Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (4): 34-51    DOI: 10.11868/j.issn.1001-4381.2020.000953
  综述 本期目录 | 过刊浏览 | 高级检索 |
Fe基非晶合金粉末的研究进展
王海博1,2, 李春燕1,2,*(), 李金玲1, 王顺平1, 寇生中1,2
1 兰州理工大学 省部共建有色金属先进加工与再利用国家重点实验室, 兰州 730000
2 兰州理工大学 材料科学与工程学院, 兰州 730000
Research progress in Fe-based amorphous alloy powder
Hai-bo WANG1,2, Chun-yan LI1,2,*(), Jin-ling LI1, Shun-ping WANG1, Sheng-zhong KOU1,2
1 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730000, China
2 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730000, China
全文: PDF(10506 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

非晶合金粉末是指快冷雾化合金液滴所制得的合金粉末,其中Fe基非晶合金粉末因具有生产成本低廉和应用前景广阔等优势,一直备受青睐。同时,Fe基非晶合金粉末的应用也为块体Fe基非晶合金应用难的问题提供了一条崭新的途径。本文综述了Fe基非晶合金粉末的研究进展,对其在涂层制备、磁性材料、激光3D打印、废水处理4个方面的研究现状进行了归纳分类与总结,并分析了Fe基非晶合金粉末在各领域的应用优势。最后指出Fe基非晶合金粉末在制备高质量涂层、老化磁性粉末再利用及增材制造领域的研究方向,并展望了作为传感、控制等功能性器件的应用前景。此外,在薄膜等小尺寸、低维材料及柔性电子领域也展现出巨大的应用潜力。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王海博
李春燕
李金玲
王顺平
寇生中
关键词 Fe基非晶合金粉末涂层制备磁性材料激光3D打印废水处理    
Abstract

Amorphous alloy powder can be obtained by rapid cooling atomization of certain alloy droplets. Fe-based amorphous alloy powder has been favored because of its low production cost and wide application range. Moreover, the application of Fe-based amorphous alloy powder provides a new solution for the application of bulk Fe-based amorphous alloys.The research progress of Fe-based amorphous alloy powder was reviewed, and its research status was summarized in four aspects: coating preparation, magnetic materials, laser 3D printing, and wastewater treatment. The advantages of Fe-based amorphous alloy powder in various fields were analyzed, and the research directions of Fe-based amorphous alloy powder in the fields of preparing high-quality coatings, reuse of aging magnetic powders and additive manufacturing were pointed out. Moreover, the application prospects of Fe-based amorphous alloy powder as sensing, control and other functional devices were prospected.In addition, it also shows great application potential in the fields of small size, low dimentional materials such as thin films and flexible electronics.

Key wordsFe-based amorphous alloy powder    coating preparation    magnetic material    laser 3D printing    wastewater treatment
收稿日期: 2020-10-15      出版日期: 2021-04-21
中图分类号:  TG139+8  
基金资助:国家自然科学基金资助项目(51861021);国家自然科学基金资助项目(51661016);国家自然科学基金资助项目(51571105)
通讯作者: 李春燕     E-mail: licywz@163.com
作者简介: 李春燕(1979-), 女, 教授, 博士, 主要从事非晶态合金涂层的制备及性能研究, 联系地址: 甘肃省兰州市七里河区兰工坪路287号兰州理工大学材料科学与工程学院(730000), E-mail: licywz@163.com
引用本文:   
王海博, 李春燕, 李金玲, 王顺平, 寇生中. Fe基非晶合金粉末的研究进展[J]. 材料工程, 2021, 49(4): 34-51.
