Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (9): 109-118    DOI: 10.11868/j.issn.1001-4381.2020.000947
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Grade 91耐热钢的硬度与持久强度、许用应力和运行/剩余寿命的相关性研究
彭志方1, 刘省1, 杨华春2, 杨超3, 王家庆4
1. 武汉大学 动力与机械学院, 武汉 430072;
2. 东方电气集团东方锅炉股份有限公司 材料研究所, 四川 自贡 643000;
3. 江苏方天电力技术有限公司 检测实验中心, 南京 211102;
4. 中国大唐集团科学技术研究院有限公司 华东电力试验研究院, 合肥 230088
Correlation of hardness with creep rupture strength, allowable stress and service/remaining life of Grade 91 heat-resistant steel
PENG Zhi-fang1, LIU Sheng1, YANG Hua-chun2, YANG Chao3, WANG Jia-qing4
1. School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China;
2. Materials Research Institute, Dongfang Boiler Group Co., Ltd., Dongfang Electric Corporation, Zigong 643000, Sichuan, China;
3. Testing Center, Jiangsu Frontier Electric Technology Co., Ltd., Nanjing 211102, China;
4. East China Electric Power Test and Research Institute, China Datang Group Science and Technology Research Institute Co., Ltd., Hefei 230088, China
全文: PDF(6671 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 利用不同硬度Grade 91钢试件的持久强度数据研究该钢硬度与持久强度和最大许用应力的相关性。结果表明,采用系列硬度试件所做确定温度和外力下的持久实验同时存在性能高估和低估现象,将这些数据综合在一起预测/外推钢的持久强度与实际值差距较大,利用由此确定的105 h持久强度计算得到的最大许用应力对应用产生不完全符合实际的影响。同时研究得到Grade 91钢在确定温度下满足最大许用应力的硬度下限的确定方法:对于硬度在201(205) HBW及其以上的Grade 91钢部件,在575(600)℃及其以下温度运行时可满足ASME BPVC 2019版规范对Type 1和Type 2型材料最大许用应力的要求;硬度在204HBW及其以上的Grade 91钢部件在575℃及其以下温度运行时可满足ASME BPVC 2017版规范对壁厚大于75 mm部件最大许用应力的要求。因此,在已有硬度范围规定(ASME BPVC 2017-2019对Grade 91钢:190~250HBW)的情况下,下调最大许用应力的ASME BPVC 2019新规范给现有硬度范围下限的实施带来一定困难,即满足该硬度下限要求却不能满足最大许用应力要求。为解决这一问题未来有必要上调硬度下限值。此外,研究了Grade 91钢运行/剩余寿命评估算法中利用短时实验数据外延105 h持久强度的函数优化。结果表明,现用算法采用幂函数拟合存在性能高估现象,若采用对数函数将不同硬度试件的持久数据分开拟合则可明显提高与实验数据的吻合性;在此基础上研究所得已知运行条件下部件厚度-硬度-运行/剩余寿命的关系将安全性评估的技术参数融为一体,可体现该方法的适用性、可靠性和直观性。以上研究结果可供相关标准修订和工业实际应用参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
彭志方
刘省
杨华春
杨超
王家庆
关键词 Grade 91钢硬度持久强度许用应力运行/剩余寿命    
Abstract:The creep rupture strength data of Grade 91 steel specimens with various hardness values were used to study the correlation of hardness with creep rupture strengths and maximum allowable stresses of the steel. The results show that creep rupture tests at a certain temperature and stress applied to the specimens with a series of hardness values receive the results in both overestimation and underestimation of rupture properties, leading to some unrealistic effect on 105h creep rupture strengths determined in this way. An approach was thus proposed to determine the lower limits of hardness satisfying the maximum allowable stresses at given temperatures. It was found with this method that a hardness level of ≥ 201(205) HBW of any of the Type 1- and Type 2-Grade 91 components running at a temperature of ≤ 575(600)℃ can satisfy the requirement of the maximum allowable stresses at the corresponding temperature specified by ASME BPVC 2019, and a hardness value of ≥ 204HBW is effective for the grade 91 components with a wall-thickness of ≥ 75 mm running at a temperature of ≤ 575℃ to satisfy the requirement of the maximum allowable stresses at the corresponding temperature specified by ASME BPVC 2017. Therefore, the most recently modified specification brings, to some extent, about difficulty in continuously practicing the application of the lower limit of hardness values (190-250HBW) specified by ASME BPVC 2017-2019 because it is not satisfied with the requirement on the maximum allowable stress at some given temperatures. Thus, there is a need to raise the lower limit of hardness values to settle this issue in the future. In addition, the optimization of the function fitting the creep-rupture data currently used in the estimation calculation of service/remaining lives was studied, showing that the tendency of overestimation of rupture properties can be reduced by replacing the current power function with the logarithm one. Quite good fitness of the practical data with the logarithm function curves is contributed to separating the whole data group with a series of hardness values into the higher and lower hardness level groups in calculation. On this basis, the relationship of thickness, hardness and service life of the components with variable dimensions and hardness values can be obtained by integrating the technical parameters of the safety assessment, which is able to reflect the applicability, reliability and intuitiveness of this combination. The above results can be used as reference for both the revisions of the relevant technical standards and the practical applications of industry.
Key wordsGrade 91 steel    hardness    creep rupture strength    allowable stress    service/remaining life
收稿日期: 2020-10-13      出版日期: 2021-09-17
中图分类号:  TG142.73  
通讯作者: 彭志方(1954-),男,教授,博士,研究方向为新一代耐热钢及高温合金,联系地址:湖北省武汉市武昌区东湖南路8号武汉大学动力与机械学院(430072),E-mail:zfpeng@whu.edu.cn     E-mail: zfpeng@whu.edu.cn
引用本文:   
彭志方, 刘省, 杨华春, 杨超, 王家庆. Grade 91耐热钢的硬度与持久强度、许用应力和运行/剩余寿命的相关性研究[J]. 材料工程, 2021, 49(9): 109-118.
PENG Zhi-fang, LIU Sheng, YANG Hua-chun, YANG Chao, WANG Jia-qing. Correlation of hardness with creep rupture strength, allowable stress and service/remaining life of Grade 91 heat-resistant steel. Journal of Materials Engineering, 2021, 49(9): 109-118.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000947      或      http://jme.biam.ac.cn/CN/Y2021/V49/I9/109
[1] BRETT S J, ALLEN D J, PACEY J. Failure of a modified 9Cr header endplate[C]// Proceedings of Conference on Case Histories in Failure Investigation. Milan: [s.n.], 1999: 873-884.
[2] KIMURA K, KUSHIMA H, ABE F. Improvement of creep life prediction of high Cr ferritic creep resistant steels by region partitioning method of stress vs time to rupture diagram[J]. Journal of the Society of Materials Science Japan, 2003, 52(1): 57-62.
[3] ARMAKI H G, MARUYAMA K, YOSHIZAWA M, et al. Prevention of the overestimation of long-term creep rupture life by multiregion analysis in strength enhanced high Cr ferritic steels[J]. Materials Science and Engineering: A, 2008, 490(1/2): 66-71.
[4] CHEN R P, ARMAKI H G, YOSHIMI K, et al. Premature creep rupture and overestimation of rupture life in modified 9Cr-1Mo steel[J]. Tetsu-To-Hagane, 2010, 96(9): 564-571.
[5] WILSHIRE B, SCHARNING P J. A new methodology for analysis of creep and creep fracture data for 9-12% chromium steels[J]. International Materials Reviews, 2008, 53(2): 91-104.
[6] BENDICK W, CIPOLLA L, GABREL J, et al. New ECCC assessment of creep rupture strength for steel grade X10CrMoVNb9-1 (Grade 91)[J]. International Journal of Pressure Vessels and Piping, 2010, 87(6): 304-309.
[7] KIMURA K, YAGUCHI M. Re-evaluation of long-term creep strength of base metal of ASME grade 91 type steel[C]//ASME 2016 Pressure Vessels and Piping Conference.Vancouver, British Columbia: ASME, 2016, 50435: V06BT06A014.
[8] KIMURA K, TAKAHASHI Y. Evaluation of long-term creep strength of ASME Grades 91, 92, and 122 type steels[C]//ASME 2012 Pressure Vessels and Piping Conference. Toronto, Ontario: ASME, 2012, 55058: 309-316.
[9] 彭志方, 党莹樱, 彭芳芳. 9%-12%Cr铁素体耐热钢持久性能评估方法的研究[J]. 金属学报, 2010, 46(4): 435-443. PENG Z F, DANG Y Y, PENG F F. Study on creep-rupture property assessment method for 9%-12%Cr ferritic heat-resistant steels[J]. Acta Metallurgica Sinica, 2010, 46(4): 435-443.
[10] PENG Z F, DANG Y Y, PENG F F. On creep-rupture property assessment for 9-12% Cr ferritic heat-resistant steels[C]//Advances in Materials Technology for Fossil Power Plants: Proceedings from the 6th International Conference.Materials Park, Ohio:ASM International, 2011: 705-714.
[11] PARKER J, SIEFERT J, SHINGLEDECKER J. The benefits of improved control of composition of creep-strength-enhanced ferritic steel Grade 91[R]. Palo Alto, CA: EPRI, 2014.
[12] PARKER J, SIEFERT J, SHINGLEDECKER J. An informed perspective on the use of hardness testing in an integrated approach to the life management of Grade 91 steel components[R]. Palo Alto, CA: EPRI, 2016.
[13] MASUYAMA F. Hardness model for creep-life assessment of high-strength martensitic steels[J]. Materials Science and Engineering:A, 2009, 510: 154-157.
[14] LIU S, YANG C, PENG Z F, et al. An approach to 570 ℃/105 h creep rupture strength prediction and safety assessment of Grade 91 components with reduced hardness after service exposures at 530-610 ℃[J]. International Journal of Pressure Vessels and Piping, 2020, 182: 104073.
[15] 刘成, 彭志方, 彭芳芳, 等. P92 钢 625 ℃持久实验过程中试件特征部位相参量的变化[J]. 材料工程, 2020, 48(3): 98-104. LIU C, PENG Z F, PENG F F, et al. Phase parameter changes of specific positions of P92 steel specimens during creep rupture test at 625 ℃[J]. Journal of Materials Engineering, 2020, 48(3): 98-104.
[16] ALLEN D J. A hardness normalized model of creep rupture for P91 steel[C]//Creep and Fracture in High Temperature Components-Design and Life Assessment Issues. Lancaster, PA: DEStech Publications, 2009: 659-668.
[17] MASUYAMA F, SHINGLEDECKER J P. Recent status of ASME code on creep strength enhanced ferritic steels[J]. Procedia Engineering, 2013, 55: 314-325.
[18] NIMS creep data sheet C43AJ [DB/OL]. (2014-03-31)[2020-10-03]. http://smds.nims.go.jp/MSDS/pdf/sheet/C43AJ.pdf.
[19] LARSON F R, MILLER J. A time-temperature relationship for rupture and creep stresses[J]. Transactions of the ASME, 1952, 74: 765-775.
[20] MASUYAMA F. Creep rupture life and design factors for high-strength ferritic steels[J]. International Journal of Pressure Vessels and Piping, 2007, 84(1/2): 53-61.
[1] 余晖, 任军超, 杨鑫, 郭舒龙, 余炜, 冯建航, 殷福星, 辛光善. Zn层添加AZ31/7075合金复合成形工艺及组织与性能研究[J]. 材料工程, 2022, 50(3): 157-165.
[2] 吕彦龙, 贺建超, 侯金保, 张博贤. 热处理对TiAl/Ti2AlNb放电等离子扩散焊接头微观组织与力学性能的影响[J]. 材料工程, 2021, 49(9): 87-93.
[3] 王龙, 胡德安, 邹鹏远, 熊震宇, 陈益平, 程东海. 交流磁场辅助铜-钢TIG填丝焊接头组织和力学性能[J]. 材料工程, 2021, 49(8): 104-110.
[4] 赵强, 祝文卉, 邵天巍, 帅焱林, 刘佳涛, 王冉, 张利, 梁晓波. Ti-22Al-25Nb合金惯性摩擦焊接头显微组织与力学性能[J]. 材料工程, 2020, 48(6): 140-147.
[5] 刘成, 彭志方, 彭芳芳, 陈方玉, 刘省. P92钢625℃持久实验过程中试件特征部位相参量的变化[J]. 材料工程, 2020, 48(3): 98-104.
[6] 陈林, 陈文静, 黄强, 熊中. 超声振动对EA4T钢激光熔覆质量和性能的影响[J]. 材料工程, 2019, 47(5): 79-85.
[7] 钟蛟, 彭志方, 陈方玉, 彭芳芳, 刘省, 石振斌. P92钢奥氏体化后的冷却方式对650℃时效组织及硬度稳定性的影响[J]. 材料工程, 2019, 47(1): 119-124.
[8] 郑欢欢, 刘鑫禹, 陈亚楠, 张从林, 吕鹏, 蔡杰, 关庆丰. 20钢强流脉冲电子束表面合金化的微观组织和性能[J]. 材料工程, 2018, 46(7): 127-135.
[9] 邓德伟, 牛婷婷, 田鑫, 刘海英, 孙奇, 张林. 水导轴承等离子堆焊Ni60合金组织及其耐腐蚀性能[J]. 材料工程, 2018, 46(5): 106-111.
[10] 龚玉兵, 王善林, 李宏祥, 柯黎明, 陈玉华, 马彬. 脉冲宽度对激光熔覆FeSiB涂层组织与硬度的影响[J]. 材料工程, 2018, 46(3): 74-80.
[11] 丁小龙, 胡振峰, 金国, 吕镖, 汪笑鹤. 电刷镀Ni-石墨烯复合镀层的组织结构及性能[J]. 材料工程, 2018, 46(11): 110-117.
[12] 杜际雨, 李方义, 鹿海洋, 商建通, 李振. 大气等离子喷涂NiCrBSi-Mo/Ni涂层中黏结层对NiCrBSi-Mo复合工作层性能的影响[J]. 材料工程, 2017, 45(9): 86-92.
[13] 方旭东, 王岩, 范光伟, 夏焱, 王志斌, 韩培德. 超超临界锅炉材料TP310HCbN(HR3C)持久及析出行为[J]. 材料工程, 2017, 45(6): 112-117.
[14] 韩素琦, 刘胜胆, 李承波, 雷越, 邓运来, 张新明. 淬火速率对Al-Zn-Mg-Cu-Cr合金挤压棒材组织及硬度的影响[J]. 材料工程, 2017, 45(4): 9-14.
[15] 王恩青, 岳建岭, 李淼磊, 李栋, 黄峰. Si含量对VAlSiN涂层微结构、力学性能和摩擦磨损性能的影响[J]. 材料工程, 2017, 45(4): 70-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn