1 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730000, China 2 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730000, China
Amorphous alloy powder can be obtained by rapid cooling atomization of certain alloy droplets. Fe-based amorphous alloy powder has been favored because of its low production cost and wide application range. Moreover, the application of Fe-based amorphous alloy powder provides a new solution for the application of bulk Fe-based amorphous alloys.The research progress of Fe-based amorphous alloy powder was reviewed, and its research status was summarized in four aspects: coating preparation, magnetic materials, laser 3D printing, and wastewater treatment. The advantages of Fe-based amorphous alloy powder in various fields were analyzed, and the research directions of Fe-based amorphous alloy powder in the fields of preparing high-quality coatings, reuse of aging magnetic powders and additive manufacturing were pointed out. Moreover, the application prospects of Fe-based amorphous alloy powder as sensing, control and other functional devices were prospected.In addition, it also shows great application potential in the fields of small size, low dimentional materials such as thin films and flexible electronics.
MIURA H , ISA S , OMURO K . Production of amorphous iron-nickel based alloys by flame-spray quenching and coatings on metal substrates[J]. Materials Transactions Jim, 1984, 25 (4): 284- 291.
doi: 10.2320/matertrans1960.25.284
2
KISHITAKE K , ERA H , OTSUBO F . Thermal-sprayed Fe-10Cr-13P-7C amorphous coatings prossessing excellent corrosion resistance[J]. Journal of Thermal Spray Technology, 1996, 5 (4): 476- 477.
doi: 10.1007/BF02645279
3
OTSUBO F , ERA H , KISHITAKE K . Formation of amorphous Fe-Cr-Mo-8P-2C coatings by the high velocity oxy-fuel process[J]. Journal of Thermal Spray Technology, 2000, 9 (4): 494- 498.
doi: 10.1007/BF02608552
4
RAYBOULD D , TAN K S . Factors affecting the magnetic properties of consolidated amorphous powder cores[J]. Journal of Materials Science, 1985, 20 (8): 2776- 2786.
doi: 10.1007/BF00553039
5
ZHENG B , ZHOU Y , SMUGERESKY J E , et al. Processing and behavior of Fe-based metallic glass components via laser-engineered net shaping[J]. Metallurgical and Materials Transactions A, 2009, 40 (5): 1235- 1245.
doi: 10.1007/s11661-009-9828-y
6
WANG J Q , LIU Y H , CHEN M W , et al. Rapid degradation of azo dye by Fe-based metallic glass powder[J]. Advanced Functional Materials, 2012, 22 (12): 2567- 2570.
doi: 10.1002/adfm.201103015
7
WANG Y , ZHENG Y G , KE W , et al. Slurry erosion-corrosion behaviour of high-velocity oxy-fuel (HVOF) sprayed Fe-based amorphous metallic coatings for marine pump in sand-containing NaCl solutions[J]. Corrosion Science, 2011, 53 (10): 3177- 3185.
doi: 10.1016/j.corsci.2011.05.062
8
GLORIANT T , GREER A L . Al-based nanocrystalline composites by rapid solidification of Al-Ni-Sm alloys[J]. Nanostructured Materials, 1998, 10 (3): 389- 396.
doi: 10.1016/S0965-9773(98)00079-8
9
ZHANG C , LIU L , CHAN K C , et al. Wear behavior of HVOF-sprayed Fe-based amorphous coatings[J]. Intermetallics, 2012, 29 (29): 80- 85.
10
WEI X C , HUA M , XUE Z Y , et al. Evolution of friction-induced microstructure of SUS 304 metastable austenitic stainless steel and its influence on wear behavior[J]. Wear, 2009, 267, 1386- 1392.
doi: 10.1016/j.wear.2008.12.068
11
BOLELLI G , CANNILLO V , LUSVARGHI L , et al. Wear behavior of thermally sprayed ceramic oxide coatings[J]. Wear, 2006, 261, 1298- 1315.
doi: 10.1016/j.wear.2006.03.023
12
PENG Y , ZHANG C , ZHOU H , et al. On the bonding strength in thermally sprayed Fe-based amorphous coatings[J]. Surface and Coatings Technology, 2013, 218, 17- 22.
doi: 10.1016/j.surfcoat.2012.12.018
13
LI C Y , DING J Q , ZHU F P , et al. Indentation creep behavior of Fe-based amorphous coatings fabricated by high velocity oxy-fuel[J]. Journal of Non-Crystalline Solids, 2019, 503/504, 62- 68.
doi: 10.1016/j.jnoncrysol.2018.09.018
14
ZHENG Z B , ZHENG Y G , SUN W H , et al. Effect of applied potential on passivation and erosion-corrosion of a Fe-based amorphous metallic coating under slurry impingement[J]. Corrosion Science, 2014, 82, 115- 124.
doi: 10.1016/j.corsci.2014.01.004
15
MA H R , CHEN X Y , LI J W , et al. Fe-based amorphous coating with high corrosion and wear resistance[J]. Surface Engineering, 2016, 33 (1): 56- 62.
16
ZHANG C , CHAN K C , WU Y , et al. Pitting initiation in Fe-based amorphous coatings[J]. Acta Materialia, 2012, 60 (10): 4152- 4159.
doi: 10.1016/j.actamat.2012.04.005
17
DEMETRIOU M D , DUAN G , VEASEY C , et al. Amorphous Fe-based metal foam[J]. Script Materialia, 2007, 57 (1): 9- 12.
doi: 10.1016/j.scriptamat.2007.03.023
18
LIND M L , DUAN G , JOHNSON W J . Isoconfigurational elastic constants and liquid fragility of a bulk metallic glass forming alloy[J]. Physical Review Letters, 2006, 97, 015501.
doi: 10.1103/PhysRevLett.97.015501
19
ZHANG H , HU Y , HOU G L , et al. The effect of high-velocity oxy-fuel spraying parameters on microstructure, corrosion and wear resistance of Fe-based metallic glass coatings[J]. Journal of Non-Crystalline Solids, 2014, 406, 37- 44.
doi: 10.1016/j.jnoncrysol.2014.09.041
20
ZHANG J F , LIU M , SONG J B , et al. Microstructure and corrosion behavior of Fe-based amorphous coating prepared by HVOF[J]. Journal of Alloys and Compounds, 2017, 721, 506- 511.
doi: 10.1016/j.jallcom.2017.06.046
21
QIAO L , WU Y , HONG S , et al. Influence of the high-velocity oxygen-fuel spray parameters on the porosity and corrosion resistance of iron-based amorphous coatings[J]. Surface and Coatings Technology, 2019, 366, 296- 302.
doi: 10.1016/j.surfcoat.2019.03.046
22
WANG Y , JIANG S L , ZHENG Y G , et al. Effect of porosity sealing treatments on the corrosion resistance of high-velocity oxy-fuel (HVOF)-sprayed Fe-based amorphous metallic coatings[J]. Surface and Coatings Technology, 2011, 206, 1307- 1318.
doi: 10.1016/j.surfcoat.2011.08.045
23
ZHENG Z B , ZHENG Y G , SUN W H , et al. Effect of heat treatment on the structure, cavitation erosion and erosion-corrosion behavior of Fe-based amorphous coatings[J]. Tribology International, 2015, 90, 393- 403.
doi: 10.1016/j.triboint.2015.04.039
24
LI C Y , WANG H B , DING J Q , et al. Effects of heat treatment on HVOF-sprayed Fe-based amorphous coatings[J]. Surface Engineering, 2020, 1- 9.
25
YASIR M , ZHANG C , WANG W , et al. Wear behaviors of Fe-based amorphous composite coatings reinforced by Al2O3 particles in air and in NaCl solution[J]. Materials & Design, 2015, 88, 207- 213.
26
YASIR M , ZHANG C , WANG W , et al. Tribocorrosion behavior of Fe-based amorphous composite coating reinforced by Al2O3 in 3.5% NaCl solution[J]. Journal of Thermal Spray Technology, 2016, 25 (8): 1- 7.
doi: 10.1007/s11666-016-0457-x
27
YASIR M , ZHANG C , WANG W , et al. Enhancement of impact resistance of Fe-based amorphous coating by Al2O3 dispersion[J]. Materials Letters, 2016, 171, 112- 116.
doi: 10.1016/j.matlet.2016.02.060
28
ZHOU H , ZHANG C , WANG W , et al. Microstructure and mechanical properties of Fe-based amorphous composite coatings reinforced by stainless steel powders[J]. Journal of Materials Science and Technology, 2015, 31 (1): 43- 47.
29
XU P , ZHANG C , WANG W , et al. Pitting mechanism in a stainless steel-reinforced Fe-based amorphous coating[J]. Electrochimica Acta, 2016, 206, 61- 69.
doi: 10.1016/j.electacta.2016.04.130
30
MOVAHEDI B . On the prospects of using nanoindentation and wear test to study the mechanical behavior of Fe-based metallic glass coating reinforced by B4C nanoparticles[J]. Metallurgical and Materials Transactions A, 2017, 48 (3): 1474- 1483.
doi: 10.1007/s11661-016-3928-2
31
WANG G , XING C , TAO F , et al. Enhancement in the corrosion resistance of WC coatings by adding a Fe-based alloy in simulated seawater[J]. Surface and Coatings Technology, 2016, 305, 62- 66.
doi: 10.1016/j.surfcoat.2016.08.009
32
KOGA G Y , SCHULZ R , SAVOIE S , et al. Microstructure and wear behavior of Fe-based amorphous HVOF coatings produced from commercial precursors[J]. Surface and Coatings Technology, 2016, 309, 938- 944.
33
ZHANG C , ZHANG Z W , CHEN Q , et al. Effect of hydrostatic pressure on the corrosion behavior of HVOF-sprayed Fe-based amorphous coating[J]. Journal of Alloys and Compounds, 2018, 758, 108- 115.
doi: 10.1016/j.jallcom.2018.05.100
34
ZHANG H , GONG Y , ZHANG B , et al. Corrosion and algal adhesion behaviors of HVOF-Sprayed Fe-based amorphous coatings for marine applications[J]. Journal of Thermal Spray Technology, 2018, 28, 283- 290.
doi: 10.1007/s11666-018-0774-3
35
GUO S F , PAN F S , ZHANG H J , et al. Fe-based amorphous coating for corrosion protection of magnesium alloy[J]. Materials & Design, 2016, 624- 631.
WANGZ J , XIE F K . HVAF—the latest development of supersonic flame spraying[J]. Electro Brush Plating Technology, 2000, (3): 8- 10.
37
GUO R Q , ZHANG C , CHEN Q , et al. Study of structure and corrosion resistance of Fe-based amorphous coatings prepared by HVAF and HVOF[J]. Corrosion Science, 2011, 53, 2351- 2356.
doi: 10.1016/j.corsci.2010.12.022
38
SADEGHI E , JOSHI S . Chlorine-induced high-temperature corrosion and erosion-corrosion of HVAF and HVOF-sprayed amorphous Fe-based coatings[J]. Surface and Coatings Technology, 2019, 371, 20- 35.
doi: 10.1016/j.surfcoat.2019.01.080
39
MA H R , LI J W , JIAO J , et al. Wear resistance of Fe-based amorphous coatings prepared by AC-HVAF and HVOF[J]. Materials Science and Technology, 2016, 33 (1): 65- 71.
40
WANG G , HUANG Z , XIAO P , et al. Spraying of Fe-based amorphous coating with high corrosion resistance by HVAF[J]. Journal of Manufacturing Processes, 2016, 22, 34- 38.
doi: 10.1016/j.jmapro.2016.01.009
41
HUANG F , KANG J J , YUE W , et al. Corrosion behavior of FeCrMoCBY amorphous coating fabricated by high-velocity air fuel spraying[J]. Journal of Thermal Spray Technology, 2019, 28, 842- 850.
doi: 10.1007/s11666-019-00843-7
42
GUO H , ZHANG S D , SUN W H , et al. Differences in dry sliding wear behavior between HVAF-sprayed amorphous steel and crystalline stainless steel coatings[J]. Journal of Materials Science and Technology, 2019, 35, 865- 874.
43
WANG Y , LI K Y , SCENINI F , et al. The effect of residual stress on the electrochemical corrosion behavior of Fe-based amorphous coatings in chloride-containing solutions[J]. Surface and Coatings Technology, 2016, 302, 27- 38.
doi: 10.1016/j.surfcoat.2016.05.034
44
WU J , ZHANG S D , SUN W H , et al. Enhanced corrosion resistance in Fe-based amorphous coatings through eliminating Cr-depleted zones[J]. Corrosion Science, 2018, 136, 161- 173.
doi: 10.1016/j.corsci.2018.03.005
45
JIAO J , LUO Q , WEI X , et al. Influence of sealing treatment on the corrosion resistance of Fe-based amorphous coatings in HCl solution[J]. Journal of Alloys and Compounds, 2017, 714, 356- 362.
doi: 10.1016/j.jallcom.2017.04.179
46
TIAN W P , YANG H W , ZHANG S D . Synergisticeffect of Mo, W, Mn and Cr on the passivation behavior of a Fe-based amorphous alloy coating[J]. Acta Metallurgica Sinica, 2018, 31, 308- 320.
47
WANG Y , LI M Y , ZHU F , et al. Pitting corrosion mechanism of Cl- and S2- induced by oxide inclusions in Fe-based amorphous metallic coatings[J]. Surface and Coatings Technology, 2020, 385, 125449.
doi: 10.1016/j.surfcoat.2020.125449
48
WU J , CUI J P , ZHENG Q J , et al. Insight into the corrosion evolution of Fe-based amorphous coatings under wet-dry cyclic conditions[J]. Electrochim Acta, 2019, 319, 966- 980.
doi: 10.1016/j.electacta.2019.07.058
49
WANG Y , LI M Y , SUN L L , et al. Environmentally assisted fracture behavior of Fe-based amorphous coatings in chloride-containing solutions[J]. Journal of Alloys and Compounds, 2017, 738, 37- 48.
50
GUO H , WU N C , ZHANG Y L , et al. Influence of coating thickness on the impact damage mode in Fe-based amorphous coatings[J]. Surface and Coatings Technology, 2020, 390, 125650.
doi: 10.1016/j.surfcoat.2020.125650
51
LIANG D D , MA J , CAI Y F , et al. Characterization and elevated-temperature tribological performance of AC-HVAF-sprayed Fe-based amorphous coating[J]. Surface and Coatings Technology, 2020, 387, 125535.
doi: 10.1016/j.surfcoat.2020.125535
52
ZHANG L M , YAN M C , ZHANG S D , et al. Significantly enhanced resistance to SRB corrosion via Fe-based amorphous coating designed with high dose corrosion-resistant and antibacterial elements[J]. Corrosion Science, 2020, 164, 108305.
doi: 10.1016/j.corsci.2019.108305
53
YANG Q , LI R , LIU Z Q , et al. Compositional dependence of microstructure and tribological properties of plasma sprayed Fe-based metallic glass coatings[J]. Science in China Series E: Technological Sciences, 2012, 55 (5): 1335- 1342.
doi: 10.1007/s11431-012-4821-x
54
HUANG Y G , GUO Y Z , FAN H B , et al. Synthesis of Fe-Cr-Mo-C-B amorphous coating with high corrosion resistance[J]. Materials Letters, 2012, 89, 229- 232.
doi: 10.1016/j.matlet.2012.08.114
55
JIANG C P , XING Y Z , ZHANG F Y , et al. Microstructure and corrosion resistance of Fe/Mo composite amorphous coatings prepared by air plasma spraying[J]. International Journal of Minerals, Metallurgy and Materials, 2012, 19 (7): 657- 662.
doi: 10.1007/s12613-012-0609-z
56
JIANG C P , LIU W Q , WANG G , et al. The corrosion behaviours of plasma-sprayed Fe-based amorphous coatings[J]. Surface Engineering, 2018, 34 (8): 634- 639.
doi: 10.1080/02670844.2017.1319647
57
BIJALWAN P , KUMAR A , NAYAK S K , et al. Microstructure and corrosion behavior of Fe-based amorphous composite coatings developed by atmospheric plasma spraying[J]. Journal of Alloys and Compounds, 2019, 796, 47- 54.
doi: 10.1016/j.jallcom.2019.05.046
58
CHU Z H , DENG W X , ZHENG X W , et al. Corrosion mechanism of plasma-sprayed Fe-based amorphous coatings with high corrosion resistance[J]. Journal of Thermal Spray Technology, 2020, 29, 1111- 1118.
doi: 10.1007/s11666-020-01030-9
59
ZHANG H , XIE Y T , HUANG L P , et al. Effect of feedstock particle sizes on wear resistance of plasma sprayed Fe-based amorphous coatings[J]. Surface and Coatings Technology, 2014, 258, 495- 502.
doi: 10.1016/j.surfcoat.2014.08.050
60
CHENG J B , ZHANG Q , FENG Y , et al. Microstructure and sliding wear behaviors of plasma-sprayed Fe-based amorphous coatings in 3.5 wt% NaCl solution[J]. Journal of Thermal Spray Technology, 2019, 28, 1049- 1059.
doi: 10.1007/s11666-019-00866-0
61
QIAO J H , JIN X , QIN J H , et al. A super-hard superhydrophobic Fe-based amorphous alloy coating[J]. Surface and Coatings Technology, 2018, 334, 286- 291.
doi: 10.1016/j.surfcoat.2017.11.046
62
ZHOU Y Y , MA G Z , WANG H D , et al. Fabrication and characterization of supersonic plasma sprayed Fe-based amorphous metallic coatings[J]. Materials & Design, 2016, 110, 332- 339.
63
MA G Z , CHEN S Y , HE P F , et al. Particle in-flight status and its influence on the properties of supersonic plasma-sprayed Fe-based amorphous metallic coatings[J]. Surface and Coatings Technology, 2019, 358, 394- 403.
doi: 10.1016/j.surfcoat.2018.11.049
64
KATAKAM S , SANTHANAKRISHNAN S , DAHOTRE N B . Fe-Based amorphous coatings on AISI 4130 structural steel for corrosion resistance[J]. JOM, 2012, 64 (6): 709- 715.
doi: 10.1007/s11837-012-0338-9
65
CHEN Q J , GUO S B , YANG X J , et al. Study on corrosion resistance of Fe-based amorphous coating by laser cladding in hydrochloric acid[J]. Physics Procedia, 2013, 50, 297- 303.
doi: 10.1016/j.phpro.2013.11.048
66
ZHU Y Y , LI Z G , LI R F , et al. Microstructure and property of Fe-Co-B-Si-C-Nb amorphous composite coating fabricated by laser cladding process[J]. Applied Surface Science, 2013, 280, 50- 54.
doi: 10.1016/j.apsusc.2013.04.077
67
WA NG , Y F , LU Q L , XIAO L J , et al. Laser cladding Fe-Cr-Si-P amorphous coatings on 304L stainless[J]. Rare Metal Materials and Engineering, 2014, 43 (2): 274- 277.
doi: 10.1016/S1875-5372(14)60057-6
68
IBRAHIM M Z , SARHAN A A D , KUO T Y , et al. Investigate the effects of the substrate surface roughness on the geometry, phase transformation, and hardness of laser-cladded Fe-based metallic glass coating[J]. International Journal of Advanced Manufacturing, 2018, 98, 1977- 1987.
doi: 10.1007/s00170-018-2354-6
69
ZHANG Q , ZHANG P L , YAN H , et al. Magnetic-field-assisted laser cladding in the preparation of a crack-free Fe-Cr-Mo-C-Y-B amorphous coating on steel[J]. Philosophical Magazine Letters, 2020, 100 (2): 86- 93.
doi: 10.1080/09500839.2020.1725245
70
PAUL T , ALAVI S H , BISWAS S , et al. Microstructure and wear behavior of laser clad multi-layered Fe-based amorphous coatings on steel substrates[J]. Lasers in Manufacturingand Materials Processing, 2015, 2 (4): 231- 241.
doi: 10.1007/s40516-015-0017-0
71
JI X L , LUO C Y , SUN Y , et al. Corrosive wear of multi-layer Fe-based coatings laser cladded from amorphous powders[J]. Wear, 2019, 438/439, 203133.
72
LU Y Z , HUANG G K , WANG Y Z , et al. Crack-free Fe-based amorphous coating synthesized by laser cladding[J]. Materials Letters, 2018, 210, 46- 50.
doi: 10.1016/j.matlet.2017.08.125
73
KOGA G Y , NOGUEIRA R P , ROCHE V , et al. Corrosion properties of Fe-Cr-Nb-B amorphous alloys and coatings[J]. Surface and Coatings Technology, 2014, 254, 238- 243.
doi: 10.1016/j.surfcoat.2014.06.022
74
HENAO J , CONCUSTELL A , CANO I G , et al. Influence of Cold Gas Spray process conditions on the microstructure of Fe-based amorphous coatings[J]. Journal of Alloys and Compounds, 2015, 622, 995- 999.
doi: 10.1016/j.jallcom.2014.11.037
75
SU J , KANG J J , YUE W , et al. Comparison of tribological behavior of Fe-based metallic glass coatings fabricated by cold spraying and high velocity air fuel spraying[J]. Journal of Non-Crystalline Solids, 2019, 522, 119582.
doi: 10.1016/j.jnoncrysol.2019.119582
76
NING W C , ZHAI H M , XIAO R Z , et al. The Corrosion resistance mechanism of Fe-based amorphous coatings synthesised by detonation gun spraying[J]. Journal of Materials Engineering and Performance, 2020, 29, 3921- 3929.
doi: 10.1007/s11665-020-04876-w
77
LI X Q , ZHAI H M , LI W S , et al. Dry sliding wear behaviors of Fe-based amorphous metallic coating synthesized by D-gun spray[J]. Journal of Non-Crystalline Solids, 2020, 537, 120018.
doi: 10.1016/j.jnoncrysol.2020.120018
TANG J , LIAN F Z , YU M , et al. Preparation and investigation of magnetic properties of amorphous Fe78Si9B13 powder core[J]. Journal of Functional Materials, 2012, 43, 96- 98.
79
ZHENG Y Y , WANG Y G , XIA G T . Amorphous soft magnetic composite-cores with various orientations of the powder-flakes[J]. Journal of Magnetism and Magnetic Materials, 2015, 396, 97- 101.
doi: 10.1016/j.jmmm.2015.08.036
80
ZHENG Y Y , WANG Y G . Magnetic properties of structure ordered cores composited with Fe78Si9B13 amorphous and pure iron powders[J]. Journal of Materials Science: Materials in Electronics, 2016, 27, 2830- 2835.
doi: 10.1007/s10854-015-4097-6
81
LI Z T , DONG Y Q , LI F S , et al. Fe78Si9B13 amorphous powder core with improved magnetic properties[J]. Journal of Materials Science: Materials in Electronics, 2017, 28, 1180- 1185.
doi: 10.1007/s10854-016-5644-5
82
DONG Y Q , LI Z C , LIU M , et al. The effects of field annealing on the magnetic properties of FeSiB amorphous powder cores[J]. Materials Research Bulletin, 2017, 96, 160- 163.
doi: 10.1016/j.materresbull.2017.04.030
83
LI Z C , DONG Y Q , PAULY S , et al. Enhanced soft magnetic properties of Fe-based amorphous powder cores by longitude magnetic field annealing[J]. Journal of Alloys and Compounds, 2017, 706, 1- 6.
doi: 10.1016/j.jallcom.2017.02.202
84
YEKATA E B , TAGHVAEI A H , SHARIFI S . The effect of metalloid content on glass forming ability, thermal stability and magnetic properties of Fe-Ta-Si-C powders prepared by mechanical alloying[J]. Journal of Non-Crystalline Solids, 2018, 500, 110- 120.
doi: 10.1016/j.jnoncrysol.2018.06.040
85
SUN H B , GUO Z L , LIANG Z K , et al. Enhancements of preparation efficiency and magnetic properties for Fe-based amorphous magnetic flake powder cores upon the adoption of a novel double-paralleled slits nozzle[J]. Journal of Magnetism and Magnetic Materials, 2020, 500, 166358.
doi: 10.1016/j.jmmm.2019.166358
86
SUN H B , WANG C , WANG J H , et al. Fe-based amorphous powder cores with low core loss and high permeability fabricated using the core-shell structured magnetic flaky powders[J]. Journal of Magnetism and Magnetic Materials, 2020, 502, 166548.
doi: 10.1016/j.jmmm.2020.166548
87
WANG C , GUO Z L , WANG J , et al. Industry-oriented Fe-based amorphous soft magnetic composites with SiO2- coated layer by one-pot high-efficient synthesis method[J]. Journal of Magnetism and Magnetic Materials, 2020, 509, 166924.
doi: 10.1016/j.jmmm.2020.166924
88
YEKTA E B , TAGHVAEI A H , SHARAFI S . Glass formation and magnetic study of new Fe70Ta5Si10C15 powders prepared by mechanical alloying with high thermal stability[J]. Powder Technology, 2017, 322, 241- 249.
doi: 10.1016/j.powtec.2017.08.059
89
HE J H , WANG W , WANG A M , et al. Annealing temperature effect on microstructure, magnetic and microwave properties of Fe-based amorphous alloy powders[J]. Journal of Magnetism and Magnetic Materials, 2012, 324, 2902- 2906.
doi: 10.1016/j.jmmm.2012.04.036
90
ALVAREZ K L , BAGHBADERANI H A , MARTÍN J M , et al. Novel Fe-based amorphous and nanocrystalline powder cores for high-frequency power conversion[J]. Journal of Magnetism and Magnetic Materials, 2020, 501, 166457.
doi: 10.1016/j.jmmm.2020.166457
91
XU P P , WANG R W , WEI D , et al. Crystallization kinetics and magnetic properties of FeSiCr amorphous alloy powder cores[J]. Journal of Magnetism and Magnetic Materials, 2015, 385, 326- 330.
doi: 10.1016/j.jmmm.2015.03.038
WANG X Y , LU Z C , HUANG C B , et al. Preparation and magnetic properties of amorphous powder cores with excellent high-frequency magnetic properties[J]. Powder Metallurgy Industry, 2013, 23 (4): 22- 26.
doi: 10.3969/j.issn.1006-6543.2013.04.004
93
GUO J J , DONG Y Q , MAN Q K , et al. Fabrication of FeSiBPNb amorphous powder cores with high DC-bias and excellent soft magnetic properties[J]. Journal of Magnetism and Magnetic Materials, 2016, 401, 432- 435.
doi: 10.1016/j.jmmm.2015.10.069
94
CHANG C T , DONG Y Q , LIU M , et al. Low core loss combined with high permeability for Fe-based amorphous powder cores produced by gas atomization powders[J]. Journal of Magnetism and Magnetic Materials, 2018, 766, 959- 963.
95
LIU M , HUANG K Y , LIU L , et al. Fabrication and magnetic properties of novel Fe-based amorphous powder and corresponding powder cores[J]. Journal of Materials Science: Materials in Electronics, 2018, 29, 6092- 6097.
doi: 10.1007/s10854-018-8584-4
96
ZHOU B , DONG Y Q , LIU L , et al. The core-shell structured Fe-based amorphous magnetic powder cores with excellent magnetic properties[J]. Advanced Powder Technology, 2019, 30, 1504- 1512.
doi: 10.1016/j.apt.2019.04.027
97
ZHOU B , CHI Q , DONG Y Q , et al. Effects of annealing on the magnetic properties of Fe-based amorphous powder cores with inorganic-organic hybrid insulating layer[J]. Journal of Magnetism and Magnetic Materials, 2020, 494, 165827.
doi: 10.1016/j.jmmm.2019.165827
98
ZHANG Y Q , DONG Y Q , ZHOU B , et al. Poly-para-xylylene enhanced Fe-based amorphous powder cores with improved soft magnetic properties via chemical vapor deposition[J]. Materials & Design, 2020, 191, 108650.
99
BAI Y W , BIAN X F , QIN J Y , et al. The relationship between structures and magnetic properties of Fe-B amorphous nanoparticles[J]. Journal of Non-Crystalline Solids, 2020, 528, 119723.
doi: 10.1016/j.jnoncrysol.2019.119723
100
KATAKAM S , HWANG J Y , PAITAL S , et al. In situ laser synthesis of Fe-based amorphous matrix composite coating on structural steel[J]. Metallurgical and Materials Transactions A, 2012, 43, 4957- 4965.
doi: 10.1007/s11661-012-1312-4
101
PAULY S , LÖBER L , PETTERS R , et al. Processing metallic glasses by selective laser melting[J]. Materials Today, 2013, 16 (1/2): 37- 41.
102
JUNG H Y , CHOI S J , PRASHANTH K G , et al. Fabrication of Fe-based bulk metallic glass by selective laser melting: a parameter study[J]. Materials & Design, 2015, 86, 703- 708.
103
OUYANG D , XING W , LI N , et al. Structural evolutions in 3D-printed Fe-based metallic glass fabricated by selective laser melting[J]. Additive Manufacturing, 2018, 23, 246- 252.
doi: 10.1016/j.addma.2018.08.020
104
XING W , OUYANG D , LI N , et al. Insight into micro-cracking in 3D-printed Fe-based BMGs by selective laser melting[J]. Intermetallics, 2018, 103, 101- 106.
doi: 10.1016/j.intermet.2018.10.011
105
ZOU Y M , WU Y S , LI K F , et al. Selective laser melting of crack-free Fe-based bulk metallic glass via chessboard scanning strategy[J]. Materials Letters, 2020, 272, 127824.
doi: 10.1016/j.matlet.2020.127824
106
NONG X D , ZHOU X L , REN Y X . Fabrication and characterization of Fe-based metallic glasses by selective laser melting[J]. Optics and Laser Technology, 2019, 109, 20- 26.
doi: 10.1016/j.optlastec.2018.07.059
107
ZOU Y M , QIU Z G , TAN C L , et al. Microstructure and mechanical properties of Fe-based bulk metallic glass composites fabricated by selective laser melting[J]. Journal of Non-Crystalline Solids, 2020, 538, 120046.
doi: 10.1016/j.jnoncrysol.2020.120046
108
LIANG S X , WANG X Q , ZHANG W C , et al. Selective laser melting manufactured porous Fe-based metallic glass matrix composite with remarkable catalytic activity and reusability[J]. Applied Materials Today, 2020, 19, 100543.
doi: 10.1016/j.apmt.2019.100543
109
XIE S H , HUANG P , KRUZIC J J , et al. A highly efficient degradation mechanism of methyl orange using Fe-based metallic glass powders[J]. Scientific Reports, 2016, 6, 21947.
doi: 10.1038/srep21947
110
WANG F , WANG H , ZHANG H F , et al. Superior azo-dye degradation of Fe-Si-B-P amorphous powders with graphene oxide addition[J]. Journal of Non-Crystalline Solids, 2018, 491, 34- 42.
doi: 10.1016/j.jnoncrysol.2018.03.048
111
LI X L , WU Y Y , YANG S G , et al. Preparation and degradation property of magnetic FePBCSi amorphous alloy powder[J]. Journal of Non-Crystalline Solids, 2019, 503/504, 284- 287.
doi: 10.1016/j.jnoncrysol.2018.10.010
112
SI J J , GU J L , LUAN H W , et al. Porous composite architecture bestows Fe-based glassy alloy with high and ultra-durable degradation activity in decomposing azo dye[J]. Journal of Hazardous Materials, 2020, 388, 122043.
doi: 10.1016/j.jhazmat.2020.122043
113
LV Z W , YAN Y Q , YUAN C C , et al. Making Fe-Si-B amorphous powders as an effective catalyst for dye degradation by high-energy ultrasonic vibration[J]. Materials & Design, 2020, 294, 108876.