Hai-bo WANG, Chun-yan LI, Jin-ling LI, Shun-ping WANG, Sheng-zhong KOU. Research progress in Fe-based amorphous alloy powder. Journal of Materials Engineering, 2021, 49(4): 34-51.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000953      或      http://jme.biam.ac.cn/CN/Y2021/V49/I4/34
Material Prepared method Hardness/GPa Friction coefficient Wear rate/ (mm3·N-1·m-1) Ref
Fe48Mo14Cr15Y2C15B6 coating HVOF spraying 10.3 0.3-0.4 (3-19)×10-5 [9]
AISI 1045 steel 1.8 0.2-0.45 (5-87)×10-5 [9]
304 stainless steel 0.2-0.3 40×10-5 [10]
Hard Cr coating Electroplating 8.4 0.75 50×10-5 [11]
Al2O3 coating Plasma spraying 11.7 0.9 50×10-5 [11]
WC-Co coating HVOF spraying 11.2 0.45 5×10-7 [11]
Table 1  非晶合金涂层、钢和某些耐磨涂层的摩擦学性能总结
Fig.1  非晶合金涂层在6 mol/L NaCl溶液浸泡不同时间的TEM腐蚀形貌[16] (a)1 h; (b)2 h
Fig.2  Fe基非晶合金涂层点蚀发生过程的原理图[16]
Fig.3  喷涂后涂层中析出的纳米晶[20]
Fig.4  非晶涂层、Al2O3增强的非晶复合涂层和316L不锈钢在3.5% NaCl溶液中的摩擦腐蚀电位极化曲线[26]
Fig.5  不同非晶涂层和基材的磨损率与滑动速率的关系[59]
Sample Ra/μm Standard deviation/μm
S1(SP240) 0.348±0.032 0.0261
S2(SP150) 0.486±0.030 0.0244
S3(SB100) 1.824±0.049 0.0400
S4(SB40) 2.157±0.060 0.0489
Table 2  不同基体表面制备的平均Ra[68]
Time for milling/h Fe75Ta5Si10C10 Fe70Ta5Si10C15 Fe65Ta5Si10C20
Hc/(kA·m-1) Ms/(Am2·kg-1) Hc/(kA·m-1) Ms/(Am2·kg-1) Hc/(kA·m-1) Ms/(Am2·kg-1)
70 2.44±0.07 152±2 2.36±0.05 145±2 2.29±0.09 120±1
90 3.64±0.08 146±1 2.40±0.06 96±1 2.18±0.06 90±2
120 3.71±0.08 148±1 2.71±0.06 93±2 2.14±0.05 86±1
Table 3  Fe65,Fe70 [88]和Fe75[84]粉末在不同研磨时间下的HcMs
Fig.6  壳体包覆的Fe-Si-B-C-Cr/TiO2非晶磁粉芯的合成过程示意图[96]
Fig.7  CAD程序中生成的3D支架结构(a)及位于底板(316L钢)顶部的支架(b)[101]
Fig.8  不同激光线能量密度下制备非晶合金构建微裂纹的演变[104] (a)SLM制造的3D打印Fe基非晶合金样品;(b)3D打印样品的侧视图(插图显示了完全非晶结构);(c)~(f)在各种激光线能量密度下熔池的SEM图像(图像显示了微孔周围微裂纹的分布)
1 MIURA H , ISA S , OMURO K . Production of amorphous iron-nickel based alloys by flame-spray quenching and coatings on metal substrates[J]. Materials Transactions Jim, 1984, 25 (4): 284- 291.
doi: 10.2320/matertrans1960.25.284
2 KISHITAKE K , ERA H , OTSUBO F . Thermal-sprayed Fe-10Cr-13P-7C amorphous coatings prossessing excellent corrosion resistance[J]. Journal of Thermal Spray Technology, 1996, 5 (4): 476- 477.
doi: 10.1007/BF02645279
3 OTSUBO F , ERA H , KISHITAKE K . Formation of amorphous Fe-Cr-Mo-8P-2C coatings by the high velocity oxy-fuel process[J]. Journal of Thermal Spray Technology, 2000, 9 (4): 494- 498.
doi: 10.1007/BF02608552
4 RAYBOULD D , TAN K S . Factors affecting the magnetic properties of consolidated amorphous powder cores[J]. Journal of Materials Science, 1985, 20 (8): 2776- 2786.
doi: 10.1007/BF00553039
5 ZHENG B , ZHOU Y , SMUGERESKY J E , et al. Processing and behavior of Fe-based metallic glass components via laser-engineered net shaping[J]. Metallurgical and Materials Transactions A, 2009, 40 (5): 1235- 1245.
doi: 10.1007/s11661-009-9828-y
6 WANG J Q , LIU Y H , CHEN M W , et al. Rapid degradation of azo dye by Fe-based metallic glass powder[J]. Advanced Functional Materials, 2012, 22 (12): 2567- 2570.
doi: 10.1002/adfm.201103015
7 WANG Y , ZHENG Y G , KE W , et al. Slurry erosion-corrosion behaviour of high-velocity oxy-fuel (HVOF) sprayed Fe-based amorphous metallic coatings for marine pump in sand-containing NaCl solutions[J]. Corrosion Science, 2011, 53 (10): 3177- 3185.
doi: 10.1016/j.corsci.2011.05.062
8 GLORIANT T , GREER A L . Al-based nanocrystalline composites by rapid solidification of Al-Ni-Sm alloys[J]. Nanostructured Materials, 1998, 10 (3): 389- 396.
doi: 10.1016/S0965-9773(98)00079-8
9 ZHANG C , LIU L , CHAN K C , et al. Wear behavior of HVOF-sprayed Fe-based amorphous coatings[J]. Intermetallics, 2012, 29 (29): 80- 85.
10 WEI X C , HUA M , XUE Z Y , et al. Evolution of friction-induced microstructure of SUS 304 metastable austenitic stainless steel and its influence on wear behavior[J]. Wear, 2009, 267, 1386- 1392.
doi: 10.1016/j.wear.2008.12.068
11 BOLELLI G , CANNILLO V , LUSVARGHI L , et al. Wear behavior of thermally sprayed ceramic oxide coatings[J]. Wear, 2006, 261, 1298- 1315.
doi: 10.1016/j.wear.2006.03.023
12 PENG Y , ZHANG C , ZHOU H , et al. On the bonding strength in thermally sprayed Fe-based amorphous coatings[J]. Surface and Coatings Technology, 2013, 218, 17- 22.
doi: 10.1016/j.surfcoat.2012.12.018
13 LI C Y , DING J Q , ZHU F P , et al. Indentation creep behavior of Fe-based amorphous coatings fabricated by high velocity oxy-fuel[J]. Journal of Non-Crystalline Solids, 2019, 503/504, 62- 68.
doi: 10.1016/j.jnoncrysol.2018.09.018
14 ZHENG Z B , ZHENG Y G , SUN W H , et al. Effect of applied potential on passivation and erosion-corrosion of a Fe-based amorphous metallic coating under slurry impingement[J]. Corrosion Science, 2014, 82, 115- 124.
doi: 10.1016/j.corsci.2014.01.004
15 MA H R , CHEN X Y , LI J W , et al. Fe-based amorphous coating with high corrosion and wear resistance[J]. Surface Engineering, 2016, 33 (1): 56- 62.
16 ZHANG C , CHAN K C , WU Y , et al. Pitting initiation in Fe-based amorphous coatings[J]. Acta Materialia, 2012, 60 (10): 4152- 4159.
doi: 10.1016/j.actamat.2012.04.005
17 DEMETRIOU M D , DUAN G , VEASEY C , et al. Amorphous Fe-based metal foam[J]. Script Materialia, 2007, 57 (1): 9- 12.
doi: 10.1016/j.scriptamat.2007.03.023
18 LIND M L , DUAN G , JOHNSON W J . Isoconfigurational elastic constants and liquid fragility of a bulk metallic glass forming alloy[J]. Physical Review Letters, 2006, 97, 015501.
doi: 10.1103/PhysRevLett.97.015501
19 ZHANG H , HU Y , HOU G L , et al. The effect of high-velocity oxy-fuel spraying parameters on microstructure, corrosion and wear resistance of Fe-based metallic glass coatings[J]. Journal of Non-Crystalline Solids, 2014, 406, 37- 44.
doi: 10.1016/j.jnoncrysol.2014.09.041
20 ZHANG J F , LIU M , SONG J B , et al. Microstructure and corrosion behavior of Fe-based amorphous coating prepared by HVOF[J]. Journal of Alloys and Compounds, 2017, 721, 506- 511.
doi: 10.1016/j.jallcom.2017.06.046
21 QIAO L , WU Y , HONG S , et al. Influence of the high-velocity oxygen-fuel spray parameters on the porosity and corrosion resistance of iron-based amorphous coatings[J]. Surface and Coatings Technology, 2019, 366, 296- 302.
doi: 10.1016/j.surfcoat.2019.03.046
22 WANG Y , JIANG S L , ZHENG Y G , et al. Effect of porosity sealing treatments on the corrosion resistance of high-velocity oxy-fuel (HVOF)-sprayed Fe-based amorphous metallic coatings[J]. Surface and Coatings Technology, 2011, 206, 1307- 1318.
doi: 10.1016/j.surfcoat.2011.08.045
23 ZHENG Z B , ZHENG Y G , SUN W H , et al. Effect of heat treatment on the structure, cavitation erosion and erosion-corrosion behavior of Fe-based amorphous coatings[J]. Tribology International, 2015, 90, 393- 403.
doi: 10.1016/j.triboint.2015.04.039
24 LI C Y , WANG H B , DING J Q , et al. Effects of heat treatment on HVOF-sprayed Fe-based amorphous coatings[J]. Surface Engineering, 2020, 1- 9.
25 YASIR M , ZHANG C , WANG W , et al. Wear behaviors of Fe-based amorphous composite coatings reinforced by Al2O3 particles in air and in NaCl solution[J]. Materials & Design, 2015, 88, 207- 213.
26 YASIR M , ZHANG C , WANG W , et al. Tribocorrosion behavior of Fe-based amorphous composite coating reinforced by Al2O3 in 3.5% NaCl solution[J]. Journal of Thermal Spray Technology, 2016, 25 (8): 1- 7.
doi: 10.1007/s11666-016-0457-x
27 YASIR M , ZHANG C , WANG W , et al. Enhancement of impact resistance of Fe-based amorphous coating by Al2O3 dispersion[J]. Materials Letters, 2016, 171, 112- 116.
doi: 10.1016/j.matlet.2016.02.060
28 ZHOU H , ZHANG C , WANG W , et al. Microstructure and mechanical properties of Fe-based amorphous composite coatings reinforced by stainless steel powders[J]. Journal of Materials Science and Technology, 2015, 31 (1): 43- 47.
29 XU P , ZHANG C , WANG W , et al. Pitting mechanism in a stainless steel-reinforced Fe-based amorphous coating[J]. Electrochimica Acta, 2016, 206, 61- 69.
doi: 10.1016/j.electacta.2016.04.130
30 MOVAHEDI B . On the prospects of using nanoindentation and wear test to study the mechanical behavior of Fe-based metallic glass coating reinforced by B4C nanoparticles[J]. Metallurgical and Materials Transactions A, 2017, 48 (3): 1474- 1483.
doi: 10.1007/s11661-016-3928-2
31 WANG G , XING C , TAO F , et al. Enhancement in the corrosion resistance of WC coatings by adding a Fe-based alloy in simulated seawater[J]. Surface and Coatings Technology, 2016, 305, 62- 66.
doi: 10.1016/j.surfcoat.2016.08.009
32 KOGA G Y , SCHULZ R , SAVOIE S , et al. Microstructure and wear behavior of Fe-based amorphous HVOF coatings produced from commercial precursors[J]. Surface and Coatings Technology, 2016, 309, 938- 944.
33 ZHANG C , ZHANG Z W , CHEN Q , et al. Effect of hydrostatic pressure on the corrosion behavior of HVOF-sprayed Fe-based amorphous coating[J]. Journal of Alloys and Compounds, 2018, 758, 108- 115.
doi: 10.1016/j.jallcom.2018.05.100
34 ZHANG H , GONG Y , ZHANG B , et al. Corrosion and algal adhesion behaviors of HVOF-Sprayed Fe-based amorphous coatings for marine applications[J]. Journal of Thermal Spray Technology, 2018, 28, 283- 290.
doi: 10.1007/s11666-018-0774-3
35 GUO S F , PAN F S , ZHANG H J , et al. Fe-based amorphous coating for corrosion protection of magnesium alloy[J]. Materials & Design, 2016, 624- 631.
36 王志健, 谢凤宽. HVAF—超音速火焰喷涂的最新发展[J]. 电刷镀技术, 2000, (3): 8- 10.
36 WANGZ J , XIE F K . HVAF—the latest development of supersonic flame spraying[J]. Electro Brush Plating Technology, 2000, (3): 8- 10.
37 GUO R Q , ZHANG C , CHEN Q , et al. Study of structure and corrosion resistance of Fe-based amorphous coatings prepared by HVAF and HVOF[J]. Corrosion Science, 2011, 53, 2351- 2356.
doi: 10.1016/j.corsci.2010.12.022
38 SADEGHI E , JOSHI S . Chlorine-induced high-temperature corrosion and erosion-corrosion of HVAF and HVOF-sprayed amorphous Fe-based coatings[J]. Surface and Coatings Technology, 2019, 371, 20- 35.
doi: 10.1016/j.surfcoat.2019.01.080
39 MA H R , LI J W , JIAO J , et al. Wear resistance of Fe-based amorphous coatings prepared by AC-HVAF and HVOF[J]. Materials Science and Technology, 2016, 33 (1): 65- 71.
40 WANG G , HUANG Z , XIAO P , et al. Spraying of Fe-based amorphous coating with high corrosion resistance by HVAF[J]. Journal of Manufacturing Processes, 2016, 22, 34- 38.
doi: 10.1016/j.jmapro.2016.01.009
41 HUANG F , KANG J J , YUE W , et al. Corrosion behavior of FeCrMoCBY amorphous coating fabricated by high-velocity air fuel spraying[J]. Journal of Thermal Spray Technology, 2019, 28, 842- 850.
doi: 10.1007/s11666-019-00843-7
42 GUO H , ZHANG S D , SUN W H , et al. Differences in dry sliding wear behavior between HVAF-sprayed amorphous steel and crystalline stainless steel coatings[J]. Journal of Materials Science and Technology, 2019, 35, 865- 874.
43 WANG Y , LI K Y , SCENINI F , et al. The effect of residual stress on the electrochemical corrosion behavior of Fe-based amorphous coatings in chloride-containing solutions[J]. Surface and Coatings Technology, 2016, 302, 27- 38.
doi: 10.1016/j.surfcoat.2016.05.034
44 WU J , ZHANG S D , SUN W H , et al. Enhanced corrosion resistance in Fe-based amorphous coatings through eliminating Cr-depleted zones[J]. Corrosion Science, 2018, 136, 161- 173.
doi: 10.1016/j.corsci.2018.03.005
45 JIAO J , LUO Q , WEI X , et al. Influence of sealing treatment on the corrosion resistance of Fe-based amorphous coatings in HCl solution[J]. Journal of Alloys and Compounds, 2017, 714, 356- 362.
doi: 10.1016/j.jallcom.2017.04.179
46 TIAN W P , YANG H W , ZHANG S D . Synergisticeffect of Mo, W, Mn and Cr on the passivation behavior of a Fe-based amorphous alloy coating[J]. Acta Metallurgica Sinica, 2018, 31, 308- 320.
47 WANG Y , LI M Y , ZHU F , et al. Pitting corrosion mechanism of Cl- and S2- induced by oxide inclusions in Fe-based amorphous metallic coatings[J]. Surface and Coatings Technology, 2020, 385, 125449.
doi: 10.1016/j.surfcoat.2020.125449
48 WU J , CUI J P , ZHENG Q J , et al. Insight into the corrosion evolution of Fe-based amorphous coatings under wet-dry cyclic conditions[J]. Electrochim Acta, 2019, 319, 966- 980.
doi: 10.1016/j.electacta.2019.07.058
49 WANG Y , LI M Y , SUN L L , et al. Environmentally assisted fracture behavior of Fe-based amorphous coatings in chloride-containing solutions[J]. Journal of Alloys and Compounds, 2017, 738, 37- 48.
50 GUO H , WU N C , ZHANG Y L , et al. Influence of coating thickness on the impact damage mode in Fe-based amorphous coatings[J]. Surface and Coatings Technology, 2020, 390, 125650.
doi: 10.1016/j.surfcoat.2020.125650
51 LIANG D D , MA J , CAI Y F , et al. Characterization and elevated-temperature tribological performance of AC-HVAF-sprayed Fe-based amorphous coating[J]. Surface and Coatings Technology, 2020, 387, 125535.
doi: 10.1016/j.surfcoat.2020.125535
52 ZHANG L M , YAN M C , ZHANG S D , et al. Significantly enhanced resistance to SRB corrosion via Fe-based amorphous coating designed with high dose corrosion-resistant and antibacterial elements[J]. Corrosion Science, 2020, 164, 108305.
doi: 10.1016/j.corsci.2019.108305
53 YANG Q , LI R , LIU Z Q , et al. Compositional dependence of microstructure and tribological properties of plasma sprayed Fe-based metallic glass coatings[J]. Science in China Series E: Technological Sciences, 2012, 55 (5): 1335- 1342.
doi: 10.1007/s11431-012-4821-x
54 HUANG Y G , GUO Y Z , FAN H B , et al. Synthesis of Fe-Cr-Mo-C-B amorphous coating with high corrosion resistance[J]. Materials Letters, 2012, 89, 229- 232.
doi: 10.1016/j.matlet.2012.08.114
55 JIANG C P , XING Y Z , ZHANG F Y , et al. Microstructure and corrosion resistance of Fe/Mo composite amorphous coatings prepared by air plasma spraying[J]. International Journal of Minerals, Metallurgy and Materials, 2012, 19 (7): 657- 662.
doi: 10.1007/s12613-012-0609-z
56 JIANG C P , LIU W Q , WANG G , et al. The corrosion behaviours of plasma-sprayed Fe-based amorphous coatings[J]. Surface Engineering, 2018, 34 (8): 634- 639.
doi: 10.1080/02670844.2017.1319647
57 BIJALWAN P , KUMAR A , NAYAK S K , et al. Microstructure and corrosion behavior of Fe-based amorphous composite coatings developed by atmospheric plasma spraying[J]. Journal of Alloys and Compounds, 2019, 796, 47- 54.
doi: 10.1016/j.jallcom.2019.05.046
58 CHU Z H , DENG W X , ZHENG X W , et al. Corrosion mechanism of plasma-sprayed Fe-based amorphous coatings with high corrosion resistance[J]. Journal of Thermal Spray Technology, 2020, 29, 1111- 1118.
doi: 10.1007/s11666-020-01030-9
59 ZHANG H , XIE Y T , HUANG L P , et al. Effect of feedstock particle sizes on wear resistance of plasma sprayed Fe-based amorphous coatings[J]. Surface and Coatings Technology, 2014, 258, 495- 502.
doi: 10.1016/j.surfcoat.2014.08.050
60 CHENG J B , ZHANG Q , FENG Y , et al. Microstructure and sliding wear behaviors of plasma-sprayed Fe-based amorphous coatings in 3.5 wt% NaCl solution[J]. Journal of Thermal Spray Technology, 2019, 28, 1049- 1059.
doi: 10.1007/s11666-019-00866-0
61 QIAO J H , JIN X , QIN J H , et al. A super-hard superhydrophobic Fe-based amorphous alloy coating[J]. Surface and Coatings Technology, 2018, 334, 286- 291.
doi: 10.1016/j.surfcoat.2017.11.046
62 ZHOU Y Y , MA G Z , WANG H D , et al. Fabrication and characterization of supersonic plasma sprayed Fe-based amorphous metallic coatings[J]. Materials & Design, 2016, 110, 332- 339.
63 MA G Z , CHEN S Y , HE P F , et al. Particle in-flight status and its influence on the properties of supersonic plasma-sprayed Fe-based amorphous metallic coatings[J]. Surface and Coatings Technology, 2019, 358, 394- 403.
doi: 10.1016/j.surfcoat.2018.11.049
64 KATAKAM S , SANTHANAKRISHNAN S , DAHOTRE N B . Fe-Based amorphous coatings on AISI 4130 structural steel for corrosion resistance[J]. JOM, 2012, 64 (6): 709- 715.
doi: 10.1007/s11837-012-0338-9
65 CHEN Q J , GUO S B , YANG X J , et al. Study on corrosion resistance of Fe-based amorphous coating by laser cladding in hydrochloric acid[J]. Physics Procedia, 2013, 50, 297- 303.
doi: 10.1016/j.phpro.2013.11.048
66 ZHU Y Y , LI Z G , LI R F , et al. Microstructure and property of Fe-Co-B-Si-C-Nb amorphous composite coating fabricated by laser cladding process[J]. Applied Surface Science, 2013, 280, 50- 54.
doi: 10.1016/j.apsusc.2013.04.077
67 WA NG , Y F , LU Q L , XIAO L J , et al. Laser cladding Fe-Cr-Si-P amorphous coatings on 304L stainless[J]. Rare Metal Materials and Engineering, 2014, 43 (2): 274- 277.
doi: 10.1016/S1875-5372(14)60057-6
68 IBRAHIM M Z , SARHAN A A D , KUO T Y , et al. Investigate the effects of the substrate surface roughness on the geometry, phase transformation, and hardness of laser-cladded Fe-based metallic glass coating[J]. International Journal of Advanced Manufacturing, 2018, 98, 1977- 1987.
doi: 10.1007/s00170-018-2354-6
69 ZHANG Q , ZHANG P L , YAN H , et al. Magnetic-field-assisted laser cladding in the preparation of a crack-free Fe-Cr-Mo-C-Y-B amorphous coating on steel[J]. Philosophical Magazine Letters, 2020, 100 (2): 86- 93.
doi: 10.1080/09500839.2020.1725245
70 PAUL T , ALAVI S H , BISWAS S , et al. Microstructure and wear behavior of laser clad multi-layered Fe-based amorphous coatings on steel substrates[J]. Lasers in Manufacturingand Materials Processing, 2015, 2 (4): 231- 241.
doi: 10.1007/s40516-015-0017-0
71 JI X L , LUO C Y , SUN Y , et al. Corrosive wear of multi-layer Fe-based coatings laser cladded from amorphous powders[J]. Wear, 2019, 438/439, 203133.
72 LU Y Z , HUANG G K , WANG Y Z , et al. Crack-free Fe-based amorphous coating synthesized by laser cladding[J]. Materials Letters, 2018, 210, 46- 50.
doi: 10.1016/j.matlet.2017.08.125
73 KOGA G Y , NOGUEIRA R P , ROCHE V , et al. Corrosion properties of Fe-Cr-Nb-B amorphous alloys and coatings[J]. Surface and Coatings Technology, 2014, 254, 238- 243.
doi: 10.1016/j.surfcoat.2014.06.022
74 HENAO J , CONCUSTELL A , CANO I G , et al. Influence of Cold Gas Spray process conditions on the microstructure of Fe-based amorphous coatings[J]. Journal of Alloys and Compounds, 2015, 622, 995- 999.
doi: 10.1016/j.jallcom.2014.11.037
75 SU J , KANG J J , YUE W , et al. Comparison of tribological behavior of Fe-based metallic glass coatings fabricated by cold spraying and high velocity air fuel spraying[J]. Journal of Non-Crystalline Solids, 2019, 522, 119582.
doi: 10.1016/j.jnoncrysol.2019.119582
76 NING W C , ZHAI H M , XIAO R Z , et al. The Corrosion resistance mechanism of Fe-based amorphous coatings synthesised by detonation gun spraying[J]. Journal of Materials Engineering and Performance, 2020, 29, 3921- 3929.
doi: 10.1007/s11665-020-04876-w
77 LI X Q , ZHAI H M , LI W S , et al. Dry sliding wear behaviors of Fe-based amorphous metallic coating synthesized by D-gun spray[J]. Journal of Non-Crystalline Solids, 2020, 537, 120018.
doi: 10.1016/j.jnoncrysol.2020.120018
78 唐坚, 连法增, 于敏, 等. 非晶Fe78Si9B13磁粉芯的制备及性能研究[J]. 功能材料, 2012, 43, 96- 98.
78 TANG J , LIAN F Z , YU M , et al. Preparation and investigation of magnetic properties of amorphous Fe78Si9B13 powder core[J]. Journal of Functional Materials, 2012, 43, 96- 98.
79 ZHENG Y Y , WANG Y G , XIA G T . Amorphous soft magnetic composite-cores with various orientations of the powder-flakes[J]. Journal of Magnetism and Magnetic Materials, 2015, 396, 97- 101.
doi: 10.1016/j.jmmm.2015.08.036
80 ZHENG Y Y , WANG Y G . Magnetic properties of structure ordered cores composited with Fe78Si9B13 amorphous and pure iron powders[J]. Journal of Materials Science: Materials in Electronics, 2016, 27, 2830- 2835.
doi: 10.1007/s10854-015-4097-6
81 LI Z T , DONG Y Q , LI F S , et al. Fe78Si9B13 amorphous powder core with improved magnetic properties[J]. Journal of Materials Science: Materials in Electronics, 2017, 28, 1180- 1185.
doi: 10.1007/s10854-016-5644-5
82 DONG Y Q , LI Z C , LIU M , et al. The effects of field annealing on the magnetic properties of FeSiB amorphous powder cores[J]. Materials Research Bulletin, 2017, 96, 160- 163.
doi: 10.1016/j.materresbull.2017.04.030
83 LI Z C , DONG Y Q , PAULY S , et al. Enhanced soft magnetic properties of Fe-based amorphous powder cores by longitude magnetic field annealing[J]. Journal of Alloys and Compounds, 2017, 706, 1- 6.
doi: 10.1016/j.jallcom.2017.02.202
84 YEKATA E B , TAGHVAEI A H , SHARIFI S . The effect of metalloid content on glass forming ability, thermal stability and magnetic properties of Fe-Ta-Si-C powders prepared by mechanical alloying[J]. Journal of Non-Crystalline Solids, 2018, 500, 110- 120.
doi: 10.1016/j.jnoncrysol.2018.06.040
85 SUN H B , GUO Z L , LIANG Z K , et al. Enhancements of preparation efficiency and magnetic properties for Fe-based amorphous magnetic flake powder cores upon the adoption of a novel double-paralleled slits nozzle[J]. Journal of Magnetism and Magnetic Materials, 2020, 500, 166358.
doi: 10.1016/j.jmmm.2019.166358
86 SUN H B , WANG C , WANG J H , et al. Fe-based amorphous powder cores with low core loss and high permeability fabricated using the core-shell structured magnetic flaky powders[J]. Journal of Magnetism and Magnetic Materials, 2020, 502, 166548.
doi: 10.1016/j.jmmm.2020.166548
87 WANG C , GUO Z L , WANG J , et al. Industry-oriented Fe-based amorphous soft magnetic composites with SiO2- coated layer by one-pot high-efficient synthesis method[J]. Journal of Magnetism and Magnetic Materials, 2020, 509, 166924.
doi: 10.1016/j.jmmm.2020.166924
88 YEKTA E B , TAGHVAEI A H , SHARAFI S . Glass formation and magnetic study of new Fe70Ta5Si10C15 powders prepared by mechanical alloying with high thermal stability[J]. Powder Technology, 2017, 322, 241- 249.
doi: 10.1016/j.powtec.2017.08.059
89 HE J H , WANG W , WANG A M , et al. Annealing temperature effect on microstructure, magnetic and microwave properties of Fe-based amorphous alloy powders[J]. Journal of Magnetism and Magnetic Materials, 2012, 324, 2902- 2906.
doi: 10.1016/j.jmmm.2012.04.036
90 ALVAREZ K L , BAGHBADERANI H A , MARTÍN J M , et al. Novel Fe-based amorphous and nanocrystalline powder cores for high-frequency power conversion[J]. Journal of Magnetism and Magnetic Materials, 2020, 501, 166457.
doi: 10.1016/j.jmmm.2020.166457
91 XU P P , WANG R W , WEI D , et al. Crystallization kinetics and magnetic properties of FeSiCr amorphous alloy powder cores[J]. Journal of Magnetism and Magnetic Materials, 2015, 385, 326- 330.
doi: 10.1016/j.jmmm.2015.03.038
92 王湘粤, 卢志超, 黄纯波, 等. 具有优异高频特性非晶磁粉芯的制备及磁性能研究[J]. 粉末冶金工业, 2013, 23 (4): 22- 26.
doi: 10.3969/j.issn.1006-6543.2013.04.004
92 WANG X Y , LU Z C , HUANG C B , et al. Preparation and magnetic properties of amorphous powder cores with excellent high-frequency magnetic properties[J]. Powder Metallurgy Industry, 2013, 23 (4): 22- 26.
doi: 10.3969/j.issn.1006-6543.2013.04.004
93 GUO J J , DONG Y Q , MAN Q K , et al. Fabrication of FeSiBPNb amorphous powder cores with high DC-bias and excellent soft magnetic properties[J]. Journal of Magnetism and Magnetic Materials, 2016, 401, 432- 435.
doi: 10.1016/j.jmmm.2015.10.069
94 CHANG C T , DONG Y Q , LIU M , et al. Low core loss combined with high permeability for Fe-based amorphous powder cores produced by gas atomization powders[J]. Journal of Magnetism and Magnetic Materials, 2018, 766, 959- 963.
95 LIU M , HUANG K Y , LIU L , et al. Fabrication and magnetic properties of novel Fe-based amorphous powder and corresponding powder cores[J]. Journal of Materials Science: Materials in Electronics, 2018, 29, 6092- 6097.
doi: 10.1007/s10854-018-8584-4
96 ZHOU B , DONG Y Q , LIU L , et al. The core-shell structured Fe-based amorphous magnetic powder cores with excellent magnetic properties[J]. Advanced Powder Technology, 2019, 30, 1504- 1512.
doi: 10.1016/j.apt.2019.04.027
97 ZHOU B , CHI Q , DONG Y Q , et al. Effects of annealing on the magnetic properties of Fe-based amorphous powder cores with inorganic-organic hybrid insulating layer[J]. Journal of Magnetism and Magnetic Materials, 2020, 494, 165827.
doi: 10.1016/j.jmmm.2019.165827
98 ZHANG Y Q , DONG Y Q , ZHOU B , et al. Poly-para-xylylene enhanced Fe-based amorphous powder cores with improved soft magnetic properties via chemical vapor deposition[J]. Materials & Design, 2020, 191, 108650.
99 BAI Y W , BIAN X F , QIN J Y , et al. The relationship between structures and magnetic properties of Fe-B amorphous nanoparticles[J]. Journal of Non-Crystalline Solids, 2020, 528, 119723.
doi: 10.1016/j.jnoncrysol.2019.119723
100 KATAKAM S , HWANG J Y , PAITAL S , et al. In situ laser synthesis of Fe-based amorphous matrix composite coating on structural steel[J]. Metallurgical and Materials Transactions A, 2012, 43, 4957- 4965.
doi: 10.1007/s11661-012-1312-4
101 PAULY S , LÖBER L , PETTERS R , et al. Processing metallic glasses by selective laser melting[J]. Materials Today, 2013, 16 (1/2): 37- 41.
102 JUNG H Y , CHOI S J , PRASHANTH K G , et al. Fabrication of Fe-based bulk metallic glass by selective laser melting: a parameter study[J]. Materials & Design, 2015, 86, 703- 708.
103 OUYANG D , XING W , LI N , et al. Structural evolutions in 3D-printed Fe-based metallic glass fabricated by selective laser melting[J]. Additive Manufacturing, 2018, 23, 246- 252.
doi: 10.1016/j.addma.2018.08.020
104 XING W , OUYANG D , LI N , et al. Insight into micro-cracking in 3D-printed Fe-based BMGs by selective laser melting[J]. Intermetallics, 2018, 103, 101- 106.
doi: 10.1016/j.intermet.2018.10.011
105 ZOU Y M , WU Y S , LI K F , et al. Selective laser melting of crack-free Fe-based bulk metallic glass via chessboard scanning strategy[J]. Materials Letters, 2020, 272, 127824.
doi: 10.1016/j.matlet.2020.127824
106 NONG X D , ZHOU X L , REN Y X . Fabrication and characterization of Fe-based metallic glasses by selective laser melting[J]. Optics and Laser Technology, 2019, 109, 20- 26.
doi: 10.1016/j.optlastec.2018.07.059
107 ZOU Y M , QIU Z G , TAN C L , et al. Microstructure and mechanical properties of Fe-based bulk metallic glass composites fabricated by selective laser melting[J]. Journal of Non-Crystalline Solids, 2020, 538, 120046.
doi: 10.1016/j.jnoncrysol.2020.120046
108 LIANG S X , WANG X Q , ZHANG W C , et al. Selective laser melting manufactured porous Fe-based metallic glass matrix composite with remarkable catalytic activity and reusability[J]. Applied Materials Today, 2020, 19, 100543.
doi: 10.1016/j.apmt.2019.100543
109 XIE S H , HUANG P , KRUZIC J J , et al. A highly efficient degradation mechanism of methyl orange using Fe-based metallic glass powders[J]. Scientific Reports, 2016, 6, 21947.
doi: 10.1038/srep21947
110 WANG F , WANG H , ZHANG H F , et al. Superior azo-dye degradation of Fe-Si-B-P amorphous powders with graphene oxide addition[J]. Journal of Non-Crystalline Solids, 2018, 491, 34- 42.
doi: 10.1016/j.jnoncrysol.2018.03.048
111 LI X L , WU Y Y , YANG S G , et al. Preparation and degradation property of magnetic FePBCSi amorphous alloy powder[J]. Journal of Non-Crystalline Solids, 2019, 503/504, 284- 287.
doi: 10.1016/j.jnoncrysol.2018.10.010
112 SI J J , GU J L , LUAN H W , et al. Porous composite architecture bestows Fe-based glassy alloy with high and ultra-durable degradation activity in decomposing azo dye[J]. Journal of Hazardous Materials, 2020, 388, 122043.
doi: 10.1016/j.jhazmat.2020.122043
113 LV Z W , YAN Y Q , YUAN C C , et al. Making Fe-Si-B amorphous powders as an effective catalyst for dye degradation by high-energy ultrasonic vibration[J]. Materials & Design, 2020, 294, 108876.
[1] 姜明明, 孙树峰, 王津, 王萍萍, 孙晓雨, 邵晶, 刘纪新, 曹爱霞, 孙维丽, 陈希章. 激光熔覆制备高熵合金涂层耐磨性研究进展[J]. 材料工程, 2022, 50(3): 18-32.
[2] 曲丽丹, 韩斌慧, 吕云卓, 白钰枝. 激光3D打印非晶合金晶化体积分数的理论预测[J]. 材料工程, 2020, 48(7): 133-138.
[3] 张艳茹, 杨春晟, 贾进铎. 离子选择性电极测定磁性材料中微量氟[J]. 材料工程, 2002, 0(12): 14-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn