Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (8): 1-10    DOI: 10.11868/j.issn.1001-4381.2020.000950
  综述 本期目录 | 过刊浏览 | 高级检索 |
高熵合金在钎焊和表面工程领域的应用研究进展
李红1, 韩祎1, 曹健2, MARIUSZ Bober3, JACEK Senkara3
1. 北京工业大学 材料与制造学部, 北京 100124;
2. 哈尔滨工业大学 先进焊接与连接国家重点实验室, 哈尔滨 150001;
3. 华沙理工大学 制造工程学院, 波兰 华沙 02-524
Research progress in high-entropy alloys used in brazing and surface engineering fields
LI Hong1, HAN Yi1, CAO Jian2, MARIUSZ Bober3, JACEK Senkara3
1. Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China;
2. State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China;
3. Faculty of Production Engineering, Warsaw University of Technology, Warsaw 02-524, Poland
全文: PDF(2207 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 随着合金制造水平的提高及性能要求的复杂化,高熵合金逐渐引起极大的关注。目前在材料加工领域内的研究主要集中于钎焊和表面工程两大方向。在钎焊领域,高熵合金可以作为钎焊填充材料应用于高温和低温钎焊,本文归纳了合金高熵化的相关经验参数,阐述了第一性原理计算和相图计算等模拟计算手段在高熵合金填充材料设计领域内的应用;详细介绍了高熵合金钎料在镍基高温合金、陶瓷-金属异种材料、低温封装等连接领域的最新研究进展。同时,分析了工艺参数对高熵合金钎料钎焊接头组织与性能的影响。在表面工程领域,论述了高熵合金薄膜/涂层的应用方向与制备手段,总结了在高温防护涂层、硬质保护层以及其他应用领域的研究进展。同时归纳了高熵合金在钎焊和表面工程领域研究和应用中存在的问题,而未来将在降低钎料熔点、提高焊缝高温力学性能以及发展共晶高熵合金钎料/涂层等领域进一步提高研究水平。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李红
韩祎
曹健
MARIUSZ Bober
JACEK Senkara
关键词 高熵合金钎焊填充金属涂层薄膜    
Abstract:With the improvement of alloy manufacturing level and the complexity of performance requirements, high-entropy alloys (HEAs) have gradually attracted great attention.At present,the research in the field of material processing mainly focuses on brazing and surface engineering.In the field of brazing, HEAs can be used as filler material for brazing at high temperature and low temperature, the empirical parameters related to high entropy were summarized. The application of the simulation and calculation methods such as first-principle method and calculation of phase diagram were described in the field of HEAs design for filler metals development. The latest research progress of HEAs fillers for brazing of nickel-based superalloys and dissimilar ceramics-metals, as well as low temperature packaging was introduced. The influence of welding process parameters on microstructure and properties of HEAs brazing joints was also analysed.In the field of surface engineering, the application direction and preparation methods of HEAs in film/coating were discussed. The research progress in high-temperature protective coating, hard protective layer and other application directions was summarized. At the same time, the problems existing in the research and application of HEAs in the fields of brazing and surface engineering were summarized. The future trends were put forward in order to decrease the melting temperature of HEAs filler, improve high temperature mechanical properties of welds, and develop the eutectic HEAs filler/coating.
Key wordshigh-entropy alloy    brazing    filler metal    coating    film
收稿日期: 2020-10-13      出版日期: 2021-08-12
中图分类号:  TG454  
基金资助:先进焊接与连接国家重点实验室开放课题研究基金项目(AWJ-20-M01);科技部中国-波兰政府间科技合作委员会第38届例会人员交流项目(2020-13)
通讯作者: 李红(1977-),女,副教授,博士,研究方向为钎焊、异种材料连接和微纳连接等,联系地址:北京市朝阳区平乐园100号北京工业大学材料与制造学部(100124),E-mail:hongli@bjut.edu.cn     E-mail: hongli@bjut.edu.cn
引用本文:   
李红, 韩祎, 曹健, MARIUSZ Bober, JACEK Senkara. 高熵合金在钎焊和表面工程领域的应用研究进展[J]. 材料工程, 2021, 49(8): 1-10.
LI Hong, HAN Yi, CAO Jian, MARIUSZ Bober, JACEK Senkara. Research progress in high-entropy alloys used in brazing and surface engineering fields. Journal of Materials Engineering, 2021, 49(8): 1-10.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000950      或      http://jme.biam.ac.cn/CN/Y2021/V49/I8/1
[1] YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements:novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303.
[2] GAO M C, YEH J W, LIAW P K, et al. High-entropy alloys[M]. Cham, Switzerland:Springer International Publishing, 2016:15.
[3] ZHANG W, LIAW P K, ZHANG Y. Science and technology in high-entropy alloys[J]. Science China Materials, 2018, 61(1): 2-22.
[4] CANTOR B, CHANG I T H, KNIGHT P, et al. Microstructural development in equiatomic multicomponent alloys[J]. Materials Science and Engineering:A, 2004, 375/377:213-218.
[5] WU W, NI S, LIU Y, et al. Effects of cold rolling and subsequent annealing on the microstructure of a HfNbTaTiZr high-entropy alloy[J]. Journal of Materials Research, 2016, 31(24): 3815-3823.
[6] LU Y, DONG Y, GUO S, et al. A promising new class of high-temperature alloys:eutectic high-entropy alloys[J]. Scientific Reports, 2014, 4(1): 1-5.
[7] HE J Y, WANG H, HUANG H L, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties[J]. Acta Materialia, 2016, 102:187-196.
[8] DENG Y, TASAN C C, PRADEEP K G, et al. Design of a twinning-induced plasticity high entropy alloy[J]. Acta Materialia, 2015, 94:124-133.
[9] SENKOV O N, SCOTT J M, SENKOVA S V, et al. Microstructure and elevated temperature properties of a refractory TaNb-HfZrTi alloy[J]. Journal of Materials Science, 2012, 47(9): 4062-4074.
[10] CHEN J, NIU P, LIU Y, et al. Effect of Zr content on microstructure and mechanical properties of AlCoCrFeNi high entropy alloy[J]. Materials & Design, 2016, 94:39-44.
[11] CHUANG M, TSAI M, WANG W, et al. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Ti<em>y high-entropy alloys[J]. Acta Materialia, 2011, 59(16): 6308-6317.
[12] FENG X, ZHANG J, XIA Z, et al. Stable nanocrystalline NbMoTaW high entropy alloy thin films with excellent mechanical and electrical properties[J]. Materials Letters, 2018, 210:84-87.
[13] MISHRA R K, SHAHI R R. Phase evolution and magnetic characteristics of TiFeNiCr and TiFeNiCrM (M=Mn, Co) high entropy alloys[J]. Journal of Magnetism and Magnetic Materials, 2017, 442:218-223.
[14] KUMAR N, FUSCO M, KOMARASAMY M, et al. Understanding effect of 3.5 wt.% NaCl on the corrosion of Al0.1CoCrFeNi high-entropy alloy[J]. Journal of Nuclear Materials, 2017, 495:154-163.
[15] ZHANG Y, ZUO T T, TANG Z, et al. Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science, 2014, 61:1-93.
[16] DING Q, ZHANG Y, CHEN X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys[J]. Nature, 2019, 574(7777): 223-227.
[17] LU Y, GAO X, JIANG L, et al. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range[J]. Acta Materialia, 2017, 124:143-150.
[18] LU Y, DONG Y, JIANG H, et al. Promising properties and future trend of eutectic high entropy alloys[J]. Scripta Materialia, 2020, 187:202-209.
[19] ZHANG L X, SHI J M, LI H W, et al. Interfacial microstructure and mechanical properties of ZrB2-SiC-C ceramic and GH99 superalloy joints brazed with a Ti-modified FeCoNiCrCu high-entropy alloy[J]. Materials & Design, 2016, 97:230-238.
[20] MA G F, YE H, ZHANG H L, et al. Wettability of molten Sn on AlCoCrCuxFeNi high-entropy alloy[J]. Materials Chemistry and Physics, 2017, 199:1-6.
[21] YANG T, ZHAO Y L, TONG Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys[J]. Science, 2018, 362(6417): 933-937.
[22] 杨铭, 刘雄军, 吴渊, 等. 高熵非晶合金研究进展[J]. 中国科学:物理学力学天文学, 2020, 50(6): 067003. YANG M, LIU X J, WU Y, et al. Research progress on high-entropy bulk metallic glasses[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2020, 50(6): 067003.
[23] 张勇, 陈明彪, 杨潇. 先进高熵合金技术[M]. 北京:化学工业出版社, 2019:279-284. ZHANG Y, CHEN M B, YANG X. Advanced technology in high-entropy alloys[M]. Beijing:Chemical Industry Press, 2019:279-284.
[24] GAO M. Development of new high entropy alloys for brazing of Ni-base superalloys[D]. Golden, Colorado State:Colorado School of Mines, 2018.
[25] 李宏伟. ZSC复合材料与GH99镍基高温合金钎焊工艺及机理研究[D]. 哈尔滨:哈尔滨工业大学, 2013. LI H W. Technology and mechanism study on brazing ZSC composite to GH99 nickel-base superalloy[D]. Harbin:Harbin Institute of Technology, 2013.
[26] PU L, HE Q, YANG Y, et al. The microstructure and mechanical property of the high entropy alloy as a low temperature solder[C]//2019 IEEE 69th Electronic Components and Technology Conference (ECTC).Los Veags, US:ECTC, 2019:1716-1721.
[27] LEI Z, WU Y, HE J, et al. Snoek-type damping performance in strong and ductile high-entropy alloys[J]. Science Advances, 2020, 6(25): eaba7802.
[28] LEI Z, LIU X, WU Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes[J]. Nature, 2018, 563(7732): 546-550.
[29] TILLMANN W, ULITZKA T, WOJARSKI L, et al. Development of high entropy alloys for brazing applications[J]. Welding in the World, 2020, 64(1): 201-208.
[30] CHENG K, LAI C, LIN S, et al. Structural and mechanical properties of multi-element (AlCrMoTaTiZr)Nx coatings by reactive magnetron sputtering[J]. Thin Solid Films, 2011, 519(10): 3185-3190.
[31] ZHANG H, PAN Y, HE Y. Synthesis and characterization of FeCoNiCrCu high-entropy alloy coating by laser cladding[J]. Materials in Engineering, 2011, 32(4): 1910-1915.
[32] WAY M, WILLINGHAM J, GOODALL R. Brazing filler metals[J]. International Materials Reviews, 2020, 65(5): 257-285.
[33] OWEN L R, PICKERING E J, PLAYFORD H Y, et al. An assessment of the lattice strain in the CrMnFeCoNi high-entropy alloy[J]. Acta Materialia, 2017, 122:11-18.
[34] 李红, WOLFGANG T, 栗卓新, 等. 高品质高可靠性钎料的技术发展及应用[J]. 焊接学报, 2014, 35(4): 108-112. LI H, WOLFGANG T, LI Z X, et al. Technical development and application of high-quality and high-reliability filler metal[J]. Transactions of the China Welding Institution, 2014, 35(4): 108-112.
[35] GUO L, GU J, GONG X, et al. CALPHAD aided design of high entropy alloy to achieve high strength via precipitate strengthening[J]. Science China Materials, 2020, 63(2): 288-299.
[36] LIANG Y, WANG L, WEN Y, et al. High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys[J]. Nature Communications, 2018, 9(1): 4063.
[37] MENOU E, TANCRET F, TODA-CARABALLO I, et al. Computational design of light and strong high entropy alloys (HEA): obtainment of an extremely high specific solid solution hardening[J]. Scripta Materialia, 2018, 156:120-123.
[38] SHUKLA S, WANG T, FRANK M, et al. Friction stir gradient alloying:a novel solid-state high throughput screening technique for high entropy alloys[J]. Materials Today Communications, 2020, 23:100869.
[39] ZHANG Y, ZHOU Y J, LIN J P, et al. Solid-solution phase formation rules for multi-component alloys[J]. Advanced Engineering Materials, 2008, 10(6): 534-538.
[40] WANG Z, HUANG Y, YANG Y, et al. Atomic-size effect and solid solubility of multicomponent alloys[J]. Scripta Materialia, 2015, 94:28-31.
[41] YANG X, ZHANG Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys[J]. Materials Chemistry and Physics, 2012, 132(2/3): 233-238.
[42] GUO S, HU Q, NG C, et al. More than entropy in high-entropy alloys:forming solid solutions or amorphous phase[J]. Intermetallics, 2013, 41:96-103.
[43] GUO S. Phase selection rules for cast high entropy alloys:an overview[J]. Materials Science and Technology, 2015, 31(10): 1223-1230.
[44] IKEDA Y, GRABOWSKI B, KÖRMANN F. Ab initio phase stabilities and mechanical properties of multicomponent alloys:a comprehensive review for high entropy alloys and compositionally complex alloys[J]. Materials Characterization, 2019, 147:464-511.
[45] GAO M, ALMAN D. Searching for next single-phase high-entropy alloy compositions[J]. Entropy, 2013, 15(12): 4504-4519.
[46] GORSSE S, TANCRET F. Current and emerging practices of CALPHAD toward the development of high entropy alloys and complex concentrated alloys[J]. Journal of Materials Research, 2018, 33(19): 2899-2923.
[47] 许欣星, 董红刚, 陈晶阳. 镍基高温合金用钎料研究进展[J]. 机械制造文摘(焊接分册), 2018(2): 1-9. XU X X, DONG H G, CHEN J Y. Progress of brazing filler materials used for nickel base superalloy[J]. Machinery Manufacturing Abstracts (Welding Volume), 2018(2): 1-9.
[48] HUANG X. Brazing of CMSX-4 with a boron-and silicon-free Ni-Co-Zr-Hf-Cr-Ti-Al brazing alloy[J]. Welding Journal, 2014, 93(7): 233-242.
[49] WEI J, YE Y, SUN Z, et al. The effects of borides on the mechanical properties of TLPB repaired Inconel 738 superalloy[J]. Metallurgical and Materials Transactions A, 2017, 48(10): 4622-4631.
[50] GAO M, SCHNEIDERMAN B, GILBERT S M, et al. Microstructural evolution and mechanical properties of nickel-base superalloy brazed joints using a MPCA filler[J]. Metallurgical and Materials Transactions A, 2019, 50(11): 5117-5127.
[51] BRIDGES D, ZHANG S, LANG S, et al. Laser brazing of a nickel-based superalloy using a Ni-Mn-Fe-Co-Cu high entropy alloy filler metal[J]. Materials Letters, 2018, 215:11-14.
[52] TILLMANN W, ULITZKA T, WOJARSKI L, et al. Brazing of high temperature materials using melting range optimized filler metals based brazing of high temperature materials using melting range optimized filler metals based on the high-entropy alloy CoCrCuFeNi[C]//LÖT 2019:12th International Conference on Brazing, High Temperature Brazing and Diffusion Bonding.Aachen, Germany:LÖT, 2019:1-6.
[53] HARDWICK L, PICKERING E, RODGERS P, et al. Development of novel nickel-based brazing alloys, utilising alternative melting point development of novel nickel-based brazing alloys, utilising alternative depressants and high entropy alloy concepts[C]//LÖT 2019:12th International Conference on Brazing, High Temperature Brazing and Diffusion Bonding.Aachen, Germany:LÖT, 2019:7-17.
[54] MUNITZ A, KAUFMAN M J, CHANDLER J P, et al. Melt separation phenomena in CoNiCuAlCr high entropy alloy containing silver[J]. Materials Science and Engineering:A, 2013, 560:633-642.
[55] TILLMANN W, WOJARSKI L, STANGIER D, et al. Application of the eutectic high entropy alloy Nb0.73CoCrFeNi2.1 for high temperature joints[J]. Welding in the World, 2020, 64(9): 1597-1604.
[56] BRIDGES D, XU R, HU A. Microstructure and mechanical properties of Ni nanoparticle-bonded Inconel 718[J]. Materials & Design, 2019, 174:1077-1084.
[57] LI H, HAN Y, ZHAO H, et al. Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis[J]. Nature Communications, 2020, 11(1): 1-9.
[58] YAO Y, HUANG Z, XIE P, et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles[J]. Science, 2018, 359(6383): 1489-1494.
[59] LI W, CHEN B, XIONG H, et al. Joining of Cf/SiC composite to GH783 superalloy with NiPdPtAu-Cr filler alloy and a Mo interlayer[J]. Journal of Materials Science & Technology, 2019, 35(9): 2099-2106.
[60] LI W, CHEN B, XIONG H, et al. Reactive brazing Cf/SiC to itself and to Mo using the NiPdPtAu-Cr filler alloy[J]. Journal of the European Ceramic Society, 2017, 37(13): 3849-3859.
[61] WANG G, YANG Y, HE R, et al. A novel high entropy CoFeCrNiCu alloy filler to braze SiC ceramics[J]. Journal of the European Ceramic Society, 2020, 40(9): 3391-3398.
[62] 徐锦锋, 郭嘉宝, 田健, 等. 基于焊缝金属高熵化的钛/钢焊材设计与制备[J]. 铸造技术, 2014(11): 2074-2076. XU J F, GUO J B, TIAN J, et al. Design and preparation of welding materials applied to welding titanium and steel based on weld metal high entropy converting[J]. Foundry Technology, 2014(11): 2074-2076.
[63] PANG S, SUN L, XIONG H, et al. A multicomponent TiZr-based amorphous brazing filler metal for high-strength joining of titanium alloy[J]. Scripta Materialia, 2016, 117:55-59.
[64] DONG K W, KONG J, YANG Y, et al. Vacuum brazing of TiAl-based alloy and GH536 superalloy with a low-melting point amorphous Ti35Zr25Be30Co10 filler[J]. Journal of Manufacturing Processes, 2019, 47:410-418.
[65] CHIKOVA O A, TSEPELEV V S, V'YUKHIN V V, et al. Planning technology for preparing high-entropy alloys (solders) of the Cu-Ga-Pb-Sn-Bi system[J]. Metallurgist, 2015, 59(5/6): 435-440.
[66] LIU D, GUO R, HU Y, et al. Dissimilar metal joining of 304 stainless steel to SMA490BW steel using the filler metal powders with a high-entropy design[J]. Metals and Materials International, 2020, 26(6): 854-866.
[67] HAO X, DONG H, XIA Y, et al. Microstructure and mechanical properties of laser welded TC4 titanium alloy/304 stainless steel joint with (CoCrFeNi)100-xCux high-entropy alloy interlayer[J]. Journal of Alloys and Compounds, 2019, 803:649-657.
[68] 翟秋亚, 徐锦锋, 侯光远. 用于TIG焊钛/不锈钢的高熵合金焊丝及应用:ZL201410787004.9[P]. 2015-03-31. ZHAI Q Y, XU J F, HOU G Y. High-entropy alloy welding wire for TIG welding of titanium/stainless steel and its application:ZL201410787004.9[P]. 2015-03-31.
[69] 董鹏, 郭燕阳, 王勇, 等. 用于铝-钢MIG焊接的高熵药芯焊丝及其制备方法:ZL201810056788.6[P]. 2018-06-15. DONG P, GUO Y Y, WANG Y, et al. High-entropy flux-cored welding wire for aluminum-steel MIG welding and preparation method:ZL201810056788.6[P]. 2018-06-15.
[70] 冯凯, 李铸国, 王志远, 等. 一种用于焊接的高熵合金材料及应用:ZL201910359385.3[P]. 2019-07-02. FENG K, LI Z G, WANG Z Y, et al. A high-entropy alloy material for welding and its application:ZL201910359385.3[P]. 2019-07-02.
[71] SHEN Q, KONG X, CHEN X. Fabrication of bulk Al-Co-Cr-Fe-Ni high-entropy alloy using combined cable wire arc additive manufacturing (CCW-AAM): microstructure and mechanical properties[J]. Journal of Materials Science & Technology, 2021, 74:136-142.
[72] 李红, 陶博浩, 栗卓新, 等. 超声振动与激光加热耦合条件下Al基钎料在TiNi形状记忆合金表面润湿铺展行为[J]. 材料工程, 2016, 44(3): 66-71. LI H, TAO B H, LI Z X, et al. Spreading and wetting behavior of Al-based brazing filler metal on TiNi shape memory alloy substrate by coupled effect of ultrasonic vibration and laser heating[J]. Journal of Materials Engineering, 2016, 44(3): 66-71.
[73] 李红, 李灿, 栗卓新. 功率超声在金属熔体成形中的作用效应及其可视化研究进展[J]. 材料工程, 2017, 45(5): 118-126. LI H, LI C, LI Z X. Progress in power ultrasound effect on molten metal shaping and its visualization[J]. Journal of Materials Engineering, 2017, 45(5): 118-126.
[74] ZHANG M, ZHOU X, YU X, et al. Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding[J]. Surface and Coatings Technology, 2017, 311:321-329.
[75] 陈克丕, 李泽民, 马金旭, 等. 高熵陶瓷材料研究进展与展望[J]. 陶瓷学报, 2020, 41(2): 157-163. CHEN K P, LI Z M, MA J X, et al. Research progress and prospect of high-entropy ceramic materials[J]. Journal of Ceramics, 2020, 41(2): 157-163.
[76] TSAI M, WANG C, LAI C, et al. Thermally stable amorphous (AlMoNbSiTaTiVZr)50N50 nitride film as diffusion barrier in copper metallization[J]. Applied Physics Letters, 2008, 92(5): 52109.
[77] 张琪, 饶湖常, 沈志博, 等. WC颗粒对激光熔覆FeCoCrNiB高熵合金涂层组织结构与耐磨性的影响[J]. 热加工工艺, 2014, 43(18): 147-150. ZHANG Q, RAO H C, SHEN Z B, et al. Effect of WC particles on microstructure and wear resistance of FeCoCrNiCu high-entropy alloy coating prepared by laser cladding[J]. Hot Working Technology, 2014, 43(18): 147-150.
[78] 杨显, 蒋杰, 胡建军, 等. 高熵合金涂层的研究进展[J]. 化学工程与装备, 2018(3): 214-216. YANG X, JIANG J, HU J J, et al. Research progress of high entropy alloy coating[J]. Chemical Engineering & Equipment, 2018(3): 214-216.
[79] YAN X H, LI J S, ZHANG W R, et al. A brief review of high-entropy films[J]. Materials Chemistry and Physics, 2018, 210:12-19.
[80] LI W, LIU P, LIAW P K. Microstructures and properties of high-entropy alloy films and coatings:a review[J]. Materials Research Letters, 2018, 6(4): 199-229.
[81] YE Q, FENG K, LI Z, et al. Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating[J]. Applied Surface Science, 2017, 396:1420-1426.
[82] SHEN W J, TSAI M H, TSAI K Y, et al. Superior oxidation resistance of (Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 high-entropy nitride[J]. Journal of the Electrochemical Society, 2013, 160(11): C531-C535.
[83] CHEN T K, SHUN T T, YEH J W, et al. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering[J]. Surface and Coatings Technology, 2004, 188/189:193-200.
[84] LIU H, LIU J, CHEN P, et al. Microstructure and high temperature wear behaviour of in-situ TiC reinforced AlCoCrFeNi-based high-entropy alloy composite coatings fabricated by laser cladding[J]. Optics & Laser Technology, 2019, 118:140-150.
[85] 董世知, 孟旭, 马壮, 等. WC和Al2O3对氩弧熔覆FeAlCoCrCuTi0.4高熵合金涂层组织和耐冲蚀性能影响[J]. 焊接学报, 2019, 40(7): 127-132. DONG S Z, MENG X, MA Z, et al. The influence of WC and Al2O3 on the structure and erosion resistance of FeAlCoCrCuTi0.4 high-entropy alloy coating by argon arc cladding[J]. Transactions of the China Welding Institution, 2019, 40(7): 127-132.
[86] EGAMI T, GUO W, RACK P D, et al. Irradiation resistance of multicomponent alloys[J]. Metallurgical and Materials Transactions A, 2014, 45(1): 180-183.
[87] GANDY A S, JIM B, COE G, et al. High temperature and ion implantation-induced phase transformations in novel reduced activation Si-Fe-V-Cr(-Mo) high entropy alloys[J/OL]. Frontiers in Materials[2020-10-13]. https://doi.org/10.3389/fmats.2019.00146.
[88] DOLIQUE V, THOMANN A L, BRAULT P, et al. Complex structure/composition relationship in thin films of AlCoCrCuFeNi high entropy alloy[J]. Materials Chemistry and Physics, 2009, 117(1): 142-147.
[1] 安强, 祁文军, 左小刚. TA15钛合金表面原位合成TiC增强钛基激光熔覆层的组织与耐磨性[J]. 材料工程, 2022, 50(4): 139-146.
[2] 于源, 乔竹辉, 任海波, 刘维民. 高熵合金摩擦磨损性能的研究进展[J]. 材料工程, 2022, 50(3): 1-17.
[3] 姜明明, 孙树峰, 王津, 王萍萍, 孙晓雨, 邵晶, 刘纪新, 曹爱霞, 孙维丽, 陈希章. 激光熔覆制备高熵合金涂层耐磨性研究进展[J]. 材料工程, 2022, 50(3): 18-32.
[4] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
[5] 张昊, 吴昊, 唐啸天, 罗涛, 邓人钦. 微量W元素的添加对CoCrFeNiMnAl高熵合金的组织与性能的影响[J]. 材料工程, 2022, 50(3): 50-59.
[6] 胡广, 赵英杰, 马胜国, 张团卫, 赵聃, 王志华. 考虑位错密度和损伤的NiCoCrFe高熵合金晶体塑性有限元分析[J]. 材料工程, 2022, 50(3): 60-68.
[7] 计植耀, 马跃, 王清, 董闯. 高性能软磁合金的研究进展[J]. 材料工程, 2022, 50(3): 69-80.
[8] 朱陈杰, 陈海权, 于有海. 静电喷雾法/原位洗脱法结合制备电致变色薄膜[J]. 材料工程, 2022, 50(1): 109-116.
[9] 余芳, 胡晓婧, 唐其金, 夏雨飘, 吕中, 杨浩. 具有可逆润湿性Bi2O3涂层在抗菌和油水分离中的应用[J]. 材料工程, 2021, 49(9): 167-174.
[10] 谷籽旺, 郭文敏, 张弘鳞, 李文娟. 基于核壳结构粉体设计的CoNiCrAlY-Al2O3复合涂层组织结构及其抗氧化性能[J]. 材料工程, 2021, 49(7): 112-123.
[11] 王敬枫, 康辉, 成中军, 谢志民, 王友善, 刘宇艳, 樊志敏. Ti3C2Tx MXene基电磁屏蔽材料的研究进展[J]. 材料工程, 2021, 49(6): 14-25.
[12] 王海博, 李春燕, 李金玲, 王顺平, 寇生中. Fe基非晶合金粉末的研究进展[J]. 材料工程, 2021, 49(4): 34-51.
[13] 陈燕宁, 吴量, 陈勇花, 程苓, 姚文辉, 潘复生. 镁合金表面氧化石墨烯复合涂层的研究现状[J]. 材料工程, 2021, 49(12): 1-13.
[14] 谢治辉, 舒雅, 胡婷. 不同无机阴离子插层层状双金属氢氧化物的合成及其离子交换特性[J]. 材料工程, 2021, 49(12): 65-71.
[15] 孙文昕, 樊丽君, 郑钟印, 邹玉红, 田景睿, 曾荣昌. 医用金属表面含锶涂层耐蚀性和生物相容性研究进展[J]. 材料工程, 2021, 49(12): 72-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn