Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (6): 1-11    DOI: 10.11868/j.issn.1001-4381.2020.000938
  增材制造专栏 本期目录 | 过刊浏览 | 高级检索 |
纯铜/铜合金高反射材料粉末床激光熔融技术进展
朱勇强, 杨永强, 王迪(), 陈峰, 邓澄, 陈晓君
华南理工大学 机械与汽车工程学院, 广州 510641
Progress in laser powder bed fusion of pure copper/copper alloy highly reflective metal materials
Yongqiang ZHU, Yongqiang YANG, Di WANG(), Feng CHEN, Cheng DENG, Xiaojun CHEN
School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China
全文: PDF(21711 KB)   HTML ( 9 )  
输出: BibTeX | EndNote (RIS)      
摘要 

纯铜/铜合金具有优异的导热、导电性能, 是重要的工业材料。以粉末床激光熔融为代表的激光增材制造技术具有优良的设计自由度及成形精度, 是增材制造的主流发展方向。纯铜/铜合金的粉末床激光熔融与传统加工制造技术相比, 前者能够更好地发挥铜优异的性能, 在电子电气、汽车、航空航天等导热/导电高需求领域具有广阔的应用前景。本文综述了以纯铜/铜合金为代表的激光高反射材料的粉末床激光熔融的研究现状、面临的重要问题以及相应的解决对策分析。在此基础上, 结合本课题组在纯铜/铜合金粉末床激光熔融过程的经验, 指出运用蓝光、绿光等短波长激光器进行纯铜/铜合金等高反射材料的粉末床激光熔融是未来的研究热点与发展方向。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱勇强
杨永强
王迪
陈峰
邓澄
陈晓君
关键词 粉末床激光熔融高反射材料激光吸收率纯铜/铜合金    
Abstract

Pure copper/copper alloy has excellent thermal and electrical conductivity, which is an important industrial material. Laser powder bed fusion, which represents the laser additive manufacturing technology, has excellent design freedom and forming accuracy, and is the mainstream development direction of additive manufacturing. Compared with traditional processing and manufacturing technology, the laser powder bed fusion of pure copper/copper alloy can give better play to the excellent performance of copper, and has broad application prospects in the fields of high thermal conductivity/electrical conductivity such as electrical and electronic, automotive, aerospace and other fields. The current research status of laser powder bed fusion of laser high-reflective materials represented by pure copper/copper alloys, the important problems they face, and the analysis of corresponding solutions were reviewed in this paper. On this basis, combined with the team's experience in the laser powder bed fusion process of pure copper/copper alloy, it was pointed out that the use of blue, green and other short-wavelength lasers for the powder bed laser fusion of pure copper/copper alloy and other highly reflective materials is a future study hot spots and development directions.

Key wordslaser powder bed fusion    highly reflective material    laser absorption rate    pure copper/copper alloy
收稿日期: 2020-10-10      出版日期: 2022-06-20
中图分类号:  TN249  
  TG146.1+1  
基金资助:广东省重点领域研发计划项目(2020B090922002)
通讯作者: 王迪     E-mail: mewdlaser@scut.edu.cn
作者简介: 王迪(1986-),男,教授,博士,研究方向为激光加工、金属增材制造,联系地址:广东省广州市天河区华南理工大学10号楼(510641),E-mail: mewdlaser@scut.edu.cn
引用本文:   
朱勇强, 杨永强, 王迪, 陈峰, 邓澄, 陈晓君. 纯铜/铜合金高反射材料粉末床激光熔融技术进展[J]. 材料工程, 2022, 50(6): 1-11.
Yongqiang ZHU, Yongqiang YANG, Di WANG, Feng CHEN, Cheng DENG, Xiaojun CHEN. Progress in laser powder bed fusion of pure copper/copper alloy highly reflective metal materials. Journal of Materials Engineering, 2022, 50(6): 1-11.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000938      或      http://jme.biam.ac.cn/CN/Y2022/V50/I6/1
Material Yield strength/ MPa Tensile strength/MPa Relative density/% Thermal conductivity/(W·m-1·K-1) Electrical conductivity/(%IACS)
Cu-10Zn[21] 203.4 269.2 99.97 43.19
Cu-4Sn[22] 320 93.68
Cu-10Sn[23] 220 420 99.70
Cu-10Sn[24] 411.9 65.3
Cu-10Sn[25] 399 490
Cu-15Sn[26] 436 661 99.47
Cu-15Ni-8Sn[27] 470.8 593.3 7.48
Cu-2.4Ni-0.7Si[28] 187.83
Cu-Cr-Zr-Ti[29] 211 97.9
Cu-Cr-Zr[30] 244 321 99.2
Cu-Cr-Zr[31] 204 287 99.8 100
Cu-Cr[32] 377.3 468 99.98 98.31
Table 1  粉末床激光熔融的铜合金的性能
Fig.1  典型的粉末床激光熔融铜合金零部件
(a)复杂纯铜热交换零件[20];(b)带有冷却通道的电子外壳组件[31];(c)铜合金火箭零件[20];(d),(e)带随形冷却通道的铜合金模具[20]
Fig.2  LPBF制造纯铜散热器的实验[33]
(a)原理示意图;(b)具有不同复杂结构的铜散热器;(c)散热器的热成像
Fig.3  LPBF成形纯铜样品的微观组织结构[37]
(a)光学显微镜图; (b)扫描电子显微镜图
Sample Yield strength/ MPa Ultimate tensile strength/MPa Elongation/%
LPBF Cu part 185.8 242.2 8.9
C11000 69-365 221-455 4-55
Table 2  锻造纯铜C11000与LPBF纯铜样品的力学性能[37]
Fig.4  华南理工大学LPBF成形的典型铜合金零件
(a)Cu-6.5Sn-0.15P风轮零件[39]; (b)Cu-Cr-Zr合金圆棒; (c)Cu-10Sn喷嘴;(d)散热功能件;(e)戒指;(f)感应加热器
Reason Result
High laser reflectivity of pure copper/copper alloy Causing the laser absorption rate is reduced, the absorbed energy cannot effectively melt the material, and it is difficult to form a stable molten pool. Besides, the reflected laser will accelerate the damage of the optical instrument
Excellent thermal conductivity, heat transfer and heat dissipation performance of pure copper/copper alloy The heat of the molten pool will be quickly transferred out, resulting in local heat gradients, large heat-affected zones, residual stress and ultimately causing defects such as curling, delamination, cracking and deformation
High ductility of pure copper/copper alloy Reducing powder fluidity, and hindering powder deposition, removal and recovery
Table 3  粉末床激光熔融成形纯铜/铜合金难点[40-42]
Fig.5  LPBF成形铜合金晶格结构及其压缩实验[30]
(a)晶胞结构;(b)相应的晶格结构模型;(c)LPBF成形的晶格结构;(d)压缩过程中不同体积分数晶格结构的变形过程;(e)应力应变曲线
Fig.6  损坏的光学镜[45]
Fig.7  各种金属的激光吸收率[47]
Wavelength/nm Absorption rate of pure copper/%
1090(IR laser) 4.0
525(green laser) 54.5
457(blue laser) 65.2
Table 4  纯铜对蓝光、绿光、红外激光的吸收率[47]
Fig.8  使用TruDisk 1020绿色激光器进行铜焊接[53]
(a)导热焊接铜箔; (b)深熔焊; (1)顶部; (2)底部; (3)截面
1 堵永国, 龙雁, 张家春. 电接触材料的热导率[J]. 电工合金, 1996, (2): 15- 21.
1 DU Y G , LONG Y , ZHANG J C . Thermal conductivity of electrical contact materials[J]. Electrical Engineering Materials, 1996, (2): 15- 21.
2 SILBERNAGEL C , GARGALIS L , ASHCROFT I , et al. Electrical resistivity of pure copper processed by medium-powered laser powder bed fusion additive manufacturing for use in electromagnetic applications[J]. Additive Manufacturing, 2019, 29, 100831.
doi: 10.1016/j.addma.2019.100831
3 ROBINSON J , STANFORD M , ARJUNAN A . Stable formation of powder bed laser fused 99.9% silver[J]. Materials Today Communications, 2020, 24, 101195.
doi: 10.1016/j.mtcomm.2020.101195
4 SELVAMANI V , ZAREEI A , ELKASHIF A , et al. Hierarchical micro/mesoporous copper structure with enhanced antimicrobial property via laser surface texturing[J]. Advanced Materials Interfaces, 2020, 7 (7): 1901890.
doi: 10.1002/admi.201901890
5 MOSTAFAEI A , ELLIOTT A M , BARNES J E , et al. Binder jet 3D printing-process parameters, materials, properties, and challenges[J]. Progress in Materials Science, 2020, 119, 100707.
6 LEE J Y , AN J , CHUA C K . Fundamentals and applications of 3D printing for novel materials[J]. Applied Materials Today, 2017, 7, 120- 133.
doi: 10.1016/j.apmt.2017.02.004
7 SINGH R , GUPTA A , TRIPATHI O , et al. Powder bed fusion process in additive manufacturing: an overview[J]. Materials Today: Proceedings, 2020, 26 (2): 3058- 3070.
8 BUCHBINDER D , SCHLEIFENBAUM H , HEIDRICH S , et al. High power selective laser melting (HP LPBF) of aluminum parts[J]. Physics Procedia, 2011, 12, 271- 278.
doi: 10.1016/j.phpro.2011.03.035
9 OLIVEIRA J P , LALONDE A , MA J . Processing parameters in laser powder bed fusion metal additive manufacturing[J]. Materials & Design, 2020, 193, 108762.
10 杨永强, 吴世彪, 张越, 等. 光纤激光器在金属增材制造中的应用进展及展望[J]. 中国激光, 2020, 47 (5): 203- 215.
10 YANG Y Q , WU S B , ZHANG Y , et al. Application progress and prospect of fiber laser in metal additive manufacturing[J]. Chinese Journal of Lasers, 2020, 47 (5): 203- 215.
11 DEBROY T , WEI H L , ZUBACK J S , et al. Additive manufacturing of metallic components-process, structure and properties[J]. Progress in Materials Science, 2018, 92 (10): 112- 224.
12 ABOULKHAIR N T , SIMONELLI M , PARRY L , et al. 3D printing of aluminum alloys: additive manufacturing of aluminum alloys using selective laser melting[J]. Progress in Materials Science, 2019, 106, 100578.
doi: 10.1016/j.pmatsci.2019.100578
13 GUO N , LEU M C . Additive manufacturing: technology, applications and research needs[J]. Frontiers of Mechanical Engineering, 2013, 8 (3): 215- 243.
doi: 10.1007/s11465-013-0248-8
14 GIANNATSIS J , DEDOUSSIS V . Additive fabrication technologies applied to medicine and health care: a review[J]. The International Journal of Advanced Manufacturing Technology, 2009, 40 (1/2): 116- 127.
15 DAWOOD A , MARTI B M , SAURET-JACKSON V , et al. 3D printing in dentistry[J]. British Dental Journal, 2015, 219 (11): 521- 529.
doi: 10.1038/sj.bdj.2015.914
16 YAN X , CHANG C , DONG D , et al. Microstructure and mechanical properties of pure copper manufactured by selective laser melting[J]. Materials Science and Engineering: A, 2020, 789 (3): 139615.
17 SINGH G , PANDEY P M . Rapid manufacturing of copper components using 3D printing and ultrasonic assisted pressureless sintering: experimental investigations and process optimization[J]. Journal of Manufacturing Processes, 2019, 43, 253- 269.
doi: 10.1016/j.jmapro.2019.05.010
18 顾瑞楠, WONGKam Sing, 严明. 金、银、铜等典型高反射率材料的激光增材制造[J]. 中国科学: 物理学力学天文学, 2020, 50 (3): 44- 57.
18 GU R N , WONG K S , YAN M . Laser additive manufacturing of typical highly reflective materials-gold, silver and copper[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2020, 50 (3): 44- 57.
19 LEDFORD C , ROCK C , CARRIERE P , et al. Characteristics and processing of hydrogen-treated copper powders for EB-PBF additive manufacturing[J]. Applied Sciences, 2019, 9 (19): 3993.
doi: 10.3390/app9193993
20 SINGER F, DEISENROTH D C, HYMAS D M, et al. Additively manufactured copper components and composite structures for thermal management applications[C]//2017 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). Orlando, FL, USA: IEEE, 2017: 174-183.
21 ZHANG S , ZHU H , HU Z , et al. Selective laser melting of Cu10Zn alloy powder using high laser power[J]. Powder Technology, 2019, 342, 613- 620.
doi: 10.1016/j.powtec.2018.10.002
22 MAO Z , ZHANG D Z , WEI P , et al. Manufacturing feasibility and forming properties of Cu-4Sn in selective laser melting[J]. Materials, 2017, 10 (4): 333.
doi: 10.3390/ma10040333
23 SCUDINO S , UNTERDÖRFER C , PRASHANTH K G , et al. Additive manufacturing of Cu-10Sn bronze[J]. Materials Letters, 2015, 156, 202- 204.
doi: 10.1016/j.matlet.2015.05.076
24 ZENG C , ZHANG B , ETTEFAGH A H , et al. Mechanical, thermal, and corrosion properties of Cu-10Sn alloy prepared by laser-powder-bed-fusion additive manufacturing[J]. Additive Manufacturing, 2020, 35, 101411.
doi: 10.1016/j.addma.2020.101411
25 DENG C , KANG J , FENG T , et al. Study on the selective laser melting of CuSn10 powder[J]. Materials, 2018, 11 (4): 614.
doi: 10.3390/ma11040614
26 MAO Z , ZHANG D Z , JIANG J , et al. Processing optimisation, mechanical properties and microstructural evolution during selective laser melting of Cu-15Sn high-tin bronze[J]. Materials Science and Engineering: A, 2018, 721, 125- 134.
doi: 10.1016/j.msea.2018.02.051
27 WANG J , ZHOU X L , LI J , et al. Microstructures and properties of LPBF-manufactured Cu-15Ni-8Sn alloy[J]. Additive Manufacturing, 2020, 31, 100921.
doi: 10.1016/j.addma.2019.100921
28 ZHOU Y , ZENG X , YANG Z , et al. Effect of crystallographic textures on thermal anisotropy of selective laser melted Cu-2.4 Ni-0.7Si alloy[J]. Journal of Alloys and Compounds, 2018, 743, 258- 261.
doi: 10.1016/j.jallcom.2018.01.335
29 POPOVICH A , SUFⅡAROV V , POLOZOV I , et al. Microstructure and mechanical properties of additive manufactured copper alloy[J]. Materials Letters, 2016, 179, 38- 41.
doi: 10.1016/j.matlet.2016.05.064
30 MA Z , ZHANG D Z , LIU F , et al. Lattice structures of Cu-Cr-Zr copper alloy by selective laser melting: microstructures, mechanical properties and energy absorption[J]. Materials & Design, 2020, 187, 108406.
31 WALLIS C , BUCHMAYR B . Effect of heat treatments on microstructure and properties of CuCrZr produced by laser-powder bed fusion[J]. Materials Science and Engineering: A, 2019, 744, 215- 223.
doi: 10.1016/j.msea.2018.12.017
32 ZHANG S , ZHU H , ZHANG L , et al. Microstructure and properties of high strength and high conductivity Cu-Cr alloy components fabricated by high power selective laser melting[J]. Materials Letters, 2019, 237, 306- 309.
doi: 10.1016/j.matlet.2018.11.118
33 CONSTANTIN L , WU Z , LI N , et al. Laser 3D printing of complex copper structures[J]. Additive Manufacturing, 2020, 35, 101268.
doi: 10.1016/j.addma.2020.101268
34 EL-WARDANY T I , SHE Y , JAGDALE V N , et al. Challenges in three-dimensional printing of high-conductivity copper[J]. Journal of Electronic Packaging, 2018, 140 (2): 020907.
doi: 10.1115/1.4039974
35 CHENG C W , CHEN J K . Femtosecond laser sintering of copper nanoparticles[J]. Applied Physics A, 2016, 122 (4): 289.
doi: 10.1007/s00339-016-9814-3
36 KADEN L , MATTHÄUS G , ULLSPERGER T , et al. Selective laser melting of copper using ultrashort laser pulses[J]. Applied Physics A, 2017, 123 (9): 596.
doi: 10.1007/s00339-017-1189-6
37 HUANG J , YAN X , CHANG C , et al. Pure copper components fabricated by cold spray (CS) and selective laser melting (SLM) technology[J]. Surface and Coatings Technology, 2020, 395, 125936.
doi: 10.1016/j.surfcoat.2020.125936
38 WANG J B , ZHOU X L , LI J , et al. Microstructures and properties of SLM-manufactured Cu-15Ni-8Sn alloy[J]. Additive Manufacturing, 2020, 31, 100921.
doi: 10.1016/j.addma.2019.100921
39 白玉超, 杨永强, 王迪, 等. 锡青铜激光选区熔化工艺及其性能[J]. 稀有金属材料与工程, 2018, 47 (3): 1007- 1012.
39 BAI Y C , YANG Y Q , WANG D , et al. Selective laser melting of tin bronze alloy and its properties[J]. Rare Metal Materials and Engineering, 2018, 47 (3): 1007- 1012.
40 LU B. Additive manufacturing of copper-based alloy by laser powder bed fusion[D]. Florida, USA: University of Central Florida, 2020.
41 TRAN T Q , CHINNAPPAN A , LEE J K Y , et al. 3D printing of highly pure copper[J]. Metals, 2019, 9 (7): 756.
doi: 10.3390/met9070756
42 杨睿, 黎振华, 李淮阳, 等. 选区熔化3D打印铜的研究进展[J]. 稀有金属, 2021, 45 (11): 1376- 1384.
42 YANG R , LI Z H , LI H Y , et al. Research progress on selective melting 3D printing of copper[J]. Chinese Journal of Rare Metals, 2021, 45 (11): 1376- 1384.
43 UCHIDA S , KIMURA T , NAKAMOTO T , et al. Microstructures and electrical and mechanical properties of Cu-Cr alloys fabricated by selective laser melting[J]. Materials & Design, 2019, 175, 107815.
44 IKESHOJI T T , NAKAMURA K , YONEHARA M , et al. Selective laser melting of pure copper[J]. JOM, 2018, 70 (3): 396- 400.
doi: 10.1007/s11837-017-2695-x
45 JADHAV S D , DADBAKHSH S , GOOSSENS L , et al. Influence of selective laser melting process parameters on texture evolution in pure copper[J]. Journal of Materials Processing Technology, 2019, 270, 47- 58.
doi: 10.1016/j.jmatprotec.2019.02.022
46 COLOPI M , DEMIR A G , CAPRIO L , et al. Limits and solutions in processing pure Cu via selective laser melting using a high-power single-mode fiber laser[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104 (5/8): 2473- 2486.
47 PRASAD H S , BRUECKNER F , VOLPP J , et al. Laser metal deposition of copper on diverse metals using green laser sources[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107 (3): 1559- 1568.
48 JADHAV S D , FU D , DEPREZ M , et al. Highly conductive and strong CuSn0.3 alloy processed via laser powder bed fusion starting from a tin-coated copper powder[J]. Additive Manufacturing, 2020, 36, 101607.
doi: 10.1016/j.addma.2020.101607
49 郑诗颖. 采用绿色激光3D打印铜[J]. 现代材料动态, 2018, 3, 1.
49 ZHENG S Y . 3D printing copper with green laser[J]. Information of Advanced Materials, 2018, 3, 1.
50 BRITTEN S , KRAUSE V . Industrial blue diode laser breaks 1 kW barrier: new CW high power blue diode laser allows controlled heat conduction welding of copper[J]. Photonics Views, 2019, 16 (2): 30- 33.
doi: 10.1002/phvs.201900017
51 彭秀林, 杨昌盛, 邓华秋, 等. 蓝绿光单频激光器研究进展[J]. 激光与光电子学进展, 2020, 57 (7): 84- 97.
51 PENG X L , YANG C S , DENG H Q , et al. Research progress of blue-green single-frequency laser[J]. Laser & Optoelectronics Progress, 2020, 57 (7): 84- 97.
52 MASUNO S, TSUKAMOTO M, TOJO K, et al. Metal powder bed fusion additive manufacturing with 100 W blue diode laser[C]//International Congress on Applications of Lasers & Electro-Optics. Orlando, FL, USA: Laser Institute of America, 2017: P130.
53 KAISER E, DOLD E, KILLI A, et al. Application benefits of welding copper with a 1 kW, 515 nm continuous wave laser[C]//10th CIRP Conference on Photonic Technologies[LANE 2018]. Fürth, Germany: Bayerisches Laserzentrum Gmbh, 2018.
54 HAUBOLD M , GANSER A , EDER T , et al. Laser welding of copper using a high power disc laser at green wavelength[J]. Procedia CIRP, 2018, 74, 446- 449.
doi: 10.1016/j.procir.2018.08.161
55 CHUNG W S , OLOWINSKY A , GILLNER A . Process studies on copper laser beam welding over gap by using disc laser at green wavelength[J]. Journal of Advanced Joining Processes, 2020, 1, 100009.
doi: 10.1016/j.jajp.2020.100009
56 PELAPRAT J M , FINUF M , FRITZ R , et al. Seeing things in a new light: high power blue lasers for metal processing[J]. Laser Technik Journal, 2018, 15 (4): 39- 41.
doi: 10.1002/latj.201800028
57 严深平, 张安峰, 梁少端, 等. 激光增材制造技术常用金属材料激光吸收率测量[J]. 航空制造技术, 2017, (17): 97- 100.
57 YAN S P , ZHANG A F , LIANG S D , et al. Measurement of laser light absorptivity of commonly used metals in laser additive manufacturing technique[J]. Aeronautical Manufacturing Technology, 2017, (17): 97- 100.
58 SINICO M, COGO G, BENETTONI M, et al. Influence of powder particle size distribution on the printability of pure copper for selective laser melting[C]//Solid Freeform Fabrication 2019: Proceedings of the 30th Annual International Solid Freeform Fabrication Symposium-An Additive Manufacturing Conference. Texas, USA: Laboratory for Freeform Fabrication and University of Texas at Austin, 2019: 657-667.
59 SINGH G , PANDEY P M . Ultrasonic assisted pressureless sintering for rapid manufacturing of complex copper components[J]. Materials Letters, 2019, 236, 276- 280.
doi: 10.1016/j.matlet.2018.10.123
60 CONSTANTIN L , FAN L , MORTAIGNE B , et al. Laser sintering of cold-pressed Cu powder without binder use[J]. Materialia, 2018, 3, 178- 181.
doi: 10.1016/j.mtla.2018.08.021
[1] 张晟, 曾俊彦, 尚方方, 曾祥琼. 电子皮肤热点核心材料及其在生命健康领域中的应用研究进展[J]. 材料工程, 2022, 50(2): 23-37.
[2] 蔡颖军, 王刚, 檀财旺, 王秒, 赵禹. AgCu/泡沫Cu/AgCu复合钎料对ZrB2-SiC/Inconel 600合金钎焊接头组织与性能的影响[J]. 材料工程, 2021, 49(10): 72-81.
[3] 曾静, 武东政, 庄奕超, 赵金保. 镁电池正极材料性能提升策略的研究进展[J]. 材料工程, 2021, 49(2): 10-20.
[4] 张福明, 王静, 张鹏, 时志强. 有机电解液在钠离子电池中的研究进展[J]. 材料工程, 2021, 49(1): 11-22.
[5] 安飞, 孙冰, 李娜, 王世强, 王浩志. 三维石墨烯的制备及其在电阻型气体传感器领域的应用[J]. 材料工程, 2020, 48(12): 24-35.
[6] 李伟, 李争显, 刘林涛, 耿娟娟, 相远帆, 王凯凯. 多孔金属流场双极板研究进展[J]. 材料工程, 2020, 48(5): 31-40.
[7] 黄敏, 张功, 王栋, 李辉, 董加胜, 楼琅洪. 复杂镍基单晶铸件显微孔洞的形成机理[J]. 材料工程, 2020, 48(2): 123-132.
[8] 鹿旭飞, 林鑫, 马良, 曹阳, 黄卫东. 扫描路径对激光立体成形TC4构件热-力场的影响[J]. 材料工程, 2019, 47(12): 55-62.
[9] 倪洪江, 邢宇, 戴霄翔, 李军, 张代军, 杨士勇, 陈祥宝. 黏度可控化制备BPDA-PDA型聚酰亚胺及表征[J]. 材料工程, 2019, 47(11): 100-106.
[10] 张航, 路媛媛, 王涛, 鲁亚冉, 刘德健. 激光熔覆WC/H13-Inconel625复合材料的冲击韧性与磨损性能[J]. 材料工程, 2019, 47(4): 127-134.
[11] 叶想平, 李英雷, 翁继东, 蔡灵仓, 刘仓理. 颗粒增强金属基复合材料的强化机理研究现状[J]. 材料工程, 2018, 46(12): 28-37.
[12] 郭卫, 孔德军. 激光退火对1Cr5Mo钢焊接接头热拉伸性能的影响[J]. 材料工程, 2018, 46(2): 115-121.
[13] 任维彬, 董世运, 徐滨士, 任君华, 郑显柱, 童继凤. 连续/脉冲激光再制造FeCrNiCu合金成形层温度场研究[J]. 材料工程, 2017, 45(5): 1-6.
[14] 郭卫, 孔德军, 王文昌. 激光热处理对1Cr5Mo钢焊接接头组织结构的影响[J]. 材料工程, 2017, 45(1): 65-71.
[15] 任维彬, 董世运, 徐滨士, 王玉江, 闫世兴, 方金祥. FV520(B)钢叶片模拟件激光再制造工艺优化及成形修复[J]. 材料工程, 2015, 43(1): 6-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn