIN G, ZHU W, DENG Y, et al. Microfluidics-enabled orientation and microstructure control of macroscopic graphene fibres[J]. Nature Nanotechnology, 2019, 14(2):168-175.
[38] LI Z, LIU Z, SUN H Y, et al. Superstructured assembly of nanocarbons:fullerenes, nanotubes, and graphene[J]. Chemical Reviews, 2015, 115(15):7046-7117.
[39] XU W N, ZHAO Q, CHEN C T, et al. Ultrathin thermoresponsive self-folding 3D graphene[J]. Science Advances, 2017, 3:e1701084.
[40] PENG L, XU Z, LIU Z, et al. Ultrahigh thermal conductive yet superflexible graphene films[J]. Advanced Materials, 2017, 29(27):1700589.
[41] WANG N, SAMANI M K, LI H, et al. Tailoring the thermal and mechanical properties of graphene film by structural engineering[J]. Small, 2018, 14(29):1801346.
[42] ZOU R, LIU F, HU N, et al. Carbonized polydopamine nanoparticle reinforced graphene films with superior thermal conductivity[J]. Carbon, 2019, 149:173-180.
[43] WU X, LI H, CHENG K, et al. Modified graphene/polyimide composite films with strongly enhanced thermal conductivity[J]. Nanoscale, 2019, 11(17):8219-8225.
[44] WANG Y J, XIA S, LI H, et al. Unprecedentedly tough, folding-endurance, and multifunctional graphene-based artificial nacre with predesigned 3D nanofiber network as matrix[J]. Advanced Functional Materials, 2019, 29(38):1903876.
[45] FENG C P, CHEN L B, TIAN G L, et al. Multifunctional thermal management materials with excellent heat dissipation and generation capability for future electronics[J]. ACS Applied Materials & Interfaces, 2019, 11(20):18739-18745.
[46] RENTERIA J D, RAMIREZ S, MALEKPOUR H, et al. Strongly anisotropic thermal conductivity of free-standing reduced graphene oxide films annealed at high temperature[J]. Advanced Functional Materials, 2015, 25(29):4664-4672.
[47] CHEN S J, WANG Q L, ZHANG M M, et al. Scalable production of thick graphene film for next generation thermal management application[J]. Carbon, 2020, 167:270-277.
[48] LIN S F, JU S, ZHANG J W, et al. Ultrathin flexible graphene films with high thermal conductivity and excellent EMI shielding performance using large-sized graphene oxide flakes[J]. RSC Advances, 2019, 9(3):1419-1427.
[49] SHEN B, ZHAI W T, ZHENG W G. Ultrathin flexible graphene film:an excellent thermal conducting material with efficient EMI shielding[J]. Advanced Functional Materials, 2014, 24(28):4542-4548.
[50] WANG B, CUNNING B V, KIMN Y, et al. Ultrastiff, strong, and highly thermally conductive crystalline graphitic films with mixed stacking order[J]. Advanced Materials, 2019, 31(29):e1903039.
[51] ZENG Y Q, LI T, YAO Y G, et al. Thermally conductive reduced graphene oxide thin films for extreme temperature sensors[J]. Advanced Functional Materials, 2019, 22(22):1901388.
[52] GUO Y, DUN C C, XU J W, et al. Ultrathin, washable, and large-area graphene papers for personal thermal management[J]. Small, 2017, 13(44):1702645.
[53] VU M C, THI T N A, LIM J H, et al. Ultrathin thermally conductive yet electrically insulating exfoliated graphene fluoride film for high performance heat dissipation[J]. Carbon, 2020, 157:741-749.
[54] LUO F B, WU K, SHI J, et al. Green reduction of graphene oxide by polydopamine to a construct flexible film:superior flame retardancy and high thermal conductivity[J]. Journal of Materials Chemistry A, 2017, 5(35):18542-18550.
[55] WANG X W, WU P Y. Highly thermally conductive fluorinated graphene films with superior electrical insulation and mechanical flexibility[J]. ACS Applied Materials & Interfaces, 2019, 11(24):21946-21954.
[56] CAO R R, WANG Y Z, CHEN S, et al. Multiresponsive shape-stabilized hexadecyl acrylate-grafted graphene as a phase change material with enhanced thermal and electrical conductivities[J]. ACS Applied Materials & Interfaces, 2019, 11(9):8982-8991.
[57] MENG X, PAN H, ZHU C L, et al. Coupled chiral structure in graphene-based film for ultrahigh thermal conductivity in both in-plane and through-plane directions[J]. ACS Applied Materials & Interfaces, 2018, 10(26):22611-22622.
[58] SONG N, JIAO D J, DING P, et al. Anisotropic thermally conductive flexible films based on nanofibrillated cellulose and aligned graphene nanosheets[J]. Journal of Materials Chemistry C, 2016, 4(2):305-314.
[59] SONG N, JIAO D J, CUI S Q, et al. Highly anisotropic thermal conductivity of layer-by-layer assembled nanofibrillated cellulose/graphene nanosheets hybrid films for thermal management[J]. ACS Applied Materials & Interfaces, 2017, 9(3):2924-2932.
[60] SONG N, HOU X H, CHEN L, et al. A green plastic constructed from cellulose and functionalized graphene with high thermal conductivity[J]. ACS Applied Materials & Interfaces, 2017, 9(21):17914-17922.
[61] ROZADA R, PAREDES J I, VILLAR R, et al. Towards full repair of defects in reduced graphene oxide films by two-step graphitization[J]. Nano Research, 2013, 6(3):216-233.
[62] GUAN F L, GUI C X, ZHANG H B, et al. Enhanced thermal conductivity and satisfactory flame retardancy of epoxy/alumina composites by combination with graphene nanoplatelets and magnesium hydroxide[J].Composites Part B,2016,98:134-140.
[63] SONG S H, PARK K H, KIM B H, et al. Enhanced thermal conductivity of epoxy-graphene composites by using non-oxidized graphene flakes with non-covalent functionalization[J]. Advanced Materials, 2013, 25(5):732-737.
[64] ZONG P S, FU J F, CHEN L Y, et al. Effect of aminopropylisobutyl polyhedral oligomeric silsesquioxane functionalized graphene on the thermal conductivity and electrical insulation properties of epoxy composites[J]. RSC Advances, 2016, 6(13):10498-10506.
[65] DING P, SU S S, SONG N, et al. Highly thermal conductive composites with polyamide-6 covalently-grafted graphene by an in situ polymerization and thermal reduction process[J]. Carbon, 2014, 66:576-584.
[66] TANG Z H, KANG H, SHEN Z L, et al. Grafting of polyester onto graphene for electrically and thermally conductive composites[J]. Macromolecules, 2012, 45(8):3444-3451.
[67] OH H, KIM Y J, KIM J H. Co-curable poly(glycidyl methacrylate)-grafted graphene/epoxy composite for thermal conductivity enhancement[J]. Polymer, 2019, 183:121834.
[68] TENG C C, MA C C M, LU C H, et al. Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites[J]. Carbon, 2011, 49(15):5107-5116.
[69] WANG F Z, DRZAL L T, QIN Y, et al. Mechanical properties and thermal conductivity of graphene nanoplatelet/epoxy composites[J].Journal of Materials Science,2014,50(3):1082-1093.
[70] ZHU D H, QI Y, YU W, et al. Enhanced Thermal conductivity for graphene nanoplatelets/epoxy resin composites[J]. Journal of Thermal Science and Engineering Applications, 2018, 10(1):011011.
[71] KIM H S, BAE H S, YU J, et al. Thermal conductivity of polymer composites with the geometrical characteristics of graphene nanoplatelets[J]. Scientific Reports, 2016, 6:26825.
[72] KUMAR P, YU S, SHAHZAD F, et al. Ultrahigh electrically and thermally conductive self-aligned graphene/polymer composites using large-area reduced graphene oxides[J]. Carbon, 2016, 101:120-128.
[73] JAROSINSKI L, RYBAK A, GASKA K, et al. Enhanced thermal conductivity of graphene nanoplatelets epoxy composites[J]. Materials Science-Poland, 2017, 35(2):382-389.
[74] YU A P, RAMESH P, ITKIS M E, et al. Graphite nanoplatelet-epoxy composite thermal interface materials[J]. The Journal of Physical Chemistry C, 2007, 111:7565-7569.
[75] GUO Y Q, XU G J, YANG X T, et al. Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites with chemically modified graphene via in situ polymerization and electrospinning-hot press technology[J]. Journal of Materials Chemistry C, 2018, 6(12):3004-3015.
[76] CHO E C, HUANG J H, LI C P, et al. Graphene-based thermoplastic composites and their application for LED thermal management[J]. Carbon, 2016, 102:66-73.
[77] GUO Y Q, YANG X T, RUAN K P, et al. Reduced graphene oxide heterostructured silver nanoparticles significantly enhanced thermal conductivities in hot-pressed electrospun polyimide nanocomposites[J]. ACS Applied Materials & Interfaces, 2019, 11(28):25465-25473.
[78] QIAN R, YU J H, WU C, et al. Alumina-coated graphene sheet hybrids for electrically insulating polymer composites with high thermal conductivity[J]. RSC Advances, 2013, 3(38):17373-17379.
[79] CUI X, DING P, ZHUANG N, et al. Thermal conductive and mechanical properties of polymeric composites based on solution-exfoliated boron nitride and graphene nanosheets:a morphology-promoted synergistic effect[J]. ACS Appl Mater Interfaces, 2015, 7(34):19068-19075.
[80] WANG R, ZHUO D X, WENG Z X, et al. A novel nanosilica/graphene oxide hybrid and its flame retarding epoxy resin with simultaneously improved mechanical, thermal conductivity, and dielectric properties[J]. Journal of Materials Chemistry A, 2015, 3(18):9826-9836.
[81] YANG J, TANG L S, BAO R Y, et al. Hybrid network structure of boron nitride and graphene oxide in shape-stabilized composite phase change materials with enhanced thermal conductivity and light-to-electric energy conversion capability[J]. Solar Energy Materials and Solar Cells, 2018, 174:56-64.
[82] ZHANG W B, ZHANG Z X, YANG J H, et al. Largely enhanced thermal conductivity of poly(vinylidene fluoride)/carbon nanotube composites achieved by adding graphene oxide[J]. Carbon, 2015, 90:242-254.
[83] CHEN J J, CHEN X N, MENG F B, et al. Super-high thermal conductivity of polyamide-6/graphene-graphene oxide composites through in situ polymerization[J]. High Performance Polymers, 2016, 29(5):585-594.
[84] 陈宇,张代军,李军,等. 三维结构石墨烯气凝胶/环氧树脂复合材料的制备和电磁屏蔽性能研究[J]. 材料工程, 2021,49(5):82-88. CHEN Y,ZHANG D J,LI J,et al.Preparation and electromagnetic in terference shielding performance research of epoxy composites modified with three-dimensioned graphene aerogels[J].Jounrnal of Materials Engineering,2021,49(5):82-88.
[85] ALAM F E, DAI W, YANG M H, et al. In situ formation of a cellular graphene framework in thermoplastic composites leading to superior thermal conductivity[J]. Journal of Materials Chemistry A, 2017, 5(13):6164-6169.
[86] WU K, LEI C X, HUANG R, et al. Design and preparation of a unique segregated double network with excellent thermal conductive property[J]. ACS Applied Materials & Interfaces, 2017, 9(8):7637-7647.
[87] YANG J, LI X F, HAN S, et al. Air-dried, high-density graphene hybrid aerogels for phase change composites with exceptional thermal conductivity and shape stability[J]. Journal of Materials Chemistry A, 2016, 4(46):18067-18074.
[88] AN F, LI X F, MIN P, et al. Vertically aligned high-quality graphene foams for anisotropically conductive polymer composites with ultrahigh through-plane thermal conductivities[J]. ACS Appl Mater Interfaces, 2018, 10(20):17383-17392.
[89] FANG H M, GUO H C, HU Y R, et al. In-situ grown hollow Fe3O4 onto graphene foam nanocomposites with high EMI shielding effectiveness and thermal conductivity[J]. Composites Science and Technology, 2020, 188:107975.
[90] LIU J, LIU Y F, ZHANG H B, et al. Superelastic and multifunctional graphene-based aerogels by interfacial reinforcement with graphitized carbon at high temperatures[J]. Carbon, 2018, 132:95-103.
[91] ZHANG F, FENG Y Y, QIN M M, et al. Stress controllability in thermal and electrical conductivity of 3D elastic graphene-crosslinked carbon nanotube sponge/polyimide nanocomposite[J]. Advanced Functional Materials, 2019, 29(25):1901383.
[92] MIN P, LIU J, LI X F, et al. Thermally conductive phase change composites featuring anisotropic graphene aerogels for real-time and fast-charging solar-thermal energy conversion[J]. Advanced Functional Materials, 2018, 28(51):1805365.
[93] WU Z, XU C, MA C, et al. Synergistic effect of aligned graphene nanosheets in graphene foam for high-performance thermally conductive composites[J]. Advanced Materials, 2019, 31(19):1900199.
[94] LIAO H H, CHEN W H, LIU Y, et al. A phase change material encapsulated in a mechanically strong graphene aerogel with high thermal conductivity and excellent shape stability[J]. Composites Science and Technology, 2020, 189:108010.
[95] DAI W, YU J H, WANG Y, et al. Enhanced thermal conductivity for polyimide composites with a three-dimensional silicon carbide nanowire@graphene sheets filler[J]. Journal of Materials Chemistry A, 2015, 3(9):4884-4891.
[96] LIANG C B, QIU H, HAN Y Y, et al. Superior electromagnetic interference shielding 3D graphene nanoplatelets/reduced graphene oxide foam/epoxy nanocomposites with high thermal conductivity[J]. Journal of Materials Chemistry C, 2019, 7(9):2725-2733.
[97] LIU Z, CHEN Y, LI Y, et al. Graphene foam-embedded epoxy composites with significant thermal conductivity enhancement[J]. Nanoscale, 2019, 11(38):17600-17606.
[98] QIN M M, XU Y X, CAO R, et al. Efficiently controlling the 3D thermal conductivity of a polymer nanocomposite via a hyperelastic double-continuous network of graphene and sponge[J]. Advanced Functional Materials, 2018, 28(45):1805053.
[99] YANG J, QI G Q, LIU Y, et al. Hybrid graphene aerogels/phase change material composites:thermal conductivity, shape-stabilization and light-to-thermal energy storage[J]. Carbon, 2016, 100:693-702.
[100] YANG J, ZHANG E W, LI X F, et al. Cellulose/graphene aerogel supported phase change composites with high thermal conductivity and good shape stability for thermal energy storage[J]. Carbon, 2016, 98:50-57.
[101] ZHANG Y F, HAN D, ZHAO Y H, et al. High-performance thermal interface materials consisting of vertically aligned graphene film and polymer[J]. Carbon, 2016, 109:552-557.
[102] LI Q, GUO Y F, LI W W, et al. Ultrahigh thermal conductivity of assembled aligned multilayer graphene/epoxy composite[J]. Chemistry of Materials, 2014, 26(15):4459-4465.
[103] JUNG H, YU S, BAE N S, et al. High through-plane thermal conduction of graphene nanoflake filled polymer composites melt-processed in an L-shape kinked tube[J]. ACS Appl Mater Interfaces, 2015, 7(28):15256-15262.
[104] LI Y, WEI W, WANG Y, et al. Construction of highly aligned graphene-based aerogels and their epoxy composites towards high thermal conductivity[J]. Journal of Materials Chemistry C, 2019, 7(38):11783-11789.
[105] HAO H, WEN D, YAN Q W, et al. Graphene size-dependent modulation of graphene frameworks contributing to the superior thermal conductivity of epoxy composites[J]. Journal of Materials Chemistry A, 2018, 6(25):12091-12097.
[1] 吴乾鑫, 刘磊, 孙晋蒙, 李一帆, 刘宇航, 杜洪方, 艾伟, 杜祝祝, 王科. 磺酸基修饰石墨烯复合材料的储钠性能研究[J]. 材料工程, 2022, 50(4): 36-43.
[2] 杜宗波, 时双强, 陈宇滨, 褚海荣, 杨程. 介电型石墨烯吸波复合材料研究进展[J]. 材料工程, 2022, 50(4): 74-84.
[3] 侯小鹏, 曾浩, 杜邵文, 李娜, 朱怡雯, 傅小珂, 李秀涛. 基于工业化碳材料的锂氟化碳电池正极材料制备及性能[J]. 材料工程, 2022, 50(3): 107-114.
[4] 阚侃, 王珏, 付东, 郑明明, 张晓臣. 氮掺杂碳纤维包覆石墨烯纳米片的构建及电容特性[J]. 材料工程, 2022, 50(2): 94-102.
[5] 王牧, 曾夏茂, 苗霞, 魏浩光, 周仕明, 冯岸超. 三维石墨烯-吡咯气凝胶/环氧树脂复合材料的制备及其性能[J]. 材料工程, 2022, 50(1): 117-124.
[6] 刘龙, 梁森, 王得盼, 周越松, 郑长升. 硅烷偶联剂及氧化石墨烯二次改性对芳纶纤维界面性能的影响[J]. 材料工程, 2022, 50(1): 145-153.
[7] 李金磊, 邓凌峰, 张淑娴, 谭洁慧, 覃榕荣, 王壮. 化学镀制备纳米银-石墨烯复合材料及其电化学性能[J]. 材料工程, 2021, 49(8): 127-138.
[8] 李颖, 雷蕊, 徐文凯, 朱小雪, 黄艳凤. 磁性氧化石墨烯基17β-雌二醇分子印迹复合膜的制备与性能[J]. 材料工程, 2021, 49(6): 170-177.
[9] 陈宇, 张代军, 李军, 温嘉轩, 陈祥宝. 三维结构石墨烯气凝胶/环氧树脂复合材料的制备和电磁屏蔽性能[J]. 材料工程, 2021, 49(5): 82-88.
[10] 杜娟, 曹翔宇, 宋海鹏, 魏子明, 李香云, 杨涵清, 杨梓铭, 李伯阳, 李海龙. 氧化石墨烯在金属表面的应用及其机理研究进展[J]. 材料工程, 2021, 49(2): 32-41.
[11] 吴旭, 唐晓宁, 黄鑫威, 刘美丽, 周文华, 欧阳全胜. 液相制备石墨烯/硫复合材料及其在锂硫电池正极中的应用[J]. 材料工程, 2021, 49(2): 114-120.
[12] 陈燕宁, 吴量, 陈勇花, 程苓, 姚文辉, 潘复生. 镁合金表面氧化石墨烯复合涂层的研究现状[J]. 材料工程, 2021, 49(12): 1-13.
[13] 李天, 支丹丹, 郭子浩, 郭玮琳, 张美玲, 孟凡彬. 石墨烯基气凝胶微球的研究进展[J]. 材料工程, 2021, 49(11): 14-29.
[14] 周锋, 任向红, 强洪夫, 曾逸智, 樊苗苗. GO增强g-C3N4气凝胶的可见光响应及其光催化降解偏二甲肼废水[J]. 材料工程, 2021, 49(11): 171-178.
[15] 周璇, 郑云飞, 贾绮林, 张斐然. 新型二维层状纳米材料的抗菌研究进展[J]. 材料工程, 2021, 49(1): 55-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn