Research progress in high-entropy alloys used in brazing and surface engineering fields
Hong LI1,*(), Yi HAN1, Jian CAO2, Bober MARIUSZ3, Senkara JACEK3
1 Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China 2 State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China 3 Faculty of Production Engineering, Warsaw University of Technology, Warsaw 02-524, Poland
With the improvement of alloy manufacturing level and the complexity of performance requirements, high-entropy alloys (HEAs) have gradually attracted great attention.At present, the research in the field of material processing mainly focuses on brazing and surface engineering.In the field of brazing, HEAs can be used as filler material for brazing at high temperature and low temperature, the empirical parameters related to high entropy were summarized. The application of the simulation and calculation methods such as first-principle method and calculation of phase diagram were described in the field of HEAs design for filler metals development. The latest research progress of HEAs fillers for brazing of nickel-based superalloys and dissimilar ceramics-metals, as well as low temperature packaging was introduced. The influence of welding process parameters on microstructure and properties of HEAs brazing joints was also analysed.In the field of surface engineering, the application direction and preparation methods of HEAs in film/coating were discussed. The research progress in high-temperature protective coating, hard protective layer and other application directions was summarized. At the same time, the problems existing in the research and application of HEAs in the fields of brazing and surface engineering were summarized. The future trends were put forward in order to decrease the melting temperature of HEAs filler, improve high temperature mechanical properties of welds, and develop the eutectic HEAs filler/coating.
李红, 韩祎, 曹健, MARIUSZBober, JACEKSenkara. 高熵合金在钎焊和表面工程领域的应用研究进展[J]. 材料工程, 2021, 49(8): 1-10.
Hong LI, Yi HAN, Jian CAO, Bober MARIUSZ, Senkara JACEK. Research progress in high-entropy alloys used in brazing and surface engineering fields. Journal of Materials Engineering, 2021, 49(8): 1-10.
YEH J W , CHEN S K , LIN S J , et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6 (5): 299- 303.
doi: 10.1002/adem.200300567
2
GAO M C , YEH J W , LIAW P K , et al. High-entropy alloys[M]. Cham, Switzerland: Springer International Publishing, 2016: 15.
3
ZHANG W , LIAW P K , ZHANG Y . Science and technology in high-entropy alloys[J]. Science China Materials, 2018, 61 (1): 2- 22.
doi: 10.1007/s40843-017-9195-8
4
CANTOR B , CHANG I T H , KNIGHT P , et al. Microstructural development in equiatomic multicomponent alloys[J]. Materials Science and Engineering: A, 2004, 375/377, 213- 218.
doi: 10.1016/j.msea.2003.10.257
5
WU W , NI S , LIU Y , et al. Effects of cold rolling and subsequent annealing on the microstructure of a HfNbTaTiZr high-entropy alloy[J]. Journal of Materials Research, 2016, 31 (24): 3815- 3823.
doi: 10.1557/jmr.2016.445
6
LU Y , DONG Y , GUO S , et al. A promising new class of high-temperature alloys: eutectic high-entropy alloys[J]. Scientific Reports, 2014, 4 (1): 1- 5.
7
HE J Y , WANG H , HUANG H L , et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties[J]. Acta Materialia, 2016, 102, 187- 196.
doi: 10.1016/j.actamat.2015.08.076
8
DENG Y , TASAN C C , PRADEEP K G , et al. Design of a twinning-induced plasticity high entropy alloy[J]. Acta Materialia, 2015, 94, 124- 133.
doi: 10.1016/j.actamat.2015.04.014
9
SENKOV O N , SCOTT J M , SENKOVA S V , et al. Microstructure and elevated temperature properties of a refractory TaNb-HfZrTi alloy[J]. Journal of Materials Science, 2012, 47 (9): 4062- 4074.
doi: 10.1007/s10853-012-6260-2
10
CHEN J , NIU P , LIU Y , et al. Effect of Zr content on microstructure and mechanical properties of AlCoCrFeNi high entropy alloy[J]. Materials & Design, 2016, 94, 39- 44.
11
CHUANG M , TSAI M , WANG W , et al. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys[J]. Acta Materialia, 2011, 59 (16): 6308- 6317.
doi: 10.1016/j.actamat.2011.06.041
12
FENG X , ZHANG J , XIA Z , et al. Stable nanocrystalline NbMoTaW high entropy alloy thin films with excellent mechanical and electrical properties[J]. Materials Letters, 2018, 210, 84- 87.
doi: 10.1016/j.matlet.2017.08.129
13
MISHRA R K , SHAHI R R . Phase evolution and magnetic characteristics of TiFeNiCr and TiFeNiCrM (M=Mn, Co) high entropy alloys[J]. Journal of Magnetism and Magnetic Materials, 2017, 442, 218- 223.
doi: 10.1016/j.jmmm.2017.06.124
14
KUMAR N , FUSCO M , KOMARASAMY M , et al. Understanding effect of 3.5 wt.% NaCl on the corrosion of Al0.1CoCrFeNi high-entropy alloy[J]. Journal of Nuclear Materials, 2017, 495, 154- 163.
doi: 10.1016/j.jnucmat.2017.08.015
15
ZHANG Y , ZUO T T , TANG Z , et al. Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science, 2014, 61, 1- 93.
doi: 10.1016/j.pmatsci.2013.10.001
16
DING Q , ZHANG Y , CHEN X , et al. Tuning element distribution, structure and properties by composition in high-entropy alloys[J]. Nature, 2019, 574 (7777): 223- 227.
doi: 10.1038/s41586-019-1617-1
17
LU Y , GAO X , JIANG L , et al. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range[J]. Acta Materialia, 2017, 124, 143- 150.
doi: 10.1016/j.actamat.2016.11.016
18
LU Y , DONG Y , JIANG H , et al. Promising properties and future trend of eutectic high entropy alloys[J]. Scripta Materialia, 2020, 187, 202- 209.
doi: 10.1016/j.scriptamat.2020.06.022
19
ZHANG L X , SHI J M , LI H W , et al. Interfacial microstructure and mechanical properties of ZrB2-SiC-C ceramic and GH99 superalloy joints brazed with a Ti-modified FeCoNiCrCu high-entropy alloy[J]. Materials & Design, 2016, 97, 230- 238.
20
MA G F , YE H , ZHANG H L , et al. Wettability of molten Sn on AlCoCrCuxFeNi high-entropy alloy[J]. Materials Chemistry and Physics, 2017, 199, 1- 6.
doi: 10.1016/j.matchemphys.2017.06.036
21
YANG T , ZHAO Y L , TONG Y , et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys[J]. Science, 2018, 362 (6417): 933- 937.
doi: 10.1126/science.aas8815
YANG M , LIU X J , WU Y , et al. Research progress on high-entropy bulk metallic glasses[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2020, 50 (6): 067003.
LI H W. Technology and mechanism study on brazing ZSC composite to GH99 nickel-base superalloy[D]. Harbin: Harbin Institute of Technology, 2013.
26
PU L, HE Q, YANG Y, et al. The microstructure and mechanical property of the high entropy alloy as a low temperature solder[C]//2019 IEEE 69th Electronic Components and Technology Conference (ECTC). Los Veags, US: ECTC, 2019: 1716-1721.
27
LEI Z , WU Y , HE J , et al. Snoek-type damping performance in strong and ductile high-entropy alloys[J]. Science Advances, 2020, 6 (25): eaba7802.
doi: 10.1126/sciadv.aba7802
28
LEI Z , LIU X , WU Y , et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes[J]. Nature, 2018, 563 (7732): 546- 550.
doi: 10.1038/s41586-018-0685-y
29
TILLMANN W , ULITZKA T , WOJARSKI L , et al. Development of high entropy alloys for brazing applications[J]. Welding in the World, 2020, 64 (1): 201- 208.
doi: 10.1007/s40194-019-00824-y
30
CHENG K , LAI C , LIN S , et al. Structural and mechanical properties of multi-element (AlCrMoTaTiZr)Nx coatings by reactive magnetron sputtering[J]. Thin Solid Films, 2011, 519 (10): 3185- 3190.
doi: 10.1016/j.tsf.2010.11.034
31
ZHANG H , PAN Y , HE Y . Synthesis and characterization of FeCoNiCrCu high-entropy alloy coating by laser cladding[J]. Materials in Engineering, 2011, 32 (4): 1910- 1915.
32
WAY M , WILLINGHAM J , GOODALL R . Brazing filler metals[J]. International Materials Reviews, 2020, 65 (5): 257- 285.
doi: 10.1080/09506608.2019.1613311
33
OWEN L R , PICKERING E J , PLAYFORD H Y , et al. An assessment of the lattice strain in the CrMnFeCoNi high-entropy alloy[J]. Acta Materialia, 2017, 122, 11- 18.
doi: 10.1016/j.actamat.2016.09.032
LI H , WOLFGANG T , LI Z X , et al. Technical development and application of high-quality and high-reliability filler metal[J]. Transactions of the China Welding Institution, 2014, 35 (4): 108- 112.
35
GUO L , GU J , GONG X , et al. CALPHAD aided design of high entropy alloy to achieve high strength via precipitate strengthening[J]. Science China Materials, 2020, 63 (2): 288- 299.
doi: 10.1007/s40843-019-1170-7
36
LIANG Y , WANG L , WEN Y , et al. High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys[J]. Nature Communications, 2018, 9 (1): 4063.
doi: 10.1038/s41467-018-06600-8
37
MENOU E , TANCRET F , TODA-CARABALLO I , et al. Computational design of light and strong high entropy alloys (HEA): obtainment of an extremely high specific solid solution hardening[J]. Scripta Materialia, 2018, 156, 120- 123.
doi: 10.1016/j.scriptamat.2018.07.024
38
SHUKLA S , WANG T , FRANK M , et al. Friction stir gradient alloying: a novel solid-state high throughput screening technique for high entropy alloys[J]. Materials Today Communications, 2020, 23, 100869.
doi: 10.1016/j.mtcomm.2019.100869
39
ZHANG Y , ZHOU Y J , LIN J P , et al. Solid-solution phase formation rules for multi-component alloys[J]. Advanced Engineering Materials, 2008, 10 (6): 534- 538.
doi: 10.1002/adem.200700240
40
WANG Z , HUANG Y , YANG Y , et al. Atomic-size effect and solid solubility of multicomponent alloys[J]. Scripta Materialia, 2015, 94, 28- 31.
doi: 10.1016/j.scriptamat.2014.09.010
41
YANG X , ZHANG Y . Prediction of high-entropy stabilized solid-solution in multi-component alloys[J]. Materials Chemistry and Physics, 2012, 132 (2/3): 233- 238.
42
GUO S , HU Q , NG C , et al. More than entropy in high-entropy alloys: forming solid solutions or amorphous phase[J]. Intermetallics, 2013, 41, 96- 103.
doi: 10.1016/j.intermet.2013.05.002
43
GUO S . Phase selection rules for cast high entropy alloys: an overview[J]. Materials Science and Technology, 2015, 31 (10): 1223- 1230.
doi: 10.1179/1743284715Y.0000000018
44
IKEDA Y , GRABOWSKI B , KÖRMANN F . Ab initio phase stabilities and mechanical properties of multicomponent alloys: a comprehensive review for high entropy alloys and compositionally complex alloys[J]. Materials Characterization, 2019, 147, 464- 511.
45
GAO M , ALMAN D . Searching for next single-phase high-entropy alloy compositions[J]. Entropy, 2013, 15 (12): 4504- 4519.
doi: 10.3390/e15104504
46
GORSSE S , TANCRET F . Current and emerging practices of CALPHAD toward the development of high entropy alloys and complex concentrated alloys[J]. Journal of Materials Research, 2018, 33 (19): 2899- 2923.
doi: 10.1557/jmr.2018.152
XU X X , DONG H G , CHEN J Y . Progress of brazing filler materials used for nickel base superalloy[J]. Machinery Manufacturing Abstracts (Welding Volume), 2018, (2): 1- 9.
48
HUANG X . Brazing of CMSX-4 with a boron-and silicon-free Ni-Co-Zr-Hf-Cr-Ti-Al brazing alloy[J]. Welding Journal, 2014, 93 (7): 233- 242.
49
WEI J , YE Y , SUN Z , et al. The effects of borides on the mechanical properties of TLPB repaired Inconel 738 superalloy[J]. Metallurgical and Materials Transactions A, 2017, 48 (10): 4622- 4631.
doi: 10.1007/s11661-017-4243-2
50
GAO M , SCHNEIDERMAN B , GILBERT S M , et al. Microstructural evolution and mechanical properties of nickel-base superalloy brazed joints using a MPCA filler[J]. Metallurgical and Materials Transactions A, 2019, 50 (11): 5117- 5127.
doi: 10.1007/s11661-019-05386-8
51
BRIDGES D , ZHANG S , LANG S , et al. Laser brazing of a nickel-based superalloy using a Ni-Mn-Fe-Co-Cu high entropy alloy filler metal[J]. Materials Letters, 2018, 215, 11- 14.
doi: 10.1016/j.matlet.2017.12.003
52
TILLMANN W, ULITZKA T, WOJARSKI L, et al. Brazing of high temperature materials using melting range optimized filler metals based brazing of high temperature materials using melting range optimized filler metals based on the high-entropy alloy CoCrCuFeNi[C]//LÖT 2019: 12th International Conference on Brazing, High Temperature Brazing and Diffusion Bonding. Aachen, Germany: LÖT, 2019: 1-6.
53
HARDWICK L, PICKERING E, RODGERS P, et al. Development of novel nickel-based brazing alloys, utilising alternative melting point development of novel nickel-based brazing alloys, utilising alternative depressants and high entropy alloy concepts[C]//LÖT 2019: 12th International Conference on Brazing, High Temperature Brazing and Diffusion Bonding. Aachen, Germany: LÖT, 2019: 7-17.
54
MUNITZ A , KAUFMAN M J , CHANDLER J P , et al. Melt separation phenomena in CoNiCuAlCr high entropy alloy containing silver[J]. Materials Science and Engineering: A, 2013, 560, 633- 642.
doi: 10.1016/j.msea.2012.10.007
55
TILLMANN W , WOJARSKI L , STANGIER D , et al. Application of the eutectic high entropy alloy Nb0.73CoCrFeNi2.1 for high temperature joints[J]. Welding in the World, 2020, 64 (9): 1597- 1604.
doi: 10.1007/s40194-020-00944-w
56
BRIDGES D , XU R , HU A . Microstructure and mechanical properties of Ni nanoparticle-bonded Inconel 718[J]. Materials & Design, 2019, 174, 1077- 1084.
57
LI H , HAN Y , ZHAO H , et al. Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis[J]. Nature Communications, 2020, 11 (1): 1- 9.
doi: 10.1038/s41467-019-13993-7
58
YAO Y , HUANG Z , XIE P , et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles[J]. Science, 2018, 359 (6383): 1489- 1494.
doi: 10.1126/science.aan5412
59
LI W , CHEN B , XIONG H , et al. Joining of Cf/SiC composite to GH783 superalloy with NiPdPtAu-Cr filler alloy and a Mo interlayer[J]. Journal of Materials Science & Technology, 2019, 35 (9): 2099- 2106.
60
LI W , CHEN B , XIONG H , et al. Reactive brazing Cf/SiC to itself and to Mo using the NiPdPtAu-Cr filler alloy[J]. Journal of the European Ceramic Society, 2017, 37 (13): 3849- 3859.
doi: 10.1016/j.jeurceramsoc.2017.05.025
61
WANG G , YANG Y , HE R , et al. A novel high entropy CoFeCrNiCu alloy filler to braze SiC ceramics[J]. Journal of the European Ceramic Society, 2020, 40 (9): 3391- 3398.
doi: 10.1016/j.jeurceramsoc.2020.03.044
XU J F , GUO J B , TIAN J , et al. Design and preparation of welding materials applied to welding titanium and steel based on weld metal high entropy converting[J]. Foundry Technology, 2014, (11): 2074- 2076.
63
PANG S , SUN L , XIONG H , et al. A multicomponent TiZr-based amorphous brazing filler metal for high-strength joining of titanium alloy[J]. Scripta Materialia, 2016, 117, 55- 59.
doi: 10.1016/j.scriptamat.2016.02.006
64
DONG K W , KONG J , YANG Y , et al. Vacuum brazing of TiAl-based alloy and GH536 superalloy with a low-melting point amorphous Ti35Zr25Be30Co10 filler[J]. Journal of Manufacturing Processes, 2019, 47, 410- 418.
doi: 10.1016/j.jmapro.2019.07.042
65
CHIKOVA O A , TSEPELEV V S , V'YUKHIN V V , et al. Planning technology for preparing high-entropy alloys (solders) of the Cu-Ga-Pb-Sn-Bi system[J]. Metallurgist, 2015, 59 (5/6): 435- 440.
doi: 10.1007/s11015-015-0123-4
66
LIU D , GUO R , HU Y , et al. Dissimilar metal joining of 304 stainless steel to SMA490BW steel using the filler metal powders with a high-entropy design[J]. Metals and Materials International, 2020, 26 (6): 854- 866.
doi: 10.1007/s12540-019-00400-5
67
HAO X , DONG H , XIA Y , et al. Microstructure and mechanical properties of laser welded TC4 titanium alloy/304 stainless steel joint with (CoCrFeNi)100-xCux high-entropy alloy interlayer[J]. Journal of Alloys and Compounds, 2019, 803, 649- 657.
doi: 10.1016/j.jallcom.2019.06.225
ZHAI Q Y, XU J F, HOU G Y. High-entropy alloy welding wire for TIG welding of titanium/stainless steel and its application: ZL201410787004.9[P]. 2015-03-31.
DONG P, GUO Y Y, WANG Y, et al. High-entropy flux-cored welding wire for aluminum-steel MIG welding and preparation method: ZL201810056788.6[P]. 2018-06-15.
LI H , TAO B H , LI Z X , et al. Spreading and wetting behavior of Al-based brazing filler metal on TiNi shape memory alloy substrate by coupled effect of ultrasonic vibration and laser heating[J]. Journal of Materials Engineering, 2016, 44 (3): 66- 71.
LI H , LI C , LI Z X . Progress in power ultrasound effect on molten metal shaping and its visualization[J]. Journal of Materials Engineering, 2017, 45 (5): 118- 126.
74
ZHANG M , ZHOU X , YU X , et al. Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding[J]. Surface and Coatings Technology, 2017, 311, 321- 329.
doi: 10.1016/j.surfcoat.2017.01.012
CHEN K P , LI Z M , MA J X , et al. Research progress and prospect of high-entropy ceramic materials[J]. Journal of Ceramics, 2020, 41 (2): 157- 163.
76
TSAI M , WANG C , LAI C , et al. Thermally stable amorphous (AlMoNbSiTaTiVZr)50N50 nitride film as diffusion barrier in copper metallization[J]. Applied Physics Letters, 2008, 92 (5): 52109.
doi: 10.1063/1.2841810
ZHANG Q , RAO H C , SHEN Z B , et al. Effect of WC particles on microstructure and wear resistance of FeCoCrNiCu high-entropy alloy coating prepared by laser cladding[J]. Hot Working Technology, 2014, 43 (18): 147- 150.
YANG X , JIANG J , HU J J , et al. Research progress of high entropy alloy coating[J]. Chemical Engineering & Equipment, 2018, (3): 214- 216.
79
YAN X H , LI J S , ZHANG W R , et al. A brief review of high-entropy films[J]. Materials Chemistry and Physics, 2018, 210, 12- 19.
doi: 10.1016/j.matchemphys.2017.07.078
80
LI W , LIU P , LIAW P K . Microstructures and properties of high-entropy alloy films and coatings: a review[J]. Materials Research Letters, 2018, 6 (4): 199- 229.
doi: 10.1080/21663831.2018.1434248
81
YE Q , FENG K , LI Z , et al. Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating[J]. Applied Surface Science, 2017, 396, 1420- 1426.
82
SHEN W J , TSAI M H , TSAI K Y , et al. Superior oxidation resistance of (Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 high-entropy nitride[J]. Journal of the Electrochemical Society, 2013, 160 (11): C531- C535.
83
CHEN T K , SHUN T T , YEH J W , et al. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering[J]. Surface and Coatings Technology, 2004, 188/189, 193- 200.
doi: 10.1016/j.surfcoat.2004.08.023
84
LIU H , LIU J , CHEN P , et al. Microstructure and high temperature wear behaviour of in-situ TiC reinforced AlCoCrFeNi-based high-entropy alloy composite coatings fabricated by laser cladding[J]. Optics & Laser Technology, 2019, 118, 140- 150.
DONG S Z , MENG X , MA Z , et al. The influence of WC and Al2O3 on the structure and erosion resistance of FeAlCoCrCuTi0.4 high-entropy alloy coating by argon arc cladding[J]. Transactions of the China Welding Institution, 2019, 40 (7): 127- 132.
86
EGAMI T , GUO W , RACK P D , et al. Irradiation resistance of multicomponent alloys[J]. Metallurgical and Materials Transactions A, 2014, 45 (1): 180- 183.
doi: 10.1007/s11661-013-1994-2
87
GANDY A S, JIM B, COE G, et al. High temperature and ion implantation-induced phase transformations in novel reduced activation Si-Fe-V-Cr(-Mo) high entropy alloys[J/OL]. Frontiers in Materials[2020-10-13]. https://doi.org/10.3389/fmats.2019.00146.
88
DOLIQUE V , THOMANN A L , BRAULT P , et al. Complex structure/composition relationship in thin films of AlCoCrCuFeNi high entropy alloy[J]. Materials Chemistry and Physics, 2009, 117 (1): 142- 147.